首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
膜下调亏滴灌对制种玉米耗水规律及产量的影响   总被引:5,自引:2,他引:3  
通过大田膜下调亏滴灌试验,测定了制种玉米叶面积指数、耗水量和产量等指标。结果表明,拔节—抽穗期缺水抑制了叶面积的生长,对产量负面影响极为显著,水分利用效率显著降低;灌浆—成熟期缺水对叶面积指数和产量影响甚微,而水分生产效率却显著提高,通过建立产量与叶面积指数以及叶面积指数与日耗水强度模型,提出了在抽穗期充分供水,苗期和成熟期减小供水、保持适度的水分亏缺的制种玉米节水高产水分调控模式。  相似文献   

2.
间作模式下玉米干旱胁迫响应研究   总被引:1,自引:0,他引:1  
【目的】为了在干旱地区建立玉米大豆间作模式的节水灌溉制度,在大型防雨棚中针对玉米大豆间作模式下的玉米生长情况进行干旱胁迫研究。【方法】设置3个土壤相对含水率,进行玉米和大豆间作种植试验,通过分析玉米叶片叶绿素量、生长特性、产量等因素,研究了不同生育时期干旱胁迫对玉米生长的主要影响以及玉米和大豆之间的水分竞争情况。【结果】前期适当的干旱使玉米的株高和茎粗分别增加了6.24%、7.83%,对玉米叶绿素量积累也是有利的;在玉米生长旺盛时期,干旱导致玉米产量下降,适当干旱区域水分利用效率最大为1.39%。【结论】玉米在拔节—灌浆期对水分最敏感,在此阶段玉米和大豆对水分的竞争模式也最为复杂,在出苗中后期,适当干旱有利于玉米后期发育。  相似文献   

3.
以玉米为对象,分别进行了盐度为0.1%、0.3%、0.5%和0.7%海冰水灌溉试验。结果表明:盐度为0.3%海冰水以450 m3/hm2灌溉时,能减轻作物干旱胁迫,增产效果显著,但灌水量增加到900 m3/hm2和1350 m3/hm2时反而减产。盐度达到0.5%时,3种灌水量处理比0.3%盐度900 m3/hm2处理区,减产9.5%、10.8%和18.4%。当海冰灌溉水盐度为0.7%灌水量1350 m3/hm2时,产量接近全旱处理区产量水平。玉米经不同盐度海冰水灌溉,产量差异达显著水平。  相似文献   

4.
不同水盐胁迫对番茄生长发育和产量的影响研究   总被引:1,自引:1,他引:0  
【目的】探究番茄植株对不同水盐胁迫情景的响应,为合理制定盐碱化土壤下的灌溉制度提供科学依据。【方法】以粉欧宝番茄品种为研究对象,开展水盐对番茄生长发育影响的盆栽试验。试验采用完全随机布置,设置3个水分水平(W1-充分灌溉、W2-1/2的W1灌水量、W3-干旱复水)和2个盐分水平(S1-无盐和S2-0.3%含盐量),每个处理4个重复,测定了番茄耗水、干物质和产量指标,分析了不同水盐胁迫对番茄植株生长发育与产量的影响。【结果】与充分灌溉W1相比,W2水平的番茄植株耗水、干物质、植株含水率、叶质量、产量、单果质量显著减少。W3水平的植株耗水量和叶茎比显著减少,但单株干质量与鲜干比所受影响不大;单果鲜质量与干质量显著减小,但坐果率提高导致产量有所增加。盐分处理的番茄植株耗水量、单株干质量、鲜干比、叶茎比、果实总产量、单果鲜质量与干质量均小于无盐处理。水分胁迫显著影响叶片生长和单个果实发育,盐分胁迫抑制植株的生长发育及产量形成。【结论】干旱复水与无盐处理组合(W3S1)下番茄植株表现出了较好的生长发育状况和产量水平,可用于最优调亏灌溉制度的制定。  相似文献   

5.
龚郑锋 《农业工程》2021,11(12):108-113
为研究不同生育期干旱胁迫对玉米籽粒灌浆及产量的影响,分别设置正常水分、拔节期干旱、抽雄期干旱和灌浆初期干旱4个处理,研究玉米干物质积累、灌浆特性、淀粉相关酶活性及产量的变化特征。结果表明:干旱显著降低玉米干物质积累量,抽雄期和灌浆初期干旱显著降低花后干物质积累量和贡献率;干旱显著降低籽粒质量和灌浆速率,抽雄期干旱对后期籽粒质量和灌浆速率影响最大;干旱显著降低结合态淀粉合成酶(GBSS)、可溶性淀粉合成酶(SSS)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性;干旱对产量的影响主要是增加了秃尖长、减少了行粒数,3个时期干旱胁迫产量分别降低15.15%、33.11%和22.00%。因此,拔节期、抽雄期和灌浆初期玉米对水分的需求较为敏感,对产量影响较大,尤其是在玉米抽雄期,要确保水分供应,以保证玉米产量。   相似文献   

