首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A model for the transport of pesticides in non-structured arable soil has been tested under field conditions. Three classes of sorption site are distinguished in the model. Sorption at class 1 sites is assumed to be at equilibrium whereas sorption at class 2 and class 3 sites is calculated using rate equations. Class 2 sites equilibrate on a time scale of days and class 3 sites equilibrate on a time scale of hundreds of days. In the model, the liquid phase is assumed to be homogeneous and completely mobile. The model was validated in two field experiments on a loamy sand soil using the herbicides cyanazine and metribuzin and using bromide ion as a tracer of liquid flow in soil. Ignoring sorption at class 3 sites resulted in large discrepancies between calculated and measured concentration profiles. Calculated concentration profiles were sensitive to the desorption rate constant for class 3 sites.  相似文献   

2.
BACKGROUND: Crops resistant to glyphosate may mitigate the increasing contamination of the environment by herbicides, since their weeding requires smaller amounts of herbicides and fewer active ingredients. However, there are few published data comparing the fate of glyphosate with that of substitute herbicides under similar soil and climatic conditions. The objectives of the work reported here were (i) to evaluate and compare the fate in soil in field conditions of glyphosate, as used on glyphosate-resistant oilseed rape, with that of two herbicides frequently used for weed control on the same crop, albeit non-resistant: trifluralin and metazachlor, and (ii) to compare field results with predictions of the pesticide root zone model (PRZM), parameterized with laboratory data. Dissipation and vertical distribution in the soil profile of glyphosate, trifluralin and metazachlor were monitored in an experimental site located in Eastern France for 1 year. RESULTS: Herbicide persistence in the field increased as follows: metazachlor < glyphosate < trifluralin, contrary to laboratory results showing glyphosate to be least persistent. The main metabolite of glyphosate-aminomethylphosphonic acid (AMPA)-was more persistent than glyphosate. AMPA and trifluralin had the largest vertical mobility, followed by metazachlor and glyphosate. PRZM underestimated the dissipation rate of glyphosate in the field and the formation of AMPA, but its predictions for trifluralin and metazachlor were correct. The simulation of herbicides and AMPA distribution in the soil profile was satisfactory, but the mobility of trifluralin and metazachlor was slightly underestimated, probably because PRZM ignores preferential flow. In general, data from the laboratory allowed an acceptable parameterization of the model, as indicated by goodness-of-fit indices. CONCLUSION: Because of the detection of AMPA in the deep soil layer, the replacement of both trifluralin and metazachlor with glyphosate might not contribute to decreasing environmental contamination by herbicides. PRZM may be used to evaluate and to compare other weed control strategies for herbicide-resistant as well as non-resistant crops.  相似文献   

3.
A. WALKER 《Weed Research》1987,27(2):143-152
The movement and persistence of residues of propyzamide, linuron, isoxaben and R-40244 were measured in a sandy loam soil in field experiments prepared in spring and autumn. None of the herbicides moved to depths greater than 12 cm in the soil during the winter period, following application in autumn, and none moved more than 6 cm in the soil, following application in spring. The general order of persistence of total soil residues was isoxaben > linuron = R-40244 > propyzamide. Appropriate constants to describe the moisture and temperature dependence of degradation were derived from laboratory incubation experiments and used with measurements of the strengths of adsorption of the different herbicides by the soil, in a computer model of herbicide movement. The model, in general, gave good predictions of total soil residues, but overestimated herbicide movement, particularly in winter. Measurements of herbicide desorption from the soil at intervals, during a laboratory incubation experiment, demonstrated an apparent increase in the strength of adsorption with time. When appropriate allowance was made for these changes in adsorption in the computer model, improved predictions of the vertical distribution of the herbicide residues were obtained.  相似文献   

4.
采用亮蓝(Brilliant blue,FCF)野外染色示踪实验和图像分析技术,研究了陇中黄土高原安家坡流域典型植物种群下土壤大孔隙分布特征及其与植物种群和土壤物理性质的关系。结果表明:6种植物种群下土壤中的大孔隙流不同,大孔隙流使水分在土壤中的运移深度提高了2~3倍;随着土层深度的加深,6种植物种群下土壤的染色面积均呈减小趋势;6种植物种群下土壤中各级别大孔隙以2、3级大孔隙最多,平均占染色面积的29.3%和29.4%,其次是1级和4级大孔隙,分别占17%和19.8%,5级特大孔隙最低,占4.5%。大孔隙分布特征与土壤有机质含量和容重有关。  相似文献   

