首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Abstract

The agroforestry program of the AMISCONDE Initiative was implemented in 13 buffer zone communities of La Amistad Biosphere Reserve. This program introduced citrus (Citrus spp.) and promoted the widespread inclusion of poró (Erythrina poeppigiana) shade trees, ground story vegetation, and soil conservation techniques to the local cultivation of coffee (Coffea arabica var caturra). This program sought long-term socioeconomic and ecological health in these buffer zone communities through conservation and development projects such as coffee agroforestry systems. This paper examines the ecological and socioeconomic benefits of two introduced coffee agroforestry systems: coffee-poró and coffee-citrus. The project has decreased agrochemical inputs, integrated multi-strata vegetation, and implemented soil conservation techniques such as vetiver grass, cover crops, terraces, water channeling, and shade trees in an effort to sustainably manage coffee production on the steep buffer zone slopes. The agroforestry project of the AMISCONDE Initiative has likely improved the production of coffee ecologically and economically. However, new specialty markets should be explored to increase economic and ecological gains. Organic and fair trade coffee niche markets are suggested as alternatives for meeting the long-term AMISCONDE objectives of community development and conservation.  相似文献   

2.
The objective of this research was to determine the relationships between different ecological features of shade and the incidence of coffee berry borer, coffee leaf rust and spontaneous herbs in rustic coffee plantations in Chiapas, Mexico. Thirty-six 10 m by 10 m plots were established within coffee plantations. The following variables were measured or estimated: number of vegetation strata, percent canopy cover, direct, diffuse and total sunlight below the canopy, plant species richness and diversity, shade tree/shrub density, altitude, aspect, basal area, yields, percentage of coffee berry borer (Hypothenemus hampei Ferr), percentage of coffee leaf rust (Hemileia vastatrix Berk & Br.),percentage of spontaneous herb cover and the presence of paths and runoffs.Results showed a complex agroforestry system, composed of five strata. Coffee berry borer and coffee leaf rust incidence averages were 1.5% and 10.1%,respectively. Average spontaneous herb cover was 34.1%. Coffee leaf rust percentage correlated positively with the coffee berry borer. Number of strata of shade vegetation correlated negatively with leaf rust, while the presence of paths correlated positively with the leaf rust. Species richness and diversity correlated negatively to broad-leaf-herb cover and the presence of runoffs correlated positively to this last variable. Shade tree density (> 10cm d.b.h.) correlated negatively to linear-leaf-herb cover. Percentage of shade cover, light, coffee density, aspect, stand age, basal area and yields were not correlated to pest, disease and weeds. Results support the ecological theory that postulates that diversity and structural complexity in mixed plant systems maintain a healthy system.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

3.
Shade coffee plantations support high numbers of Neotropical migratory birds, but relatively little is known about the structural and floristic attributes used by individual species. From 2005 to 2007, we studied the relationship between habitat characteristics and Neotropical migratory birds in shade coffee plantations in the Venezuelan Andes. Our results indicate that density of migrants was significantly related to both structural and floristic attributes of coffee farms. Specifically, upper canopy foragers were positively associated with number of large trees (>38?cm dbh), tree canopy height, and understory vegetation density. Low canopy and ground foragers were positively associated with numbers of small (8?C23?cm dbh) and medium (23?C38?cm dbh) trees and increased shade cover. Moreover, certain tree species, especially Inga spp., Erythrina spp. and Acnistus arborescens, were important components of habitat for those species that forage in the canopy. For example, our detailed foraging observations showed that Inga trees were used in greater proportion than available throughout plantations by Cerulean Warblers (Dendroica cerulea), a species of high conservation concern. Overall, our research suggests that suitability of coffee plantations for migratory birds may be improved by managing for particular structural and floristic characteristics of plantations.  相似文献   

4.
Both model and field estimations were made of the damage inflicted to coffee plants due to the harvest of timber shade trees (Cordia alliodora) in coffee plantations. Economic analyses were made for different coffee planting densities, yields, and both coffee and timber prices.Damage due to tree felling and log skidding should not be a major limitation to the use of timber shade trees in coffee plantations. The timber price that would balance all discounted losses and benefits to zero, for scenarios with and without trees ranged between 8–20 US $/m3 (current overbark log volume at the saw mill yard is US$ 66/m3). There will be lower margins for coffee damage in high yielding plantations, specially in years of good coffee prices. Nevertheless, the use of timber shade trees is recommended even in these scenarios.  相似文献   

