首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To improve the unnatural fade-pigmented skin of cultivated gilthead seabream, Sparus aurata, (if shown) the present study was initiated. The effects of either red bell-pepper (Capsicum annum) meal or carrot (Daucus carota) meal as a natural dietary carotenoid source, on growth and skin coloration of gilthead seabream growers were investigated. A basal/control diet (D1/CTR) was firstly formulated to contain 48% crude protein and 14% lipids, with no added-carotenoids. With this basal diet, two other test diets were similarly prepared and supplemented each with about 40mg/Kg total carotenoids from either red-pepper meal (D2) or carrot meal (D3). In a feeding trial, fish (mean IW, 94.86±0.3g) were fed one of the three diets (D1, D2, D3), in triplicates for each treatment, for 6 weeks in light-blue background PVC tanks supplied with natural seawater flow. Total carotenoids content of skin was determined spectrophotometerically at initiation and end of the experiment. Neither growth nor feed utilization were significantly (P<0.05) affected by the red pepper-added diet (D2) as compared to CTR diet. However, the carrot fed fish recorded the lowest and significant (P<0.05) weight gain (g/fish) and specific growth rate (SGR, %/d) among dietary treatments. There were no considerable (P>0.05) differences in major nutrients composition between fish fed the experimental diets. Total carotenoids content was significantly (P<0.05) increased, in the skin-opercle area, of fish fed the red pepper diet (D2) as compared to initial fish and to either carrot fed fish or CTR fish. Results have suggested that gilthead seabream can effectively bio-absorb natural carotenoid pigments (mainly capsansin and capsorbin) in red-pepper but not in carrot (mainly β-and α-carotene).  相似文献   

2.
The aim of this work was to investigate the effect of different carotenoid sources/concentrations and temperature on goldfish (Carassius auratus) skin pigmentation. In the first trial (trial A), the effect of carotenoid source (natural – microalgae Chlorella vulgaris and synthetic – Carophyll Pink) and carotenoid concentration (45, 80 and 120 mg pigment kg?1 diet) was tested. Six homogeneous duplicate groups of juvenile goldfish (7.4 g) were fed, for 5 weeks, one of the diets containing 45, 80 or 120 mg of total pigments of C. vulgaris biomass or synthetic astaxanthin per kg of diet (Cv45, Cv80, Cv120, Ax45, Ax80, Ax120), respectively. In trial B, the effect of water temperature on skin pigmentation was studied. Five homogeneous duplicate groups of 25 goldfish each (5.2 g) were fed diet Ax45 over 9 weeks, to test the following temperatures: 22, 24, 26, 28 and 30 °C. At the end of both trials, samples of skin along the dorsal fin were withdrawn for subsequent analysis of total carotenoid content, intensity of colour, red and yellow hue and visual observation. The best carotenoid concentrations were achieved with astaxanthin diets. There was a tendency to an overall improvement of colour parameters (L and b) in fish fed diets with high levels of C. vulgaris. The results indicated that the best temperature range to maximize skin pigmentation was 26–30 °C.  相似文献   

3.
Rainbow trout (Oncorhynchus mykiss) with a mean (sd) weight of 120 (2) g were fed diets supplemented with astaxanthin extracted from the yeast Phaffia rhodozyma (OY1 = 50 mg carotenoids kg–1 feed, OY2 = 100 mg carotenoids kg–1 feed), astaxanthin (AX = 100 mg astaxanthin kg–1 feed) and canthaxanthin (CX = 100 mg canthaxanthin kg–1 feed) for 4 weeks. Muscle analyses at the end of the experiment indicated a significantly higher carotenoid concentration in the AX group, while CX and OY1 groups were similar in spite of the differences in dietary concentration. The measure of total muscle colour difference (E* ab) between initial samples and 4 week ones was higher for the AX fish group but showed no significant difference between OY1, OY2, and CX. The hue and the reflectance ratio (R650:R510) of fish muscle increased in proportion to carotenoid intake. Digestibility (ADC) of yeast astaxanthin in OY1 and OY2 groups was significantly higher than that in the AX group. Canthaxanthin ADC was about one sixth of that of astaxanthin (AX group). Carotenoid retention in the muscle, expressed as a percentage of carotenoid intake, was higher for the AX group than that recorded for OY1 and OY2. According to ADC, carotenoid retention showed a marked lower value for the CX group. Muscle retentions were similar for astaxanthins from both sources.  相似文献   