5.
A simulation model is described for the transport of the fumigant, methyl bromide gas, away from injection chisels within the field. The injected methyl bromide is assumed to form cylindrical, parallel sources at the depth of injection. Transport of the methyl bromide is described by radial diffusion from the injection cylinders. The dissolution-distillation of methyl bromide gas in the soil water and on soil particles is accounted for by a first-order reversible kinetic equation or by an equilibrium relationship. The hydrolysis of methyl bromide gas to bromide anion is considered to occur according to a first-order irreversible equation. The model considers cases where the soil surface is and is not covered with an impermeable barrier to the diffusion of the gas. Simulated methyl bromide concentrations in the soil air, and bromide concentrations in the soil, compared reasonably well with measured values from several field sites. Comparison of the results of calculations, with and without plastic barriers at the soil surface, with experimental data, indicate that plastic barriers are ineffective in preventing diffusion of gas from the soil to the atmosphere. Calculations of mass balances show that as much as 70% of the applied methyl bromide had escaped to the atmosphere by 14 days after fumigation.  相似文献   

6.
BACKGROUND: As part of the Dutch authorisation procedure for pesticides, an assessment of the effects on aquatic organisms in surface waters adjacent to agricultural fields is required. The peak concentration is considered to be the most important exposure endpoint for the ecotoxicological effect assessment. Macropore flow is an important driver for the peak concentration, so the leaching model PEARL was extended with a macropore module. The new model has two macropore domains: a bypass domain and an internal catchment domain. The model was tested against data from a field leaching study on a cracking clay soil in the Netherlands. RESULTS: Most parameters of the model could be obtained from site‐specific measurements, pedotransfer functions and general soil structural knowledge; only three macropore‐flow‐related parameters needed calibration. The flow‐related macropore parameters could not be calibrated without using the concentration in drain water. Sequential calibration strategies, in which firstly the water flow model and then the pesticide fate model are calibrated, may therefore be less suitable for preferential flow models. CONCLUSION: After calibration, PEARL could simulate well the observed rapid movement towards drains of two pesticides with contrasting sorption and degradation rate properties. The calibrated value for the fraction of the internal catchment domain was high (90%). This means that a large fraction of water entering the macropores infiltrates into the soil matrix, thus reducing the fraction of rapid flow. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
采用经典统计学和地统计学方法,对玛纳斯河流域绿洲0~70 cm土层土壤水分的空间异质性及其影响因子进行研究.结果表明:各层土壤水分均符合正态分布.从变异系数看,均属于中等变异,变异系数介于0.293~0.371,其中表层水分变异程度最高,达到0.371;0~10 cm,10~20cm,20~30 cm和30~50 cm...  相似文献   

8.
Experiments were carried out on three Italian farms to assess the degree of spatial variation of pesticide field concentration during treatment and during dissipation trials. Test pesticides were chloridazon and metamitron (both sugar-beet herbicides) applied as a tank mix. The classical statistical technique and geostatistics were used to summarize and evaluate variable spatial data. The results show that the actual values of pesticide concentration for application rate and initial concentration in all three areas are lower than expected, thus indicating that under field conditions only a part of the pesticide reaches the soil during the distribution. The actual values for both herbicides in all three areas expressed as percentage of expected values ranged from 44·1% to 64·2% for application rate and from 40·5% to 99·5% for initial concentration. The coefficient of variation was similar for both pesticides and ranged from 23·8 to 74·1 for application rate, 24·1 and 58·8 for initial concentration and 11·1 and 110·0 for dissipation half-lives. The high variability in application rate and initial concentration could be ascribed to an uneven herbicide distribution, and in dissipation studies to variation in half-lives for the rate of herbicide loss from soil in different parts of the field. Geostatistic analysis indicated little spatial correlation, probably because the sampling sites were widely spaced on the field. In all cases, the data were not sufficient to estimate the range of influence, probably because of the size of the experimental fields and the sampling strategy. © 1997 SCI.  相似文献   