5.
Reducing or eliminating shade cover in coffee (Coffea arabica L.) agroforestry systems affects fungal disease and pest outbreaks, coffee yields, and can result in biodiversity loss of important predators, such as ants. Less dramatic changes in shade structure or composition may also affect ants. Shade tree pruning, a common management practice in shaded coffee systems, has unknown consequences for ant communities. The effects of pruning on arboreal ant communities were investigated by measuring ant abundance, distribution, and species richness in the short (1 week) and long-term (6 months) after shade tree pruning in one 25×50 m plot. Shade tree pruning significantly affected the distribution and abundance of two of the most common ant species (Azteca instabilis F. Smith and Camponotus senex textor Forel), and in general did not affect other ants. After pruning, C. senex textor ants were 80% more abundant on coffee plants and shade trees, whereas A. instabilis abundance dropped by 40% on coffee plants and 73% on shade trees after pruning. Additionally, C. senex textor were significantly more widespread, whereas A. instabilis distributions were more restricted. The effects of pruning were strong over the short-term, but were not evident over the long-term. Shade tree pruning did not affect ant diversity. Thus shade tree pruning largely affected certain aspects of arboreal ant communities in one coffee agroforestry system, with important implications for biological control.  相似文献   

6.
Traditional shade coffee plantations of Kodagu district, in the Western Ghats of southern India, harbor a high density and diversity of trees. Local farmers appreciate native biodiversity, but plantation economics and public policies drive them to gradually replace the original diversified cover with exotic shade trees such as Grevillea robusta, which grows fast and can be easily traded as timber. In order to identify and recommend native timber trees with fast growth rates, we compared the growth performance of four common native species against that of G. robusta, by fitting steel dendrometer bands on 332 shade trees. Results showed that in general G. robusta had the fastest growth rates, but large trees of the native Acrocarpus fraxinifolius had faster growth in the wet western side of the district. Computer projections of long term performance showed that most species were influenced by bioclimatic zone. Species-specific local environmental effects also occurred, including competition from coffee bushes for A. fraxinifolius, influence of aspect for G. robusta, and management block effects for Lagerstroemia microcarpa. Our results show that native species potentially could produce timber at rates equivalent to those of exotic species. However, as in many tropical countries, data on growth rates of native trees within mixed-cover plantations are scarce and this study underlines the urgent need to screen for fast-growing species. Such information provides a strong basis for recommending appropriate changes in public policies that would improve tree tenure security and encourage farmers to grow more native species.  相似文献   

7.
Sap flows of coffee (Coffea arabica L. cv ‘Costa Rica 95’) and associated timber trees (Eucalyptus deglupta or Terminalia ivorensis) or leguminous tree (Erythrina poeppigiana) were measured simultaneously during 12 months in 4-year-old coffee agroforestry systems in sub-optimal ecological conditions of Costa Rica. In the wet period, coffee and shade tree transpiration followed the daily patterns of photosynthetic photon flux density (PPFD) and reference evapotranspiration (ETo) while their transpiration was restricted at higher air VPD values (>1.5 kPa) registered during the dry period. Coffee transpired more per unit leaf area in full sun than under shade, an indication of higher environmental coffee stress in non shaded conditions. Nonetheless, coffee daily water consumption per hectare was generally higher under shade than in full sun due higher vegetative growth of shade-grown coffee plants. Minimum and maximum daily transpiration were 0.74 and 4.08 mm for coffee, 0.35 and 1.06 mm for E. deglupta, 0.70 and 2.10 mm for T. ivorensis and 0.13 and 0.79 mm for E. poeppigiana. Estimation of the annual combined water transpiration by coffee and shade trees was 20–250% higher than that of coffee grown in full sun. Nevertheless, there was no evidence that water use by associated trees decreased soil water availability for coffee and hence limited coffee transpiration in the dry season due to its relatively short length (3 months) and the high annual rainfall (over 3100 mm). In the sub-optimal, low altitude conditions of this experiment, E. deglupta was the optimum shade species as it maintained a more constant shade level throughout the year and ensured a better protection to coffee underneath than T. ivorensis and E. poeppigiana which underwent a complete defoliation during the adverse meteorological conditions of the dry period.  相似文献   

