首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Samples of fresh Sphagnum peat from a raised bog were amended with 14C-labelled glycine. The distribution of 14C between particle size fractions obtained by wet sieving (sieve sizes 1, 0.5, 0.25, 0.15 and 0.05mm) was determined immediately on control (unincubated) samples and after 1, 6 and 12 months incubation at 10°C. The recovery of glycine in solution was almost 100%. During the incubation with 14C-glycine, 14CO2 was released within the first 20 weeks, equivalent to 51.5% of the added 14C, but thereafter very little 14CO2 was evolved. After 26 weeks a substantial amount of 14C was distributed amongst all the fractions, but the greatest incorporation (4.47%) occurred in the finest fraction (0.005–0.05 mm). Labelling of the other particle size fractions was <2.3% of added 14C. Carbohydrate accounted for 23% of 14C in the finest fraction and the sugars, rhamnose, arabinose, xylose, mannose, galactose and glucose all became labelled. Rhamnose showed the greatest, and arabinose, galactose and xylose the least, increase in specific activity; glucose and mannose had intermediate values. It was concluded that the finest fraction in peat contains a significant proportion of the microbially-synthesized material.  相似文献   

2.
15N-labelled ammonium nitrate solution was applied in late April to circular, enclosed micro-plots prepared by pressing open-ended polypropylene cylinders into an established sward of perennial ryegrass. Cylinders were removed from the ground at intervals between 2 and 370 days after the application and assessments made of the distribution of 15N in plant and soil components. Of the added labelled N, 54.7% was recovered in the herbage which was cut four times during the growing season and again at the final sampling date. After two days, 37% of the labelled N was recovered in the soil microbial biomass. Large fluctuations occurred in the amount of 15N recovered in the soil microbial biomass over the next 14 days suggesting that rapid cycling of 15N occurred between this fraction and the mineral N fraction. After the first cut in late May, translocation of15N occurred more slowly from the roots into the stubble than from stubble into new herbage, so that the amount in the stubble declined more rapidly than did that in the roots. During the winter, there was no net transfer of N from the roots to above-ground components of the sward. By the end of the growing season, half the 15N remaining in the sward was immobilized in the humified fraction of the soil organic matter; some of this was mineralized in the following spring.  相似文献   

3.
Real-time images of nitrogen fixation in an intact nodule of hydroponically cultured soybean ( Glycine max [L] Merr.) were obtained. In the present study, we developed a rapid method to produce and purify 13N-labeled radioactive nitrogen gas (half life: 9.97 min). 13N was produced from a 16O (p, α) 13N nuclear reaction. The target chamber was filled with CO2 and irradiated for 10 min with protons at an energy of 18.3 MeV and an electric current of 5 μA, which was delivered from a cyclotron. All CO2 in the collected gas was absorbed and removed with powdered soda-lime in a syringe and replaced with helium gas. The resulting gas was injected into gas chromatography and separated and a 35 mL fraction, including the peak of [13N]-nitrogen gas, was collected by monitoring the chromatogram. The obtained gas was mixed with 10 mL of O2 and 5 mL of N2 and used in the tracer experiment. The tracer gas was fed into the underground part of intact nodulated soybean plants and serial images of the distribution of 13N were obtained non-invasively using a positron-emitting tracer imaging system (PETIS). The rates of nitrogen fixation of the six test plants were estimated to be 0.17 ± 0.10 μmol N2 h−1 from the PETIS image data. The decreasing rates of assimilated nitrogen were also estimated to be 0.012 ± 0.011 μmol N2 h−1. In conclusion, we successfully observed nitrogen fixation in soybean plants with nodules non-invasively and quantitatively using [13N]N2 and PETIS.  相似文献   

4.
In southwest France, much of the forest lands on sandy Spodosols has been converted to continuous maize cropping in the last few decades. To evaluate the impacts of such change on the content and properties of the soil organic matter, we compared the amount of organic carbon and 13C natural abundance in soil and particle-size separates at three locations, selected on the basis of different contents of 0–50 μm particles (clay + silt). After three decades of cultivation, the amount of carbon from the forest pools ( C f) decreased by about 60%, attributable mainly to easily degradable material in sand-sized fractions (−70%). However, a recalcitrant residue remained in soil at a constant proportion, showing that organic matter in these fractions is heterogeneous. Organic matter in the clay + silt fraction was relatively resistant, decreasing by only 20% after 30 years of cultivation. Intensive agricultural management has homogenized the characteristics of the soil and the mineralization of the organic matter, which has resulted in a long-term convergence of organic carbon from the three locations. However, small natural variations in fine particle content were associated with significant differences in the accumulation of carbon in soil. The protective capacity of the soil depended on the proportion of clay + silt fraction, which stabilized the organic matter. Furthermore, the degree of saturation of this fraction with original carbon from forest and its rate of decomposition determined the soil's capacity to accumulate newly added carbon derived from maize.  相似文献   