4.
Koi carp and goldfish value increases with intensity of skin colour, which is an important quality criterion. Fish cannot fully synthesize their own carotenoid colourings and these must therefore be included in their diet. Two trials were undertaken to investigate skin colour enhancement in ornamental species (i.e. three chromatic varieties of koi carp (Cyprinus carpio), namely Kawari (red), Showa (black and red) and Bekko (black and white) and goldfish (Carassius auratus)) by feeding a dietary carotenoid supplement of freshwater microalgal biomass [Chlorella vulgaris, Haematococcus pluvialis, and also the cyanobacterium Arthrospira maxima (Spirulina)], using a diet containing synthetic astaxanthin and a control diet with no colouring added for comparison. In the first trial, five homogeneous duplicate groups of 25 juvenile koi carp (C. carpio) (initial mean body weight 24.6 ± 0.7 g) were fed, for 10 weeks, one of the four diets containing 80 mg colouring/kg diet. In the second trial, this procedure was repeated for five homogeneous duplicate groups of 25 goldfish (C. auratus) (initial mean body weight of 0.9 ± 0.1 g). Initial and final samples of skin along the dorsal fin were withdrawn, from five fish per group, for subsequent analysis of total carotenoid content (spectrophotometric analysis), and red hue (colorimetric analysis, CIE (1976) L* a* b* colour system). Growth and feed efficiency were not significantly different between groups administered by the various dietary treatments. In both trials, dietary carotenoid supplementation increased total skin carotenoid content. The more efficient colouring for koi carps was found to be C. vulgaris biomass, providing both maximum total carotenoid deposition and red hue for the three chromatic koi carp varieties studied, and particularly for the kawari variety. For goldfish the best colouring obtained, as ascertained by total carotenoid content, was also achieved using C. vulgaris biomass, and red hue was maximum when using H. pluvialis biomass.  相似文献   

5.
A study was conducted to evaluate effects of various carotenoids on skin and fillet coloration and fillet carotenoid concentration in channel catfish, Ictalurus punctatus. For 12 wk, juvenile catfish were fed one of six experimental diets containing no supplemental carotenoid or 100 mg/kg of one of following carotenoid additions: β‐carotene (BCA), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CAN), and astaxanthin (AST). Visual yellow color intensity score was highest for fish fed LUT, followed by ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Skin and tissue Commission Internationale de I’Eclairage yellowness value was the highest in fish fed LUT, followed by fish fed ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Fish accumulated the supplemental carotenoids in muscle tissues, but concentrations of different carotenoids in the tissue varied greatly. Approximately 30% of the LUT added was converted to echineone; no conversion was observed among other supplemental carotenoids. Results from the present study indicate that channel catfish can accumulate yellow pigments LUT and ZEA and red or pink pigments CAN and AST in the flesh, resulting in yellow coloration. The yellow pigment BCA does not appear to deposit in skin or flesh at levels sufficient to alter the coloration.  相似文献   