8.
Allometric models for dominant shade tree species and coffee plants (Coffea arabica) were developed for coffee agroforestry systems in Matagalpa, Nicaragua. The studied shade tree species were Cordia alliodora, Juglans olanchana, Inga tonduzzi and I. punctata. The models predict aboveground biomass based on diameter at breast height (for trees), and the stem diameter at a height of 15 cm and plant height (for coffee plants). In addition, the specific gravity of the studied species was determined.The total aboveground biomass of the shade trees varied between 3.5 and 386 kg per tree, and between 0.005 and 2.8 kg per plant for coffee. The aboveground biomass components (foliage, branch, and stem) are closely related with diameter at breast height (r > 0.75). The best-fit models for aboveground biomass of the shade trees were logarithmic, with adjusted R 2 between 0.71 and 0.97. In coffee plants, a high correlation was found (r = 0.84) with the stem diameter at 15 cm height, and the best-fit model was logarithmic, as well. The mean specific gravity was 0.52 (± 0.11) for trees and 0.82 (± 0.06) for coffee plants.  相似文献   

9.
Fine-root dynamics (diameter < 2.0 mm) were studied on-farm in associations of Coffea arabica with Eucalyptus deglupta or Terminalia ivorensis and in a pseudo-chronosequence of C. arabica-E. deglupta associations (two, three, four and five years old). Coffee plants were submitted to two fertilisation types. Cores were taken in the 0–40 cm soil profile two years after out-planting and subsequently in the following year in depth layers 0–10 and 10–20 cm, during and at the end of the rainy season, and during the dry season. Fine root density of coffee and timber shade trees was greater in the coffee fertilisation strip as compared to unfertilised areas close to the plants or in the inter-rows. Coffee fine roots were more evenly distributed in the topsoil (0–20 cm) whereas tree fine roots were mostly found in the first 10 cm. Although the two tree species had approximately the same fine root length density, lower coffee / tree fine root length density ratios in T. ivorensis suggest that this shade tree is potentially a stronger competitor with coffee than E. deglupta. Coffee and tree fine root length density for 0–10 cm measured during the rainy season increased progressively from two to five-year-aged associations and coffee fine root length density increased relatively more than E. deglupta fine root length density in the four and five-year-aged plantations suggesting that contrary to expectations, coffee fine roots were displacing tree fine roots.  相似文献   

10.
Greater understanding of the influences on long-term coffee productivity are needed to develop systems that are profitable, while maximizing ecosystem services and lowering negative environmental impacts. We examine a long-term experiment (15 years) established in Costa Rica in 2000 and compare intensive conventional (IC) coffee production under full sun with 19 agroforestry systems combining timber and service tree species with contrasting characteristics, with conventional and organic managements of different intensities. We assessed productivity through coffee yield and coffee morphological characteristics. IC had the highest productivity but had the highest yield bienniality; in the agroforestry systems productivity was similar for moderate conventional (MC) and intensive organic (IO) treatments (yield 5.3 vs. 5.0 t ha?1 year?1). Significantly lower yields were observed under shade than full sun, but coffee morphology was similar. Low input organic production (LO) declined to zero under the shade of the non-legume timber tree Terminalia amazonia but when legume tree species were chosen (Erythrina poepiggiana, Chloroleucon eurycyclum) LO coffee yield was not significantly different than for IO. For the first 6 years, coffee yield was higher under the shade of timber trees (Chloroleucon and Terminalia), while in the subsequent 7 years, Erythrina systems were more productive; presumably this is due to lower shade covers. If IC full sun plantations are not affordable or desired in the future, organic production is an interesting alternative with similar productivity to MC management and in LO systems incorporation of legume tree species is shown to be essential.  相似文献   