5.
We present a novel study of the compositional relationships between soil organic components extractable in aqueous extractants and those in sub-soil drainage and surface runoff waters from the soil. The surface soil (0–20 cm) of a stagnogley in long-term grassland was sequentially and exhaustively extracted in aqueous media at pH values of 7, 10.6 and 12.6. Extracts from the soils and their runoff and drainage waters were processed by the procedures of the International Humic Substances Society (IHSS), and fractionated into humic, fulvic, and XAD-4 acids. Elemental, δ13C, δ15N, sugar, amino acids, and solid state CPMAS 13C NMR analyses were used to identify similarities and differences between the fractions from the different extracts. There were few differences between the compositions of drainage water samples taken 1 year apart, and these had compositional features similar to those from the more highly oxidized fractions isolated from the soil at pH 7. There were significant differences between the humic components from the drainage waters and isolated from the soil at pH 7 and those of the humic fractions isolated at the higher pH values whose compositions are more clearly related to origins in plants. The compositions of the surface runoff waters indicate origins in transformed plant and animal manures on the soil surface, whereas those of the deep drainage waters originate in more extensively transformed materials, including products of microbial metabolism. The resin technique used in the fractionation allowed the isolation of novel humic acid fractions from the soil extracts, in particular at pH 7 and 12.6. These fractions clearly originated in microbial sources, were rich in saccharides and amino acids (peptides), and low in lignin-derived components.  相似文献   

6.
Soil microbial immobilization and plant uptake of N were evaluated for three forest types in Kochi, Shikoku district. During 196-d laboratory incubation, soil NO3-N production in the Hinoki cypress forest was negligible for the initial 40 d and then rapidly increased, whereas NO3-N production was rapid from the beginning in Japanese cedar and deciduous hardwood forests. Microbial immobilization of the labeled 15N decreased in the order of NH4-N>glycine-N>NO3-N. The 15N immobilization was higher for soil in the Hinoki cypress forest than other two soils. The delayed NO3-N production in the Hinoki cypress forest was likely related with low availability of NH4-N due to NH4-N immobilization and substantial NO3-N immobilization. In the field experiment, 15N uptake by roots decreased in the order of NH4-N>NO3-N>glycine-N. The absorption of the labeled 13C suggested direct uptake of organic N. The preference of N forms by root uptake was not different among forest types. Trees in three forest types can absorb inorganic and organic forms of N, suggesting trees absorb the N form that is the most abundant in the soil.  相似文献   

7.
Gaseous N loss, through denitrification and NH3volatilization, was monitored throughout the growing season after spring application of 15N labelled urea fertilizer to peaty gley soils supporting N-deficient Sitka spruce. From the 15N data, it was calculated that only about 0.28% of applied N was lost through NH3-volatilization, almost all within the first few days after fertilizer application. Approximately 0.05% of applied N was calculated to be lost through denitrification. Denitrification decreased slowly over a 4-month period after fertilizer application. Rates of NH3-volatilization correlated with available NH4+ in the litter layer, while for the early part of the study when N-losses were highest, denitrification rates correlated with available NO3 in the litter layer. Observations of gaseous N-loss are also discussed in relation to data from lysimetry, changes in soil pH, and the soil moisture regime.  相似文献   

8.
Peat land has been considered as an alternative type of land for agricultural development especially in the tropics. In the present study, the N-supplying capacity, one of the most important soil properties in terms of crop production, of peat soils was examined. Ten peat soil samples were collected from Indonesia, Malaysia, and Japan. Gross N mineralization in the soil samples was estimated using a zero-order model, and kinetic parameters of mineralization were determined using a simple type model. Soil organic matter composition was investigated using 13C CPMAS NMR. Mineralization potential ( N 0), apparent activation energy ( E a), and mineralization rate constant ( k ) ranged between 571–2,445 mg kg−1, 281–8,181 J mol−1, and 0.009–0.020 d−1, respectively. Although none of the parameters showed a significant correlation with the soil C/N ratio, a negative correlation was observed between the k value and the ratio of the proportion of alkyl C in total C to that of O -alkyl C estimated by 13C CPMAS NMR. The latter suggested that the k values were higher in the peat soils relatively rich in readily decomposable organic matter including carbohydrates.  相似文献   