6.
Despite carotenoids and essential fatty acids seem to play important roles in fish reproduction, no studies have yet been conducted to determine the effect of dietary carotenoids on gilthead seabream broodstock performance and their relation as antioxidants with dietary n‐3 highly unsaturated fatty acid (HUFA) levels. In addition, the high cost of synthetic sources of carotenoids is leading to the search for new natural carotenoid sources such as paprika oleoresin. Four experimental diets containing two combined levels of carotenoids from paprika oleoresin (40 and 60 mg kg?1) and n‐3 HUFA (25 and 40 g kg?1) were respectively fed to triplicate groups of gilthead seabream (Sparus aurata) broodfish. Elevation of n‐3 HUFA dietary levels from 25 to 40 g kg?1 significantly improved gilthead seabream broodstock performance in terms of egg viability, hatching rates and fecundity. Besides, it markedly increased egg contents in HUFAs which play important energetic and structural roles and improve embryo development. Both arachidonic acid and eicosapentaenoic acid (20:5n‐3) egg contents were more readily affected by dietary n‐3 HUFA than docosahexaenoic acid. HUFA levels did not caused any negative effect suggesting an optimized content of antioxidants in broodstock diets. Increase in dietary carotenoids from 40 to 60 mg kg?1 increased carotenoid contents in eggs and significantly improved egg fertilization rates suggesting an important sperm cell’s protective role by reducing the risk of lipid peroxidation which is detrimental for sperm motility. The increased inclusion of dietary paprika oleoresin enhanced egg carotenoid deposition and improved fish reproductive performance, denoting the high nutritional value of this product as a source of carotenoids for broodstock of this species.  相似文献   

7.
This study examined the effects of dietary esterified astaxanthin concentration on coloration, accumulation of carotenoids, and the composition of carotenoids over time in the skin of Amphiprion ocellaris. Juveniles of 30 days-post-hatch were fed 40, 60, 80, or 160 mg esterified astaxanthin per kg diet (mg kg?1) for 90 days. Skin coloration was analyzed using the hue, saturation, and luminosity model. Increased astaxanthin concentrations and duration on diet lead to improvements in skin color, that is, lower hues (~27–29 to ~14–17; redder fish), higher saturation (~77 to ~87 %), and lower luminosity (~43 to ~35 %). Fish fed 80 and 160 mg kg?1 astaxanthin feed showed significant coloration improvements over fish fed lower astaxanthin feeds. Increasing both dietary astaxanthin concentration and time on the feed resulted in significant increases in total skin carotenoid concentration (0.033–0.099 μg mm?2). Furthermore, there was a significant linear relationship between hue and total skin carotenoid concentration. Compositionally, free astaxanthin and 4-hydroxyzeaxanthin were the major skin carotenoids. 4-hydroxyzeaxanthin was previously unreported for A. ocellaris. Carotenoid composition was affected by duration on diet. Fraction 4-hydroxyzeaxanthin increased by ~15 %, while free astaxanthin decreased equivalently. The transition from 4-hydroxyzeaxanthin to free astaxanthin appears to follow a reductive pathway. Results suggest that managing coloration in the production of A. ocellaris juveniles requires manipulation of both dietary astaxanthin concentration and period of exposure to astaxanthin containing diet. In order to achieve more orange–red-colored fish, feeding 80–160 mg kg?1 esterified astaxanthin for an extended duration is recommended.  相似文献   

8.
Apparent digestibility, deposition and retention of carotenoids in the muscle of rainbow trout, Oncorhynchus mykiss, were investigated comparing the feeding of pigments from Chlorella vulgaris against commercially available pigments at two different total lipid contents (15% and 20% lipid). Algal biomass (ALG) was included in rainbow trout diets and muscle pigmentation was compared to that obtained in trout fed diets containing a 5:3 mixture of canthaxanthin and astaxanthin (MIX) (reflecting the relative concentrations of these carotenoids in the dry alga) or those fed a diet containing astaxanthin only (AST). Apparent digestibilities of pigments and nutrients were determined by the indirect method, using Cr2 O3 as indicator, and the colour intensity and pigment concentration were assessed in the muscle, using the Roche colour card for salmonids and UV-vis spectrophotometry. After 6 weeks feeding, colour intensity was similar for the various pigment sources, achieving levels 12 to 13, yet significantly higher in fish fed the diet with the higher lipid content ( 20%) (p<0.05). Pigment concentration in the muscle was also higher in the fish fed the high-fat diet. Muscle pigment concentrations were similar for fish fed diets ALG and MIX, and over 1.5 times higher than for diet AST (p<0.05) after 6 weeks. Apparent digestibility of dry matter, crude protein, lipid, total energy and specific carotenoid concentrations were also measured. Increased dietary fat content was shown to increase the deposition and the retention of carotenoids in muscle, and the difference increased with time (deposition increase of 10–20% at week 3 and 30–40% at week 6 and retention increase of 10–15% at week 3 and 30% at week 6). Pigment digestibility also apparently increases (10–20%) under those conditions despite the fact that no significant effects in terms of apparent digestibility increase were found for dry matter, protein, lipids or energy. © Rapid Science Ltd. 1998  相似文献   