11.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

12.
The advantages of associating shade trees in coffee agroforestry systems (AFS) are generally thought to be restricted mostly to poor soil and sub-optimal ecological conditions for coffee cultivation whereas their role in optimal conditions remains controversial. Thus, the objective of this study was to investigate, under the optimal coffee cultivation conditions of the Central Valley of Costa Rica, the impact of Inga densiflora, a very common shade tree in Central America, on the microclimate, yield and vegetative development of shaded coffee in comparison to coffee monoculture (MC). Maximum temperature of shaded coffee leaves was reduced by up to 5°C relative to coffee leaf temperature in MC. The minimum air temperature at night was 0.5°C higher in AFS than air temperature in MC demonstrating the buffering effects of shade trees. As judged by the lower relative extractable water (REW) in the deep soil layers during the dry season, water use in AFS was higher than in MC. Nevertheless, competition for water between coffee and associated trees was assumed to be limited as REW in the 0–150 cm soil layer was always higher than 0.3 in shaded coffee compared to 0.4 in monoculture. Coffee production was quite similar in both systems during the establishment of shade trees, however a yield decrease of 30% was observed in AFS compared to MC with a decrease in radiation transmittance to less than 40% during the latter years in the absence of an adequate shade tree pruning. As a result of the high contribution (60%) of shade trees to overall biomass, permanent aerial biomass accumulation in AFS amounted to two times the biomass accumulated in MC after 7 years. Thus provided an adequate pruning, Inga-shaded plantations appeared more advantageous than MC in optimal conditions, especially considering the fact that coffee AFS provides high quality coffee, farmers’ revenue diversification and environmental benefits.  相似文献   