6.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

7.
Potassium-salinity interactions in irrigated corn   总被引:1,自引:0,他引:1  
Summary Potassium uptake by plants can be affected by high salinity and the Na concentration in the soil solution. There is abundant evidence that Na and the Na/Ca ratio affects K uptake and accumulation within plant cells and organs and that salt tolerance is correlated with selectivity for K uptake over Na. This provides the basis for hypothesis which exists in the literature and was examined in this study, that K application can reduce salinity damage to plants. The main objectives of this study were to: (i) study the effects of salinity and K fertilization interactions on corn yield and nutrient uptake; (ii) test the possibility that salinity damage can be reduced by elevating K fertilization rate; and (iii) study K dynamics in soil as a function of the salinity of the irrigation water, in soils with high and low indigenous potassium. The response of corn (Zea mays (L.) cv. Jubilee) to K fertilization under saline and non-saline conditions was studied by growing corn in two soil types in a pot experiment. Rates of K application to a 3 kg pot were: 0, 15 and 30 mmol K to the Gilat soil and 7.5, 15 and 30 mmol K to the Nordiya soil as KCl. The desired quantity of K was applied in one dose after seedling emergence. The salinity levels of the irrigation water were 4, 20 and 40 mmol charge 1–1. The irrigation was applied at least every second day and in excess to avoid water stress and to ensure drainage. Increased salinity in the irrigation water significantly decreased yield in both soils. Potassium significantly increased yield at all salinity levels only in the sandy soil which had a low natural level of K, but there was no difference in the relative yield decrease with salinity increase between the lowest and highest K application rates. Potassium fertilization did not eliminate the deleterious effects of salinity on corn yield despite its beneficial effect of increasing K content and reducing the NaK ratio in plant tissue. Potassium uptake by plants was the major factor in K dynamic processes. Potassium adsorption, release and fixation were secondary factors while leaching was an insignificant factor in overall K balance under cropping conditions.  相似文献   

8.
The publication is a synthesis of previous publications on the results of a long-term lysimeter experiment. From 1989 to 1998, the experimental variables were soil salinity and soil type, from 1999 onwards, soil salinity and crop variety. The plant was studied during the whole growing period by measuring the saline stress and analyzing its effect on leaf area and dry matter development and on crop yield. Salinity affected the pre-dawn leaf water potential, stomatal conductance, evapotranspiration, leaf area and yield.The following criteria were used for crop salt tolerance classification: soil salinity, evapotranspiration deficit, water stress day index. The classification according to soil salinity distinguished the salt tolerant group of sugar beet and wheat, the moderately salt sensitive group comprising broadbean, maize, potato, soybean, sunflower and tomato, and the salt sensitive group of chickpea and lentil. The results for the salt tolerant and the moderately salt sensitive groups correspond with the classification of Maas and Hoffman, excepted for soybean.The evapotranspiration deficit criterion was used, because for certain crops the relation between yield and evapotranspiration remains the same in case of drought and salinity. This criterion, however, did not appear useful for salt tolerance classification.The water stress day index, based on the pre-dawn leaf water potential, distinguished a tolerant group, comprising sugar beet, wheat, maize, sunflower and potato, and a sensitive group, comprising tomato, soybean, broadbean, chickpea and lentil. The classification corresponds with a difference in water use efficiency. The tolerant crops show a more or less constant water use efficiency. The sensitive crops show a decrease of the water use efficiency with increasing salinity, as their yield decreases stronger than the evapotranspiration. No correlation could be found between osmotic adjustment, leaf area and yield reduction. As the flowering period is a sensitive period for grain and fruit formation and the sensitive crops are all of indeterminate flowering, their longer flowering period could be a cause of their greater sensitivity.The tolerant group according to water stress day index can be divided according to soil salinity in a salt tolerant group of sugar beet and wheat and a moderately sensitive group, comprising maize, sunflower and potato. The difference in classification can be attributed to the difference in evaporative demand during the growing period.The sensitive group according to water stress day index can be divided according to soil salinity in a moderately sensitive group, comprising tomato, soybean and broadbean, and a salt sensitive group of chickpea and lentil. The difference in classification can be attributed to the greater salt sensitivity of the symbiosis between rhizobia and grain legume in the case of chickpea and lentil.  相似文献   