9.
Discovering natural carotenoids for colour enhancement and health benefits of fish is important to develop new feed formulations. We have purified natural bixin from achiote seeds and evaluated the effect of colour enhancing and pigmentation in goldfish. Varying levels of bixin‐based diets were prepared with 420 g kg?1 of crude protein and 120 g kg?1 of lipid content. Our results clearly showed that bixin (0.05, 0.10, 0.20 and 0.60 g kg?1) based diets significantly (P < 0.05) enhanced the skin and fin colour at 30 and 60 days compared to diet without bixin. Interestingly, diet which contains 0.20 g kg?1 bixin and commercial feed (with astaxanthin) had similar effect on carotenoid deposition in skin. Moreover, total carotenoid deposition in fin was higher than in skin of all bixin‐containing diets. However, 0.60 g kg?1 bixin‐containing diet had lower specific growth rate (1.01 ± 0.01) and higher feed conversion ratio (2.05 ± 0.19) compared to the control group. The present results demonstrate that achiote bixin can be successfully used as an alternative natural carotenoid source against synthetic astaxanthin in fish feed. Our data indicate that 0.20 g kg?1 is a suitable dietary level of bixin to ensure strong pigmentation, acceptable growth and feed utilization in goldfish.  相似文献   

10.
New cultured ornamental fish namely Lake Kurumoi rainbowfish Melanotaenia parva (Allen) run into reduced of colour performances when reared in the aquaria, consequently, fish feed must be added with carotenoids as a pigment source. The aim of this study was to evaluate the digestibility, growth and pigmentation of astaxanthin, canthaxanthin and lutein in diet. Apparent digestibility coefficients (ADC) of dry matter, lipid, protein, carotenoids, growth and pigmentation were studied in twenty fish after 14 and 56 days of observation. The single‐dose supplementation of 100 mg/kg of astaxanthin, canthaxanthin, or lutein diets on fish was fed by apparent satiation. The basal diet without carotenoids was used as control. The result showed that the ADC of carotenoids of test diets was higher compared to control. Fish fed astaxanthin diet had higher survival rate (96.67 ± 2.89%), colour measurements of lightness (57.60 ± 7.46%), a*‐values (4.66 ± 1.20), total carotenoids content in skin (33.75 ± 5.02 mg/kg) and muscle (2.16 ± 0.74 mg/kg). Astaxanthin also increased the growth after 14 days (2.00% ± 0.19%/days) but there was no significantly different at the end of experiment. The yellowish‐orange colour performance was more rapidly achieved by fish fed astaxanthin diet after 28 days experimentation. These values suggested that dietary carotenoids were required and astaxanthin diet was superior to other diets for skin pigmentation of Lake Kurumoi rainbowfish.  相似文献   

11.
Two experiments were conducted to evaluate the addition of astaxanthin from red yeast, Xanthophyllomyces dendrorhous, in the diets of goldfish, Carassius auratus. The first was designed to investigate the distribution of pigments in different tissues of goldfish and the effect of astaxanthin in the diet. The carotenoid concentration of tissues was not homogenous. The content of pigments in fish caudal fin was the highest followed by those of scales and head. Flesh had the least carotenoid deposition. Fish fed the diet containing 60 mg/kg astaxanthin had increased concentration of pigment in its head (22.6%), scales (45.5%), flesh (31.0%), and fin (21.2%), compared to fish fed basal diet (P < 0.05). Sixty parts per million astaxanthin had no effect on the weight gain and survival rate. High‐performance liquid chromatography analysis showed astaxanthin in its esterified form in goldfish. The second experiment was aimed at determining the dietary level of astaxanthin that improved color of goldfish. Goldfish were fed the same diet supplemented with 0, 10, 20, 40, 60, and 80 mg yeast astaxanthin/kg for 60 d. The deposition of carotenoids in goldfish fed diets supplemented with astaxanthin increased significantly (P < 0.05) after 15 d of feeding compared to that of the fish fed the diet without astaxanthin, but the effect of dosage of astaxanthin in the diets on the color of goldfish was not completely evident until Day 60 (P < 0.05). During the period of 15–45 d, the deposition of pigments in fish did not increase significantly (P > 0.05) in any treatment with the exception of the diet with 40 mg yeast astaxanthin/kg.  相似文献   