13.
Shade management in coffee and cacao plantations   总被引:1,自引:0,他引:1  
Shade trees reduce the stress of coffee (Coffea spp.) and cacao (Theobroma cacao) by ameliorating adverse climatic conditions and nutritional imbalances, but they may also compete for growth resources. For example, shade trees buffer high and low temperature extremes by as much as 5 °C and can produce up to 14 Mg ha-1 yr-1 of litterfall and pruning residues, containing up to 340 kg N ha-1 yr-1. However, N2 fixation by leguminous shade trees grown at a density of 100 to 300 trees ha-1 may not exceed 60 kg N ha-1 yr-1. Shade tree selection and management are potentially important tools for integrated pest management because increased shade may increase the incidence of some commercially important pests and diseases (such as Phythphora palmivora and Mycena citricolor) and decrease the incidence of others (such as Colletotrichum gloeosporioides and Cercospora coffeicola). In Central America, merchantable timber production from commercially important shade tree species, such as Cordia alliodora, is in the range of 4–6m3 ha-1 yr-1. The relative importance and overall effect of the different interactions between shade trees and coffee/cacao are dependent upon site conditions (soil/climate), component selection (species/varieties/provenances), belowground and aboveground characteristics of the trees and crops, and management practices. On optimal sites, coffee can be grown without shade using high agrochemical inputs. However, economic evaluations, which include off-site impacts such as ground water contamination, are needed to judge the desirability of this approach. Moreover, standard silvicultural practices for closed plantations need to be adapted for open-grown trees within coffee/cacao plantations. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
For many decades, simplification of traditionally shaded coffee-production systems has been an idealised model for increasing yields. In Mexico, coffee producers have been interested in replacing diverse natural shade with Inga species monocultures due to this practice having the supposed advantages of producing higher coffee yields than diverse shade. However, the effect of different shade systems on yields is little known. The purpose of this study was to evaluate the effect of two types of shaded-coffee systems on coffee yields and soil nutrient content; the first shade system is mainly dominated by Inga latibracteata Harms and the other composed of species-rich natural vegetation. The investigation took place in producer plots in the Francisco I. Madero Community, Municipality of Jitotol, Chiapas, Mexico. Collected data included species richness, shade-tree density, number of strata, tree diameter, tree height, shade-cover percentage, direct and diffused light, coffee yields, soil-nutrient concentrations (N, P, K, Ca and Mg), soil-organic matter and pH. Evaluated shade type did not have an effect on grain yield or soil nutrients. The perceived advantage of the Inga shade system is reduced weed emergence, saving farmers one annual weed-clearing. There was no significant correlation between total N and organic matter. The presence of fewer products and services in comparison to the multiple shade system was thought to be an additional disadvantage to the Inga dominated system. Organic matter in the multiple shade system correlated positively with total N. Due to its complex structure and diversity, the multiple shade system could be certified as shade or bird-friendly coffee. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
During most of its cultivation in Central America, coffee (Coffea arabica L.) suffered few serious pest problems. However, over the past three decades, three factors contributed to significantly increase pest levels and losses: the recent introduction of new pests; more favorable conditions for existing pests, diseases, and weeds due to lower shade levels; and secondary pest problems caused by pesticide use. The strategy of maximizing coffee production with pest control dominated by synthetic pesticides has not only increased yields substantially, but also production costs, pesticide resistance, and both human health and environmental risks. An analysis of the response of the food web in coffee plantations to varying levels of light and humidity associated with different shade levels provides the basis for identifying the optimum shade conditions which minimize the entire pest complex and maximize the effects of beneficial microflora and fauna acting against it. These optimum shade conditions for pest suppression differ with climate, altitude, and soils. The selection of tree species and associations, density and spatial arrangement, as well as shade management regimes are critical decisions for shade strata design. Site-specific knowledge of the seasonal food web dynamics permits growers to determine the appropriate seasonal shade management in order to further suppress pest levels. For example in a low-elevation dry coffee zone, 35 to 65% shade promotes leaf retention in the dry season and reduces Cercospora coffeicola, weeds, and Planococcus citri; at the same time, it increases the effectiveness of microbial and parasitic organisms without contributing to increased Hemileia vastatrix levels or reducing yields. In these conditions, shade should be at a maximum early in the dry season and at a minimum by the middle of the rainy season. Further research is needed on: the effects of individual tree species on the food web; the role of canopy architecture for coffee vigor, photosynthesis, leaf drying, pest susceptibility, and pruning regimes; and on simple observation methods and decision criteria for farmer management of tree-coffee-food web interactions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Changes in coffee economics are leading producers to reduce agrochemical use and increase the use of shade. Research is needed on how to balance the competition from shade trees with the provision of ecological services to the coffee. In 2000, long-term coffee experiments were established in Costa Rica and Nicaragua to compare coffee agroecosystem performance under full sun, legume and non-legume shade types, and intensive and moderate conventional and organic inputs. Coffee yield from intensive organic production was not significantly different from intensive conventional in Nicaragua, but in Costa Rica it was lower during three of the six harvests. Full sun coffee production over 6 years was greater than shaded coffee in Costa Rica (61.8 vs. 44.7 t ha?1, P = 0.0002). In Nicaragua, full sun coffee production over 5 years (32.1 t ha?1) was equal to coffee with shade that included Tabebuia rosea (Bertol.) DC., (27?C30 t ha?1) and both were more productive (P = 0.03) than coffee shaded with Inga laurina (Sw.) Willd. (21.6 t ha?1). Moderate input organic production was significantly lower than other managements under all shade types, except in the presence of Erythrina poepiggina (Walp.) O.F. Cook. Inga and Erythrina had greater basal area and nutrient recycling from prunings than other shade species. Intensive organic production increased soil pH and P, and had higher K compared to moderate conventional. Although legume shade trees potentially provide ecological services to associated coffee, this depends on management of the competition from those same trees.  相似文献   

17.
The relative importance of N fixation, organic material inputs and nutrient inputs in litterfall, as justifications for including shade trees in plantations of coffee or cacao, is discussed. According to existing data, N fixation by leguminous shade trees does not exceed 60 kg.N/ha/a. However, these trees contribute 5,000–10,000 kg. organic material/ha/a.Comparisons are made between the leguminous shade tree Erythrina poeppigiana and the non-leguminous timber tree Cordia alliodora. The former, when pruned 2 or 3 times/a., can return to the litter layer the same amount of nutrients that are applied to coffee plantations via inorganic fertilizers, even at the highest recommended rates for Costa Rica of 270 kg.N, 60 kg.P, 150 kg.K/ha/a. The annual nutrient return in this litterfall represents 90–100 percent of the nutrient store in above-ground biomass of E. poeppigiana, and hence the consequences of competition with the crop should not be a serious limitation. In the case of C. alliodora, which is not pruned, nutrient storage in the tree stems, especially of K, is a potential limiting factor to both crop and tree productivity.It is concluded that, in fertilized plantations of cacao and coffee, litter productivity is a more important shade tree characteristic than N fixation.An early version of this review was presented at the CATIE-IUFRO meeting Los Arboles de Uso Multiple en Sistemas Agroforestales, June 1985, Turrialba, Costa Rica.  相似文献   