9.
In most cases, when calculating soil water availability, only thewater content is considered. The effect of salinity on the wiltingpoint is neglected. The objective of this work is to use asimulation model (CERES-maize) in order to predict cornyields as a function of water salinity under severalenvironmental, agrotechnical, and plant characteristics. A modelis presented in which the wilting point is a function of the soilsalt content. At high salinity, the water content at wilting pointis higher than at low salinity, resulting in an insufficient amountof available water and, therefore, a reduced yield. The modelwas used to simulate several theoretical and experimentalsituations for forage corn and grain corn. Simulation resultsshowed that nitrogen fertilization increases the salinity thresholdvalue and the yield sensitivity (rate of yield reduction per unitof salinity). The also showed that forage corn is more sensitiveto salinity than grain corn. If the soil is not leached, a heaviersoil texture has a higher salinity threshold value. On the otherhand, if the soil is leached, the soil texture has no influence onthe salinity threshold value and the yield is less sensitive tosalinity in sandy soils. The determination coefficient (r2= 0.75) indicated that the results of the simulations were in goodagreement with the field data.  相似文献   

10.
Effect of salinity on water stress, growth, and yield of maize and sunflower   总被引:10,自引:0,他引:10  
Maize and sunflower were grown in tanks filled with loam and clay, and were irrigated with water of three different levels of salinity. Predawn leaf-water potential and stomatal conductance were used as parameters for water stress. The predawn leaf-water potential of maize was higher than that of sunflower, but the effect of salinity and soil texture on the predawn leaf-water potential was the same for both crops. The stomatal conductance of sunflower was much higher and more severely affected by salinity and soil texture than the stomatal conductance of maize.

Although salinity had a more serious effect on the development of leaf area and canopy dry matter of sunflower, its effect on evapotranspiration and grain yield was the same for both crops. Soil texture had a stronger effect on the development of leaf area and canopy dry matter of sunflower, which also appeared in the evapotranspiration and grain yield, indicating that sunflower is more sensitive to drought than maize.  相似文献   


11.
水分亏缺对覆膜玉米生长发育及产量的影响   总被引:1,自引:0,他引:1  
通过系统的覆膜玉米亏水灌溉试验 ,研究了不同生育期内不同程度的水分亏缺对覆膜玉米生长发育、光合作用、产量及水分利用效率等的影响。结果表明 ,拔节期受旱对玉米株高及叶面积指数影响最大 ,抽雄后的水分亏缺对玉米生长发育影响不明显。各处理产量资料表明 ,覆膜春玉米的需水临界期为抽雄开花期 ,此期轻度的水分亏缺可造成产量大幅度下降 :灌浆期较抽雄开花期玉米产量对水分亏缺敏感程度低 ,但在这个阶段的水分亏缺也可使玉米减产 ;拔节期玉米产量对水分胁迫敏感程度较差 ,该阶段为对玉米进行水分亏缺处理的适宜时期  相似文献   

12.
Summary A line-source field experiment was conducted to study the interactive effects of four levels of soil salinity, five rates of applied nitrogen fertilizer and six levels of irrigation on the production of field corn (Zea mays L.). In general, increased levels of soil salinity and decreased irrigation reduced grain and stover (stems and other above-grand dry matter) yields. Increased quantities of irrigation, presumably through maintenance of high (less negative) total soil water potential, were effective in decreasing the effect of salinity, and as a result improved yield. The highest salinity level (9.6 mmho/cm) resulted in dry matter yield reductions of 41 and 93 percent of the maximum observed yield at the highest (479 mm) and lowest (210 mm) irrigation levels respectively, averaged over all fertility levels. Under the same conditions grain yield declined by 48 and 96 percent. Yield was not improved as a result of applying nitrogen. Main effects on yield of salinity (1% level), water (1% level) and nitrogen (5% level) were found. Interactive effects upon yield were demonstrated for salinity X nitrogen (1% level) and salinity X water (1% level) combinations. Nitrogen content of stover and grain rose with increased levels of soil salinity and nitrogen, and declined with increased irrigation. A salinity X nitrogen interaction effect was demonstrated for nitrogen content of the grain, and a salinity X water effect demonstrated for stover. Multiple regression equations for stover and grain yields as functions of salinity, fertility and irrigation were developed (R 2 = 0.88 and 0.85 respectively).Utah Agricultural Experiment Station Journal Paper No. 2331Present address of the senior author: FAO, Addis Abeba, Ethiopia  相似文献   