12.
Rainbow trout with an average initial weight of 160 g were fed during 42 days diets containing varied keto‐carotenoids astaxanthin (Ax)/canthaxanthin (Cx) ratio, as follows: Ax 100% : Cx 0%; Ax 75% : Cx 25%; Ax 50% : Cx 50%; Ax 25% : Cx 75% and Ax 0% : Cx 100%. Muscle colour and carotenoid muscle retention were studied. Colour parameter values for mixed astaxanthin–canthaxanthin‐fed fish were intermediate between those obtained for Ax 0% : Cx 100% fed fish group and for Ax 100% : Cx 0% fed fish group. Concerning muscle carotenoid retention, it has been observed that as the level of canthaxanthin in diet increased, the muscle total carotenoid retention decreased. In the mean time, as the level of canthaxanthin in diet increased, the muscle astaxanthin retention decreased while that of canthaxanthin increased. The results reported here provide further evidence of non‐beneficial effects in terms of muscle colour and muscle carotenoid retention of the use of varying dietary astaxanthin/canthaxanthin ratio for feeding rainbow trout compared to values obtained for astaxanthin‐only feed.  相似文献   

13.
Three 2‐factor experiments were conducted to determine the effects of background colour and synthetic carotenoids on the skin colour of Australian snapper Pagrus auratus. Initially, we evaluated the effects on skin colour of supplementing diets for 50 days with 60 mg kg?1 of either astaxanthin (LP; Lucantin® Pink), canthaxanthin (LR; Lucantin® Red), apocarotenoic acid ethyl ester (LY; Lucantin® Yellow), selected combinations of the above or no carotenoids and holding snapper (mean weight=88 g) in either white or black cages. In a second experiment, all snapper (mean weight=142 g) from Experiment 1 were transferred from black to white, or white to white cages to measure the short‐term effects of cage colour on skin L*, a* and b* colour values. Skin colour was measured after 7 and 14 days, and total carotenoid concentrations were determined after 14 days. Cage colour was the dominant factor affecting the skin lightness of snapper with fish from white cages much lighter than fish from black cages. Diets containing astaxanthin conferred greatest skin pigmentation and there were no differences in redness (a*) and yellowness (b*) values between snapper fed 30 or 60 mg astaxanthin kg?1. Snapper fed astaxanthin in white cages displayed greater skin yellowness than those in black cages. Transferring snapper from black to white cages increased skin lightness but was not as effective as growing snapper in white cages for the entire duration. Snapper fed astaxanthin diets and transferred from black to white cages were less yellow than those transferred from white to white cages despite the improvement in skin lightness (L*), and the total carotenoid concentration of the skin of fish fed astaxanthin diets was lower in white cages. Diets containing canthaxanthin led to a low level of deposition in the skin while apocarotenoic acid ethyl ester did not alter total skin carotenoid content or skin colour values in snapper. In a third experiment, we examined the effects of dietary astaxanthin (diets had 60 mg astaxanthin kg?1 or no added carotenoids) and cage colour (black, white, red or blue) on skin colour of snapper (mean weight=88 g) after 50 days. Snapper fed the astaxanthin diet were more yellow when held in red or white cages compared with fish held in black or blue cages despite similar feed intake and growth. The skin lightness (L* values) was correlated with cage L* values, with the lightest fish obtained from white cages. The results of this study suggest that snapper should be fed 30 mg astaxanthin kg?1 in white cages for 50 days to increase lightness and the red colouration prized in Australian markets.  相似文献   

