首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
2.
3.
4.
  • 1. This paper documents a diverse, reproducing freshwater mussel community (20 species) in Lower Lake — an impounded, regulated portion of the Little Tallahatchie River below Sardis Dam in Panola Co., Mississippi, USA.
  • 2. Despite being regulated and impounded, the lake has a heterogeneous array of habitats that differ markedly in mussel community attributes. Four distinct habitat types were identified based on current velocity and substrate characteristics, representing a gradient from habitats having lotic characteristics to lentic habitats. All four habitat types supported mussels, but habitats most resembling unimpounded, lotic situations (relatively higher current velocity and coarser substrate) had the highest mussel abundance and species density (10.1 mussels m?2, 1.8 species m?2, respectively). Lentic habitats (no flow, fine substrate) were characterized by lower abundance and species density (2.0 mussels m?2, 0.8 species m?2, respectively), but supported mussel assemblages distinctive from lotic habitats.
  • 3. Evidence of strong recent recruitment was observed for most species in the lake and was observed in all four habitat types.
  • 4. Although impounded and regulated, Lower Lake represents one of the few areas of stable large‐stream habitat in the region. The presence of a diverse, healthy mussel community in this highly modified habitat suggests that a large component of the regional mussel fauna is relatively resilient and adaptable and is limited primarily by the absence of stable river reaches. Management actions that increase stream stability are likely to result in expansion of the mussel fauna and restoration of a valuable component of ecosystem function in this region.
Published in 2006 by John Wiley & Sons, Ltd.  相似文献   

5.
6.
  1. The freshwater mussel (Unionida) fauna of the Yangtze River is among the most diverse on Earth. In recent decades, human activities have caused habitat degradation in the river, and previous studies estimated that up to 80% of the mussel species in the Yangtze River are Threatened or Near Threatened with extinction. However, a comprehensive and systematic evaluation of the conservation status of this fauna has yet to be completed.
  2. This study evaluated the conservation status of the 69 recognized freshwater mussel species in the middle and lower reaches of the Yangtze River, using the criteria published by the International Union for Conservation of Nature (IUCN). A new method for prioritizing species for conservation was then developed and applied termed Quantitative Assessment of Species for Conservation Prioritization (QASCP), which prioritizes species according to quantifiable data on their distribution and population status, life history, and recovery importance and potential.
  3. IUCN assessments showed that 35 (51%) species in the study region are Threatened or Near Threatened (11 Endangered, 20 Vulnerable, 4 Near Threatened). In addition, 16 species (23%) could not be assessed owing to data deficiency. Key threats to the freshwater mussel biodiversity of the Yangtze River include pollution, habitat loss and fragmentation, loss of access to host fish, and overharvesting of mussels and their host fish. The genera Aculamprotula, Gibbosula, Lamprotula, Pseudodon, Ptychorhynchus, and Solenaia were identified as particularly threatened.
  4. Data availability allowed QASCP assessment of 44 species. Only Solenaia carinata, regionally Endangered under IUCN criteria, achieved the highest QASCP rank, i.e. First Priority. The five species assessed as Second Priority were considered either regionally Endangered (one), Vulnerable (three), or Data Deficient (one) under IUCN criteria. The 23 Third Priority species were assessed as regionally Endangered (two), Vulnerable (15), Near Threatened (two), or Least Concern (four).
  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
  1. The European Water Framework Directive 2000/60/EC (WFD) defines the ecological status of aquatic systems as the deviation between their present biological state and that which would be expected in the absence of any major human disturbance, referred to by the WFD as the ‘reference condition’ (RC). It assumes that their biotic composition should remain balanced and constant over time. This study tested both assumptions against an analysis of the historical distribution of the fish fauna in a large and highly disturbed Mediterranean basin. If fish communities change substantially over time, it will mean that the validity of the RC concept comes into question.
  2. Using presence/absence data for historical native fish fauna from the Guadalquivir Basin, distribution changes among sub-basins were quantified by mapping between the nineteenth century and today.
  3. The range of two native species (Anguilla anguilla and Salmo trutta) has changed significantly. In addition, the diadromous species assemblage has almost become locally extinct, with the exception of the eel. Finally, most Guadalquivir sub-basins (94.7%) have suffered major changes in the composition of their fish communities, either by losing native species or by adding new non-native species.
  4. These results render the definition of any RC unlikely. In Mediterranean areas, the WFD objective of ‘good ecological status’ recovery based on the integrity of aquatic communities is a theoretical rather than a real goal. Nonetheless, the WFD provides an ecological guiding principle that can also be transferred to the conservation of freshwater ecosystems.
  5. As an alternative to the RC concept in Mediterranean lotic ecosystems, specific multimetric indices can be used, based on expert criteria, the metrics of which can also relate to the conservation value of water bodies, and not only to their ecological status.
  相似文献   

15.
  • 1. Three classes of habitat used by groups of fish species classified as conservation and management priorities were developed for the Gerua River (also known as the Girwa River, Karnali River) in the Ganges river basin. This river is large (mean annual discharge ca 1500 m3 s?1, up to 900 m wide), surrounded by protected lands of India and Nepal, and upstream of major diversions and river alterations.
  • 2. Fish and habitat sampling was conducted at 45 sites from 2000 to 2003. Data were analysed for 2172 fish of 14 species. Species and life stages found occupying a statistically distinct subset of the river habitats were grouped to identify classes of river habitat for conservation.
  • 3. Most species and life‐stage groups specialized on specific habitat conditions revealed by multivariate analyses of variance and a principal component analysis. The most numerous and diverse group (six species, 15 life stages) was associated with deep depositional habitats with sandy substrate. Two species covering three life stages were primarily oriented to erosional habitat marked by fast current velocity with pebble and cobble substrate. A third group of three species of adults and juveniles were intermediate in habitat use.
  • 4. River conservation for fish faunas should maintain both erosional and depositional channel habitats with depths, substrates, and current velocity inclusive of the ranges reported. The erosional and depositional nature of the key habitats requires that rivers be maintained with flows capable of channel‐forming functions.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
19.
20.
  • 1. Most non‐insect invertebrates that occur in streams on tropical Pacific islands are diadromous; they live as juveniles and adults in streams but have larvae that migrate to the ocean to complete their development before returning to fresh water.
  • 2. The type of crossing used in the construction of roads to traverse small streams can impede upstream migration and, consequently, colonization of diadromous fauna above the stream crossing.
  • 3. A stream in the Opunohu Valley, Moorea, French Polynesia, had the same diadromous fauna of atyid shrimps, palaemonid prawns, and neritid snails occurring above and below an 8 m wide, 10 m long, bottomless culvert (i.e. an open‐bottom bridge) built to flow over natural substrates. However, no diadromous species were found upstream of two 1 m diameter, 8 m long concrete pipes used for a culverted stream crossing. The increased shear stress in the pipe and subsequent downstream erosion of the stream bed probably inhibited upstream migration.
  • 4. Modifications to culverted stream crossings, which are widely used on tropical islands, can reduce migration barriers and prevent upstream loss of diadromous stream fauna.
Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号