9.
As a source of organic matter, crop residues affect the behaviour of pesticides in agricultural soils. The fate of [U‐ring‐13C] and [U‐ring‐14C] atrazine (6‐chloro‐N‐ethyl‐N‐isopropyl‐1,3,5‐triazine‐2,4‐diamine) was investigated during laboratory incubation under controlled conditions in a loamy soil amended with wheat straw at two different states of decomposition: no preliminary decomposition or 6 months’ preliminary decomposition. After 3 months, non‐extractable, so‐called ‘bound’, 13C‐atrazine residues were recovered in three particle‐size fractions (> 200, 50–200 and < 50 μm), and investigated with solid‐state 13C‐NMR spectroscopy. Parallel incubations with [U‐ring‐14C] atrazine were carried out to quantify the bound residues as well as the extractable and mineralized fractions. The effect of straw residues on atrazine behaviour depended on whether they had been previously decomposed or not. When straw was decomposed for 6 months prior to incubation, atrazine mineralization was enhanced to 50% of the initial 14C in contrast to 15% of the initial 14C in soil alone and soil amended with fresh straw. In parallel, atrazine bound residues were formed in greater amount representing up to 20% of the initial 14C. CP/MAS 13C‐NMR on soil size fractions of soil–straw mixtures after incubation with 13C‐atrazine showed that bound residues contained mostly triazinic C, corresponding to atrazine or primary metabolites. Non‐humified organic materials recovered in size fractions > 200 and 50–200 μm contained significant amounts of bound residues, especially when straw was added to the soil. CP/MAS 13C‐NMR analysis of humic acids obtained from < 50‐μm fractions was difficult due to overlapping of the native carboxyl 13C signal with the 13C‐atrazine signal.  相似文献   

10.
Effect of no-tillage on turnover of organic matter in a Rhodic Ferralsol   总被引:1,自引:0,他引:1  
Abstract. Soil organic matter (SOM) is considered to be key to sustainability of agriculture in the tropics. In southern Brazil, no-tillage has been adopted widely to control soil erosion, but its impact on the dynamics of SOM is not well established. We measured soil carbon (C) and δ13C in two crop rotations, one of which contained C4 maize ( Zea mays L.), after 21 years of contrasting tillage (conventional tillage versus no-tillage). Adjacent sites that reflected historic land-uses were also sampled. In the tillage experiment there was no effect of tillage on the total amount of C in the 0–40 cm profile (even when contrasting bulk density was accounted for), and the concentration of C differed only in the 0–5 cm and 5–10 cm layers. However, the occasional input of C4 material in the maize rotation resulted in a significant effect of rotation on δ13C ( P <0.001). Using 13C as a tracer for the SOM formed since the start of the experiment, we estimated the abundance of 'recent' and 'old' C within each depth interval. We found the main effect of tillage was to increase the medium-term turnover of SOM, particularly in the subsoil (i.e. below 20 cm depth). Compared with no-tillage, there was almost five times more recent C in the subsoil, and 20% more recent C in the 0–40 cm profile as a whole.  相似文献   

11.
When incorporated in soil, plant residues and their decomposition products are in close contact with mineral particles with which they can be bound to form aggregates. We measured the incorporation of carbon (C) and nitrogen (N) derived from crop residues in water-stable aggregate fractions of a silty soil in a field experiment in Northern France using 13C15N-labelled wheat straw (Triticum aestivum L.). Soil samples were taken seven times for 18 months and separated into slaking-resistant aggregate size fractions which were analysed for total C and N contents, and 13C and 15N enrichments. During the early stages of decomposition (approximately 200 days), the enrichment of 13C increased rapidly in the macro aggregates (> 250 pm) but decreased thereafter. The macro aggregates represented only < 20% of the soil mass and at any one time, they accounted for <25% of the residual 13C in the soil. The proportion of 13C recovered in the <50-μm and 50–250-μm fractions increased during decomposition of the residues; at day 574, the 50–250-μm fraction accounted for close to 50% of the residual 13C. A greater proportion of 15N than 13C was recovered in the <50-μm fraction. The results indicate that during decomposition in soil, C and N from crop residues become rapidly associated with stable aggregates. In this silty soil the 50–250-μm stable aggregates appear to be involved in the storage and stabilization of C from residues.  相似文献   