9.
Summary. The phytotoxicities in a number of soils of lenacil, linuron, prometryne and simazine to two indicator plants were determined in field and glasshouse experiments. The results were compared with estimates of the adsorption capacity of the soils obtained by two methods using dimethylaminobenzaldehyde as a model adsorbate. The possible influence of other soil properties was also considered.
One of the adsorption measurements had some predictive value for glasshouse behaviour but was not markedly superior to soil organic carbon content for this purpose. None of the factors studied was usefully correlated with field performance. Results from field experiments in spring were poorly correlated with those from similar experiments in autumn. Neither set of field results related closely to those obtained in the glasshouse. It is concluded that the influence of climate was more important than that of soil type.
La phytotoxiciti de quelquts herbicides dans des experiences en pots et en plein champ, en relation avec les propriétés du sol  相似文献   

10.
11.
Pesticide movement to subsurface drains was monitored in two typical crop production areas in Germany. Field trials were conducted on two subsurfacedrained soils, a silt loam and a poorly structured sandy soil, under different climatic conditions. Over a period of one year, the drainflow was measured and the drain water was analysed for all applied herbicides. Different leaching behaviour was observed at the two field sites. Following autumn application of pendimethalin and isoproturon to the Soester Börde soil, maximum concentrations of about 62 μg litre?1 for isoproturon and 0.7 μg litre?1 for pendimethalin were observed in drainflow from this silt loam. The early occurrence of both herbicides in the drain water only two days after application is consistent with fast flow through macropores. In contrast, on the subsurfacedrained sandy soil in Brandenburg, isoproturon did not reach the drains until two months after autumn application and was found at maximum concentrations of only 1.4 μg litre?1; pendimethalin was not detected in the drain water. Pesticide movement after spring application seemed to be of minor importance. At both locations, spring application led to low concentrations of pesticides in the drainflow (pendimethalin < 0.01 μ litre?1; metolachlor ? 0.05 μ litre?1; chloridazon ? 0.15 μ litre?1; metamitron ? 0.02 μg litre?1; terbuthylazine ? 1.4 μ litre?1).  相似文献   

12.
Genetically-modified (GM) sugar beet varieties tolerant to non-selective herbicides would be useful for managing weed beet, an annual form of Beta vulgaris impossible to eliminate with herbicides in sugar beet. However, it is highly probable that the herbicide-tolerance transgene would be transmitted to the weed through pollen flow. It is therefore essential to study how weed beet. particularly Herbicide-Tolerant (HT) populations, develop in cropping systems and how to optimise crop succession and management for controlling these weeds. As multiple interactions and long-term effects make field experiments impractical, we carried out a simulation study with a deterministic and mechanistic model, G ene S ys- B eet , which quantifies weed beet dynamics and gene flow in cropping systems with interactions with climate, soil structure and hydro-thermal conditions. The sensitivity analysis consisted of 250 000 random combinations of input variables to rank cropping system components according to their effect on both total and GM weed beet infestations. Frequency of sugar beet crops, crop succession, manual and mechanical weeding and tillage were identified as the most important variables. Several cultivation techniques must be combined to efficiently control weed beet. Our recommendations are complex, but a delayed return of sugar beet in the rotation. Harvest should be followed as soon as possible by a shallow tilling; tillage should always be as shallow and as early as possible, except before sugar beet where mouldboard ploughing is advisable. If possible, sowing dates should be delayed. Sugar beet should be weeded mechanically and/or manually, aiming at late and efficient, rather than early or frequent operations. Herbicides should be applied whenever possible and target all weed beet stages and genotypes. Set-aside must be cut as frequently and as late as possible.  相似文献   

13.
The rates of degradation of simazine and linuron were measured in soil from plots not treated previously with these herbicides. Degradation of both compounds followed first-order kinetics and soil temperature and soil moisture content had a marked effect on the rate of loss. With linuron, half-lives increased from 36 to 106 days with a reduction in temperature from 30° to 5°C at 4% soil moisture, and from 29 to 83 days at 12% soil moisture. Similar temperature changes increased the half-life of simazine from 29 to 209 days and from 16 to 125 days at soil moisture contents of 4 and 12% respectively. A computer program which has been developed for simulation of herbicide persistence was used in conjunction with the laboratory data and the relevant meteorological records for the years 1964 to 1968 in order to test the model against previously published field persistence data for the two herbicides. The results with simazine showed a close correspondence between observed and predicted residue levels but those for linuron, particularly in uncropped plots, were satisfactory for limited periods only.  相似文献   