13.
以白皮洋葱为试材,利用称量式蒸渗仪灌水试验,研究了不同灌水量及土壤含盐量对洋葱的耗水规律、产量和水分利用效率的影响。供试土壤分别为低盐土和高盐土,低盐土在鳞茎膨大期设置3种灌水处理,其对应的灌水下限分别为0~30 cm土层土壤含水率达到田持的80%、70%和60%,其他生长期和高盐土的全生育期灌水下限均为田持的80%。研究结果表明,鳞茎膨大期是洋葱的关键需水期;洋葱作物系数立苗期为0.50,发叶期为1.00,鳞茎膨大期为1.50,成熟期为1.25。低盐土的中水处理洋葱可获得最大产量、水分利用效率和较大的灌溉水利用效率;水分和盐分胁迫对洋葱的产量和耗水具有明显的影响。在石羊河流域洋葱鳞茎膨大期,0~30 cm土层土壤灌水下限为田持的70%左右是较适宜的灌水方案。  相似文献   

14.
浅析玉米抗旱栽培技术   总被引:1,自引:0,他引:1  
王永琴 《湖南农机》2012,39(3):232-233
吕梁山区十年九旱,大部分的土壤瘠薄且保水性差,土地产量低而不稳,一直影响着玉米生产的平衡发展.提高旱薄地春玉米产量对提高丰南市粮食总产起着重要作用.  相似文献   

15.
A variety of indices have been used to measure soil and crop drought for irrigation scheduling. However, simple indices with physiological mechanisms from soil water content are still expected. Based on the water flow and supply in a soil-plant continuum, we examined the concepts of soil drought intensity and drought degree and found an empirical correlation between soil water storage and depletion in a given layer. Accordingly, an index of soil drought intensity (I) and degree (D) was established using the soil water data obtained from a field experiment conducted in Xianning, Hubei, China. Corn plants (Zea mays L., Yedan 13) were grown at field plots under a movable rain shelter. From the V6 stage to R1 stage, the corn plants were grown under seven soil water deficit levels, by no irrigation applied for 0-36 days in 2005 and 0-32 days in 2006. At the end of the irrigation withholding period, it was found that soil water below 70 cm still remained at high level, but the soil water was not easily transported to the root zone in the upper layer. The daily values of I in different soil layers reflected the soil water depletion rates in the drying course. The values of D in different soil layers, which were calculated from I, increased with the progressive soil drying course. The D index in different soil layers not only revealed the drought severity of the layer, but it was also inversely correlated with corn yields when D was less than the threshold values. When D went beyond the thresholds, for example 0.68 in 2005 (soil dried 25 days) and 0.70 in 2006 (soil dried 17 days) in the 0-10 cm soil layer, the corn yield was reduced significantly. Based on soil water changes, index D is the comprehensive result of antecedent soil water condition, crop growth and root development, soil properties, and potential atmospheric evaporation. It is also comparable to the development of drought hazard on a crop. The results suggest that soil drought degree D, together with I, can be an index for monitoring and evaluating soil-crop drought, as well as complementing the crop water stress index (CWSI) in irrigation scheduling.  相似文献   

16.
A plastic-covered ridge and furrow rainfall harvesting (PRFRH) system combined with mulches was designed to increase water availability to crops for improving and stabilizing agricultural production in the semiarid Loess region of northwest China. The system was built by shaping the soil surface with alternate ridges and furrows along the contour. The plastic-covered ridges served as a rainfall harvesting zone and furrows as a planting zone. Some materials were also used to mulch the furrows to increase the effectiveness of the harvested water. This system can make better utilization of light rain by harvesting rainwater through the plastic-covered ridge. The field experiment (using corn as an indicator crop) showed that grain yields in the PRFRH system with mulches in 1998 and 1999 were significantly higher than the controls, with an increase of 4010–5297 kg per ha (108–143%). In most treatments, the water use efficiencies (WUE) were in excess of 2.0 kg m−3. The WUE values of corn in this system were 1.9 times greater than the controls in 1998 and 1.4 times greater than the controls in 1999. The plastic-covered ridge led to a yield increase of 3430 kg per ha (92%) in 1998 and of 1126 kg per ha (21%) in 1999 compared with the uncovered ridge. On average, the additional mulches in the furrow brought about a yield increase of 8–25%. Based on the results of this study and other researches, this technique can increase corn grain yield by 60–95% in drought and average years, 70–90% in wet years, and 20–30% in very wet years. The PRFRH system had the potential to increase crop yield and produced greater economic benefit, therefore it could be used in regions dominated by light rainfall of low intensity where crops generally fail due to water stress.  相似文献   