12.
The systematic nature of the 34S natural abundance variations (δ34S) in a prairie and boreal forest ecosystem enabled construction of hypotheses regarding the origin and cycling of S in the two soil-plant systems. By considering the 34S abundance variations in relation to soil S transformations, a better understanding of S isotope fractionation in soils was also achieved.
The δ34S values suggest that atmospheric S becomes increasingly more important as a S input as pedogenesis proceeds in these soils. The origin and movement of sulphate salt in a saline seep was evaluated using δ34S values, demonstrating the usefulness of the δ34S technique in soil salinity studies. The 34S-enrichments and depletions found in soil organic S fractions were consistent with postulated differences in lability, mobility, and turnover rate. Wheat plants growing on the saline, sulphate-saturated prairie soil were found to be enriched in 34S relative to surrounding S sources, providing indirect evidence for release of 34S-depleted H2S by the plants as a S-stress relief mechanism.  相似文献   

13.
Since the concentration of free radicals in humic subtances increases at high pH the use of basic solutions for 13C NMR spectroscopy may cause broadening and loss of aromatic signals, with distortion of intensity distributions. No such effects were found in 13C spectra of soil humic and fulvic acid, an aquatic fulvic acid, and two phenolic polymers run in aqueous solutions at different pH values, and in dimethylsulphoxide. With increasing pH, the peak in the carboxyl region shifted in a manner consistent with greater dissociation of carboxyl and phenolic groups, and also certain features in the aliphatic and carboxyl regions were enhanced under some solution conditions. Elevated solution temperature (70°C) caused only slight improvement in the resolution of some lines. Chemical shifts were determined for some known phenolic and benzenecarboxylic acid compounds in DMSO and NaOD. The range for phenolic carbons extended to 173 ppm in NaOD, while some aromatic carbons occurred around 105 ppm, in the same region as anomeric carbons. Thus, even under quantitative acquisition conditions, relative areas may be used only to estimate proportions of different types of carbons and functional groups.  相似文献   

14.
Amounts of the individual carbohydrate components derived from uniformly 14Clabelled grass added to soil were monitored in incubations lasting for up to 2 years. Decomposition was enhanced by the presence of the earthworms. Allolobophora caliginosa and Lumbricus rubellus and the cranefly larvae Tipula paludosa. After 28 d larvae had increased the loss of 14C-arabinose by 8.8% (compared to soil without larvae), -xylose by 15%, -non cellulose glucose by 5.3% and -cellulose glucose by 12.5%. Earthworms had increased the loss of 14C-xylose by 5%, -galactose by 21% and -total glucose by 11% after 6 months, and by another 29%, 14% and 8% respectively after 12 months. The losses of 14C, initially about 60% from soil with tipulid larvae after 1 month, and 50% from soil with earthworms after 3 months, became progressively less. Total 14C losses in the presence of earthworms were 66% after 12 months and 60% after 2 years, respectively. Increased decomposition is considered to be the result of the mixing of soil and substrate by the invertebrates, rather than an effect of their digestive capabilities.  相似文献   

15.
Labelled urea was applied to monolith lysimeters in the 1st year of a 2-year experiment at Onne in south-east Nigeria. On eight lysimeters maize and rice were grown in each of the 2 years. Four lysimeters were similarly cropped in the 2nd year after being uncropped in the 1st year. Measurements were made over the 2-year period of labelled and unlabelled mineral nitrogen in the drainage water, and labelled and unlabelled nitrogen in the crops. At the end of the experiment, weeds and the soil were also analysed for labelled and unlabelled nitrogen.
The total recovery of 15N in crop, soil and leachate varied between 70 and 93%. It was lowest when applied to the second season rice crop, which recovered only 15%, and highest when it was leached in the 1st year or was taken up by the maize crop. The highest crop uptake was 31%. The results indicate that, depending on the treatment, between 10 and 30% of the 15N was immobilized in the soil, lysimeters cropped in the 1st year lost between 22 and 29% of the 15N in drainage water, and between 7 and 30% was lost by denitrification. The accuracy of these figures is discussed.  相似文献   