14.
This study assessed the effects of three kinds of carotenoids on the body colour of solid red discus fish (Symphysodon aequifasciatus axelrodi Schultz, 1960). Astaxanthin, xanthophylls and canthaxanthin were added into the beef heart diet at the level of 350 mg kg?1 respectively. In the astaxanthin group (group A), the carotenoid concentration (CC) in the skin and dorsal fin reached saturation levels on days 40 and 20 respectively. However, CC consistently increased in the muscle. In the xanthophyll group (group B), CC in the skin increased through day 20; CC in the dorsal fin increased from days 10 to 20. In the canthaxanthin group (group C), CC in the skin increased during the first 20 days, reaching saturation levels on day 10 in the dorsal fin and muscle. On day 50, CC in the skin and muscle of group A was significantly higher than that of groups B or C. There were no significant differences in dorsal fin CC among the groups; however, CC in group C reached saturation levels in the shortest time. Therefore, astaxanthin was the most effective pigment for the skin and muscle; xanthophyll was the most effective pigment for the dorsal fin.  相似文献   

15.
The main objective of this field experiment was to investigate whether ration level affected utilization of carotenoids, macronutrients, and minerals in 1,300 g Atlantic salmon (Salmo salar) during rapid growth. Salmon fed ration levels of either 1.2% or 0.6% of biomass of a commercial diet supplemented with astaxanthin and canthaxanthin (37 and 39 mg kg?1, respectively) in two consecutive 6-day feeding periods had carotenoid digestibility coefficients of 11.8% and 32.1% at the high and low feed rations, respectively. Thus, low carotenoid digestibility, but good macronutrient digestibility, may explain poor pigmentation and good feed conversion in rapidly growing salmon. Practical implications are illustrated.  相似文献   

16.
The characteristic pink colour of salmonid flesh is a result of deposition of naturally occurring carotenoid pigments. Achieving successful pigmentation in farmed salmonids is a vital aspect of fish farming and commercial feed production. Currently commercial diets for farmed salmonids contain either or both of the synthetic pigments commercially available, astaxanthin and canthaxanthin. Atlantic salmon, Salmo salar L. ( = 220 g initial weight) were given feeds where the pigment source was astaxanthin only, canthaxanthin only or a astaxanthin/canthaxanthin mix. The rearing environment was 12 × 3 m tanks supplied with sea water at the EWOS research farm Lønningdal, near Bergen, Norway. As the proportion of dietary canthaxanthin increased, flesh pigment levels also showed an increase; the pigment content in the muscle of canthaxanthin‐only fed fish was 0.4 mg kg?1 (or 14%) higher than that of the astaxanthin‐only fed fish, with the mixed pigment fed fish being intermediate between the two extremes. Results of cross‐section assessment for Minolta colorimeter redness (a*) values and Roche SalmofanTM scores also showed an increase in colour with increasing proportions of canthaxanthin in the feed. The data reported clearly indicates that S. salar ( = 810 g final weight) of this size deposit canthaxanthin more efficiently than they do astaxanthin. These results contrast with those obtained by other authors with rainbow trout, Oncorynchus mykiss (Walbaum), and imply that the absorption or utilization of the pigments differs between species.  相似文献   

17.
After two months of feeding a group of juvenile black tiger prawn (Penaeus monodon) with a commercial feed (CF), their external pigmentation changed from its normal greenish-brown to a light blue. This condition was thought to be induced by a carotenoid deficiency in the feed. Nutritional improvement and hence correction of this condition was attempted by adding 50 ppm astaxanthin (Roche Ltd®) into one feed (AF) and 5% addition of brown algae (Chnoospora minima) into a second feed (BF). After four weeks of feeding, the prawns fed on AF reverted to their normal greenish-brown pigmentation. The carotenoids present in the BF feed increased carotenoid content in the prawns, but the levels were not high enough to correct the blue coloration. Analysis of carotenoid content in the shells of the groups showed 318%, 57% and 14% increase for AF, BF, and CF respectively, with 70–90% of the total carotenoid being in the form of astaxanthin. Deposition of astaxanthin was higher in the shell than in the flesh, with deposition in the flesh plateauing after two weeks, whilst deposition in the shell increased steadily.