18.
We usually have only limited knowledge about the economic consequences of land-use decisions, thus they are uncertain. We analyze the implications of this uncertainty on conservation payments (CP) to preserve wildlife-friendly shade coffee production in southwest Ecuador, when conversion to maize is the most profitable alternative. Our objective is twofold: First, we analyze the consequences of applying Stochastic Dominance (SD) to derive CP, an approach making only minimal assumptions about the preferences of farmers. Second, we investigate the effects of land-use diversification to reduce CP by allowing for shade coffee on part of a landholding, and maize production on what remains. CP derived by SD turned out to be at least twice the amount calculated by an alternative method which maximizes a concave utility function—US$ 166 to US$ 294 ha?1 year?1 instead of US$ 86 ha?1 year?1. Given this result, we doubt that the assumptions underlying SD are reasonable for farmers, who are known to be risk-averse. Allowing for land-use diversification has a significant impact on CP. The optimal portfolio share of shade coffee is 27 % and for maize 73 % for moderately risk-averse farmers—without any CP. A larger share of shade coffee is preferable for strongly risk-averse farmers—51 and 49 % maize. The amount of CP necessary to encourage the expansion of shade coffee to 75 % is US$ 40 ha?1 year?1 (for moderately risk-averse) and US$ 19 ha?1 year?1 (for strongly risk-averse farmers). Stimulating diversification may thus help to significantly reduce CP necessary to preserve less profitable agroforestry options.  相似文献   

19.
Coffee agroforestry is a conservation strategy that has shown promise to support the diversity of bird, bat, and insect communities, but few studies have focused on non-volant mammals in coffee farms. We assessed mammal diversity within coffee agroforestry systems in Kodagu, India and investigated the impacts of the non-native shade tree species, Grevillea robusta, on mammal diversity. Twenty farms, with varying amounts of G. robusta planted within the coffee farm, were sampled throughout three rainfall zones during the 4-month study period. We captured six species of small mammals, with indirect methods yielding an additional five species, totaling 11 mammal species. Contrary to current ecological thought, we found that increased amounts of G. robusta did not have a negative impact on either abundance or richness of mammals. Small mammal abundances were higher at farms with greater amounts of herbaceous ground cover and larger, mature shade trees, while small mammal species richness was found to increase with an increase in tree species richness as well as greater amounts of herbaceous ground cover. Additionally, small mammal abundance was higher at coffee farms closer to forested areas. Based on these findings, we suggest the maintenance or cultivation of shade tree richness, mature shade trees, and herbaceous ground cover within coffee farms and preservation of forested areas within the landscape to enhance coffee agroforestry habitat for non-volant mammals. We hope that these habitat requirements will be incorporated into conservation strategies for the promotion of biodiversity within coffee agroforestry systems.  相似文献   

20.
Coffee leaf rust (CLR), caused by Hemileia vastarix, is one of the most serious diseases of coffee plantations and cause great losses in coffee production. We aimed to examine coffee varieties, shade, age of coffee plants, coffee plant density and soil properties in relation to CLR infection. To do this, we established a total of 75 plots in three agroforestry coffee plantations in the central Peruvian Amazon. We gathered data there in 2011 (dry season) on the presence/absence of CLR; coffee variety; age and density of coffee plants, and also took hemispherical photographs to determine canopy openness. In 2014 (wet season), we again gathered data on the same variables. In 2012, we collected soil samples from a subset of the plots. At all plantations, coffee variety had a significant effect on CLR incidence, with the Catimor variety infected less frequently than Caturra. Coffee plant age had a significant positive effect on CLR incidence. Increasing coffee density also increased CLR incidence for some of the studied plantations/seasons. Comparing those plots from which data were collected in the dry and wet seasons, we found that CLR presence was significantly higher in the wet season. The effect of shade on CLR incidence was not clear. Catimor and Caturra varieties showed opposite trends of CLR incidence in response to shade quantity in most cases (Caturra variety CLR incidence was decreasing with shading increase and Catimor CLR incidence decreasing with decreasing shading). Finally, the soil properties did not affect CLR incidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号