14.
Summary. Adsorption and degradation rates of triasulfuron in 8 different soils were negatively correlated with soil pH and were generally lower in subsoils than in soils from the plough layer. The half-life at 20°C varied from 33 days in a top soil at pH 5·8 to 120 days in a subsoil at pH 7·4. Adsorption distribution coefficients in these two soils were 0·55 and 0·19, respectively. Movement and persistence of residues of chlorsulfuron, triasulfuron and metsulfuron-methyl were compared in a field experiment prepared in spring 1987. Triasulfuron was less mobile in the soil than the other two compounds. Residues of all three herbicides were largely confined to the upper 40–50 cm soil 148 days after application. With an initial dose of 32 g ha−1, residues in the surface soil layers were sufficient to affect growth of lettuce and sugar-beet sown approximately one year after application. Laboratory adsorption and degradation data were used with appropriate weather data in a computer model of herbicide transport in soil. The model gave good predictions of total soil residues during the first five months following application, and also predicted successfully the maximum depth of penetration of the herbicides into the soil during this period. However, more herbicide was retained close to the soil surface than was predicted by the model. The model predicted extensive movement of the herbicides in the soil during winter but did not predict that residues sufficient to affect crop growth could be present in the upper 15–20 cm soil after one year.  相似文献   

15.
The persistence and movement of residues of alachlor, alrazine and metribuzin were measured in a mini-lysimeter system in the field. This comprised a number of soil columns (11 cm diametert; 30 cm long), and permitted the vertical distribution of residues to be determined at. intervals alter application and the collection and analysis of leaehale water. Laboratory experiments were also performed to determine the degradation rates of the three herbicides and their strengths of adsorption by the test soil. The results showed an order of degradation rate of metribuzin> alachlor>atrazine and an order of adsorption of alacblor>atrazine>melribuzin. Movement of residues in the soil columns and concentrations in the leachate were inversely related to the strength of adsorption. Parameters derived from the laboratory data were used in conjunction with weather data for the period of the field experiment in three mathematical models of pesticide leaching: VARLEACH, LEACHP and PRZM2. In most instances, the models gave acceptable predictions of the distribution of residues in soil. This was particularly so for the less mobile compound alachlor. With the most mobile compound, metribuzin, residues were not well predicted at the later sampling dates. All three models gave accurate predictions of the volumes of drainage water, but none of them predicted the concentrations of herbicide in the leachate, presumably because they do not take account of preferential flow pathways of water and solute in the soil.  相似文献   

16.

BACKGROUND

The efficacy of pre‐emergence herbicides within fields is spatially variable as a consequence of soil heterogeneity. We quantified the effect of soil organic matter on the efficacy of two pre‐emergence herbicides, flufenacet and pendimethalin, against Alopecurus myosuroides and investigated the implications of variation in organic matter for weed management using a crop–weed competition model.

RESULTS

Soil organic matter played a critical role in determining the level of control achieved. The high organic matter soil had more surviving weeds with higher biomass than the low organic matter soil. In the absence of competition, surviving plants recovered to produce the same amount of seed as if no herbicide had been applied. The competition model predicted that weeds surviving pre‐emergence herbicides could compensate for sublethal effects even when competing with the crop. The ED50 (median effective dose) was higher for weed seed production than seedling mortality or biomass. This difference was greatest on high organic matter soil.