The importance of these findings to the marketing of cultured shrimps is discussed.  相似文献   


18.
This study aimed to evaluate the effect of lutein supplementation on growth, survival and skin pigmentation for goldfish juveniles. Four diets enriched with different carotenoid sources (lutein, astaxanthin, canthaxanthin and a combination of lutein and canthaxanthin) were compared to a control diet without carotenoid supplementation. The carotenoid inclusion level was standardized at 50 mg kg‐1 in all treatments. 240 goldfish juveniles (1.07?0.57 g) were cultivated in 30 aquariums (30L) during 84 days. The experimental design was completely randomized with five treatments and six replicates. The dietary inclusion of carotenoid pigments did not affect the growth and feeding efficiency of goldfish juveniles. Supplementation with lutein presented higher survival values when compared to the other treatments. Astaxanthin and canthaxanthin supplementation increased the concentration of carotenoids on the skin of goldfish juveniles in relation to the control treatment. For the fish fed with the diet containing lutein, the skin pigmentation was as efficient as astaxanthin and canthaxanthin, but did not differ from the control and combined treatment (canthaxanthin + lutein). The lutein supplementation (50 mg kg‐1) improved survival and promoted efficient carotenoid pigmentation on the skin of goldfish juveniles.  相似文献   

19.
The present study investigates the effects of dietary carotenoid sources on the coloration of the red porgy, Pagrus pagrus. Red porgies (131.9 ± 16.2 g; mean ± SD) were fed for 12 weeks on five different diets supplemented with red carotenoids (mainly astaxanthin esters) supplied from Haematococcus pluvialis algae and yellow carotenoids (mainly β‐carotene, lutein, and zeaxanthin) supplied from Alfalfa, Medicago sativa L. and Spirulina, Spirulina pacifica. The carotenoid‐supplemented diets did not have any marked effect on the growth rate, the feed conversion ratio, the daily feeding rate, or the hepatosomatic index of red porgy. The biochemical indices measured in plasma including cholesterol, total proteins, glucose, lactate, phospholipids, non‐esterified fatty acids, triglycerides, and thyroid hormones did not differ significantly among groups. Diet did not affect significantly the melanophore‐area coverage, the melanin skin concentration and skin lightness. Carotenoid‐supplemented diets affected significantly the carotenoid deposition in the skin, the presence and distribution of erythorphores and xanthophores, and skin hue and chroma. Overall, data have shown the efficacy of Haematococcus algae in promoting a reddish coloration in red porgy.  相似文献   

20.
Atlantic salmon, Salmo salar, fitted with permanent dorsal aorta cannulae were fed diets containing either 0, 30, 60 mg kg?1 or combinations of astaxanthin and canthaxanthin, with the aim of comparing the uptake efficiencies to blood of the two pigments and evaluating possible interactions during absorption when formulated in the same diet. Given either astaxanthin or canthaxanthin in separate diets, at dietary levels of <30 mg kg?1, an identical linear relationship (R2 = 0.97) between dietary levels and blood concentrations was observed for both carotenoids. At dietary astaxanthin inclusions above 30 mg kg?1, blood astaxanthin concentration approached saturation at an average level of 1.2 ± 0.04 μg mL?1 (arithmetic mean ± SD), whereas blood levels of canthaxanthin continued to increase linearly throughout the inclusion range tested (0–60 mg kg?1). When both carotenoids were presented in the same diet, a reduction in the absorption efficiency of both pigments was observed (P < 0.05). This manifested itself as a lower level in blood than the level observed when each carotenoid was administered separately. The negative interaction was most prominent for astaxanthin, the maximum average blood saturation level of which fell (P < 0.05) to 0.73 ± 0.03 μg mL?1 (arithmetic mean ± SD). Our data support the conclusion that at higher dietary inclusions, canthaxanthin is more efficiently absorbed from the digestive tract into the blood of S. salar than astaxanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号