16.
The application of municipal waste compost and other organic materials may serve to improve fertility and organic carbon (C) stocks of soils used in land reclamation activities, particularly in the recovery of degraded areas at exhausted quarries, mines and landfill sites amongst others. We investigated long-term organic matter dynamics in such anthropogenic soils by collecting samples at different depths over a 10-year chronosequence subsequent to compost application to the top layer of a landfill capping-soil. Variations in the stable isotope composition (13C and 15N) of the soil samples showed that, even after 10 years, amended topsoils were enriched in compost-derived organic matter. The addition of compost to the superficial layer also resulted in an input of soluble organic compounds that was subject to leaching along the soil profile. Sorption isotherms for compost-derived water-extractable organic matter onto mineral materials used for landfill covering suggest that sorptive preservation was primarily responsible for the increase in C content and the shift in the C isotopic signature to values similar to that of the applied compost, in the deeper soil horizons over the 10-year period. This was also confirmed by the accumulation of lignin-derived phenolic compounds in the deeper horizons. Nevertheless, analysis for non-cellulosic carbohydrates in soil samples and their respective water-extractable fractions suggest that a proportion of the compost-derived, labile organic matter fraction is leached through the profile and potentially lost from the soil system.  相似文献   

17.
Abstract. Long term fallow is no longer possible in densely populated tropical areas, but legume cover crops can help maintain soil fertility. Our work aimed to study changes in soil carbon in a sandy loam Ultisol in Benin, which involved a 12-year experiment on three maize cropping systems under manual tillage: traditional no-input cultivation (T), mineral fertilized cultivation (NPK), and association with Mucuna pruriens (M). The origin of soil carbon was also determined through the natural abundance of soil and biomass 13C. In T, NPK and M changes in soil carbon at 0–40 cm were −0.2, +0.2 and +1.3 t C ha−1 yr−1, with residue carbon amounting to 3.5, 6.4 and 10.0 t C ha−1 yr−1, respectively. After 12 years of experimentation, carbon originating from maize in litter-plus-soil (0–40 cm) represented less than 4% of both total carbon and overall maize residue carbon. In contrast, carbon originating from mucuna in litter-plus-soil represented more than 50% of both total carbon and overall mucuna residue carbon in M, possibly due to accelerated mineralization of native soil carbon (priming effect) and slow mulch decomposition. Carbon originating from weeds in litter-plus-soil represented c. 10% of both total carbon and overall weed residue carbon in T and NPK. Thus mucuna mulch was very effective in promoting carbon sequestration in the soil studied.  相似文献   

18.
The N recovery from 15N-labeled swine manure compost and rice bran with or without simultaneous application of unlabeled cattle manure compost was examined in a paddy field with direct-seeded rice during a 1-year period (1 crop season). In all the 15N-labeled materials including (15NH4)2SO4, the processes of N recovery from the 15N materials by rice plants were different between the plots with and without application of cattle manure compost. At the tillering stage, the N recovery rates from the 15N materials in the plots with application of cattle manure compost were significantly lower than those in the plots without application of cattle manure compost. These recovery rates, however, became close and no significant differences were observed at the maturity stage. Thus, simultaneous application of cattle manure compost could impede the N recovery from swine manure compost, rice bran as well as (NH4)2SO4.  相似文献   

19.
The contribution of an earthworm species ( Amynthas vittatus ) to the increase of the nitrogen content of soil was examined. Three specimens of adult earthworms were introduced into 300 g of soil (Gray Lowland soil, silty clay) supplemented with 1% carboxymethyl cellulose in a container and incubated for 32 d at 22°C in the dark. The contents of total-N, NH4-N and NO3-N, and the population of aerobic nitrogen-fixing bacteria in soil significantly increased after incubation with the earthworms, while the natural abundance of 15N (δ15N) in soil decreased. The amount of nitrogen in the earthworms did not decrease during the incubation in the microcosm. Both acetylene reduction activity of the microcosm and incorporation of 15N to soil from atmospheric 15N2 were significantly enhanced by the introduction of the earthworms into soil, though the observed increment of nitrogen in soil was much higher than the estimated one based on the nitrogen-fixing activity. The results obtained in the present study indicated that the earthworms increased the nitrogen content of soil, presumably due to the enhancement of the nitrogen-fixing activity of the soil from the microcosm by the earthworms.  相似文献   

20.
Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using ^15N- labelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg^-1 dried soil) of fertilisers on the growth, ^15N recovery and carbon isotope composition (δ^13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland, Australia. The ^15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots, containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage, and then analysed for ^15N, total N, δ^13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined ^15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of ^15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg^-1 soil gradually increased seedling foliage δ^13C over the 12-month period, indicating an increase in seedling water use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号