17.
东北黑土区是我国玉米的主产区,但该地区"十年九春旱",春季干旱已成为限制该地区农业发展的主要因素.在坐水施肥条件下,采用"311-B"D饱和最优设计,通过对玉米产量结果进行二次回归拟合,建立水肥回归数学模型,因素效应分析结果表明,影响玉米产量的因素为坐水效应>施氮效应>施磷效应;在玉米覆膜及基施肥硫酸钾150 kg/hm2时,N(追肥)用量为80.0~103.9 kg/hm2,P2O5(底肥)用量为66.1~90.8 kg/hm2,坐水量为63.4~76.5kg/hm2时,黑土区玉米可获得13 500 kg/hm2以上的产量.  相似文献   

18.
【目的】探讨不同生育期干旱胁迫对设施栽培葡萄水分利用效率、产量和品质的影响。【方法】在甘肃省永登县设施葡萄试验基地开展了葡萄滴灌不同生育期水分调控田间灌溉试验,在葡萄新梢生长、开花、果实膨大、着色成熟期分别以55%田间持水率(θ_f)为灌水下限的干旱胁迫处理,依次为新梢生长期干旱胁迫(PS)、开花期干旱胁迫(FS)、果实膨大期干旱胁迫(ES)、着色成熟期干旱胁迫(CS),其他生育期灌水下限均为75%θ_f;全生育期以75%θ_f为灌水下限的处理为(CK)充分供水,研究了不同处理对葡萄粒径膨大速率、产量、水分利用效率(water use efficiency,WUE)以及品质的影响。【结果】新梢生长期干旱胁迫处理能抑制葡萄粒径膨大,但不会影响其生长的"双S"变化规律,且复水后粒径恢复生长并出现复水补偿效应;横、纵径在膨大期后14 d左右和52 d左右时达到膨大高峰,且第1次膨大高峰时的膨大速率远大于第2次的;新梢期和着色成熟期干旱胁迫较对照依次增产44.6%、42.5%,WUE依次提高71%、57%,果实膨大期干旱胁迫较CK可减产9.7%,WUE降低1.2%;新梢生长期、开花期和果实膨大期干旱胁迫单穂质量、单粒质量均显著(P<0.05)高于CK,开花期干旱胁迫花青素量显著(P<0.05)高于CK,着色成熟期干旱胁迫果糖、蔗糖、葡萄糖、可溶性固形物量显著(P<0.05)高于CK,并可抑制葡萄果实可滴定酸的积累;隶属函数综合分析表明,着色成熟期干旱胁迫葡萄产量和品质最优。【结论】着色成熟期干旱胁迫为当地设施栽培葡萄最佳的水分调控处理,可达到节水和提高葡萄果实产量和品质的生产效果,其水分调控模式为:土壤含水率为田间持水率的55%~80%,灌水定额为270 m~3/hm~2。  相似文献   

19.
以华北地区抗旱性不同的二冬麦品种石家庄8号(抗旱品种)与偃麦20(非抗旱品种)为材料,研究拔节期水分胁迫-复水补偿效应的品种差异及补偿效应对产量及水分利用效率(WUE)的影响.结果表明,在拔节期不同胁迫程度和不同胁迫历时下.石家庄8号水分胁迫一复水之后,各项生理指标均快速补偿,轻度水分胁迫-复水后出现超补偿效应,且出现...  相似文献   

20.
Two chickpea varieties, differing in drought tolerance, were grown in lysimeters filled with clay, and were irrigated with waters of three different salinity levels. Under non-saline conditions, both varieties, slightly differing in pre-dawn leaf water potential during the growth period, gave almost the same yield.Salinity had a slight effect on the leaf water potential and the osmotic adjustment. Both were slightly higher for the drought tolerant variety, but much lower in comparison with sugar beet, tomato and lentil. The drought tolerant variety showed an earlier senescence in leaf and dry matter development and flowering which were accelerated by salinity. The drought sensitive variety, however, showed under slightly saline conditions (ECe=2.5 dS/m) from 135 days after sowing onwards a different behaviour by the growth of new leaves and flowers, a delay in senescence, leading to the same yield as under non-saline conditions. Under saline conditions (ECe=3.8 dS/m) the drought sensitive variety showed the same yield reduction of about 70% as the drought tolerant variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号