CONCLUSION

These results show that the application rate of herbicides should be adjusted to account for within‐field variation in soil organic matter. The results from the modelling emphasised the importance of crop competition in limiting the capacity of weeds surviving pre‐emergence herbicides to compensate and replenish the seedbank. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

17.
ABSTRACT Fungi in soil perform beneficial roles that include biological control of soilborne plant pathogens. However, relatively little predictive information is available about the growth and activity of fungal hyphae in soil habitats. A stochastic computer simulation model ("Fungmod") was developed to predict hyphal growth of the biocontrol fungus Trichoderma harzianum ThzID1 in soil. The model simulates a fungal colony as a population of spatially referenced hyphal segments, and is individual-based, in that records of spatial location and branching hierarchy are maintained for individual hyphal nodes. In this way, the entire spatial structure of the fungal colony (hyphal network) can be explicitly reconstructed at any point in time. Also, the soil habitat is modeled as a population of spatially referenced 1-mm(3) soil cells, allowing for the simulation of a spatially heterogeneous environment. Initial hyphal growth parameters were derived from previously published results, and the model was tested against new data derived from image analysis of hyphal biomass accumulation in soil. The ability to predict fungal growth in natural habitats will help to improve the predictability of successful myco-parasitic events in biological control systems.  相似文献   

18.
Residual effects of chlorotriazine herbicides in soil at three Rumanian sites. I. Prediction of the persistence of simazine and atrazine Persistence of simazine and atrazine in the top 10 cm soil was measured at three sites in Rumania with variations in climate and soil conditions. Both herbicides were applied at 1 and 3 kg ai ha?1 to uncropped plots and to plots cropped with maize (Zea mays L.). Rates of residue decline were independent of application rate and crop cover but varied between sites. The time for 50% loss of atrazine varied from 36 to 68 days and that of simazine from 48 to 70 days. Laboratory studies were made with atrazine to characterize degradation rates under standard conditions and to measure adsorption and leaching behaviour in the different soils. Weather records for the periods of the field experiments were used in conjunction with appropriate constants derived from the laboratory results, or from data in the literature, in a computer program to simulate persistence in the field. Results from the model were in reasonable agreement with the observed soil residues although there was a tendency to overestimate rates of loss on some occasions. The results suggest that the model of persistence was sufficiently accurate for practical purposes, and that its use could preclude the need for extensive analytical measurements of residues.  相似文献   

19.
新疆盐渍化区土壤养分的空间结构和分布特征   总被引:2,自引:2,他引:2  
结合地理信息系统(GIS),在面积约为2000km2的新疆典型盐渍化区渭干河流域布设了土壤取样点43个,测定了土壤表层(0~30cm)养分(全氮、全磷、全钾、碱解氮、速效磷、速效钾)的空间变异规律。结果表明:七种养分元素中除了碱解氮、速效磷的含量服从对数正态分布,其它养分元素均符合正态分布;半方差分析得出各项目都能很好的用模型来拟合,全氮、全磷、速效钾符合指数模型,碱解氮、速效磷、全磷符合球状模型。只有有机质是符合高斯模型;全氮和碱解氮的系统空间相关性很弱,而其余养分元素均表现出中等强度的空间相关性,变程在14.3km~67.0km之间,相差比较大;用Kriging插值法对未测点的养分元素进行最优估计,绘制含量分布图,从而可以更直观的反映研究区土壤养分的空间结构和分布特征。  相似文献   

20.
Twelve lysimeters with a surface area of 0.5 m2 and a length of 60 cm were taken over mole drains from a Denchworth heavy clay soil and divided into two groups with either a standard agricultural tilth or a finer topsoil tilth. The influence of topsoil tilth on leaching of the herbicide isoproturon and a bromide tracer was evaluated over a winter season. The effect of variations in soil moisture status in the immediate topsoil on leaching of isoproturon, chlorotoluron and linuron was investigated in the following winter season. Here, water inputs were controlled such that lysimeters received 50 mm at a maximum intensity of 2 mm h?1 over a 4‐week period with herbicides applied on day 15. Three treatments received the water either all prior to application, all after application, or evenly spread over the 4‐week period. Leaching losses of the three herbicides were monitored for a subsequent drainage event. Analysis of covariance showed a significant effect of topsoil tilth and total flow on both the maximum concentrations (P = 0.034) and total losses (P = 0.012) of isoproturon in drainflow. Both concentrations and losses were c 35% smaller from lysimeters with the finer tilth. However, generation of the fine tilth in the field was restricted by a wet autumn and this is not considered a reliable management option for reducing pesticide losses from heavy clay soils. In the second experiment, variation in soil moisture content prior to and after application did not have any significant effect (P < 0.05) upon subsequent losses of the three herbicides to drains. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号