首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
水稻粒形遗传调控研究进展   总被引:5,自引:0,他引:5  
粒形影响水稻产量与品质,是受多基因控制的具有较高遗传率的重要农艺性状。目前,许多水稻粒形相关基因已被克隆并进行了功能解析,这些基因大多表现为一因多效,并与其他粒形相关基因共同协调表达,进而构成调控网络。对93个已克隆的水稻粒形相关基因进行了总结,并详细描述了主效粒形调控基因的克隆以及基因间的相互作用,揭示了水稻粒形调控网络,为水稻粒形基因间的互作分析、调控机制的解析以及作物优良育种奠定了重要的理论基础。  相似文献   

2.
为了深入剖析水稻粒形性状的遗传调控机理,以典型籼稻品种七山占(Qishanzhan)和典型粳稻品种秋光(Akihikari)为亲本构建的重组自交系群体为材料,于2011~2013年分别对各株系的粒长、粒宽和粒厚3个粒形性状进行表型测定,并基于完备区间作图法(ICIM)进行粒形性状基因定位研究。试验结果表明:共检测到27个控制粒形性状的QTLs,包括3个粒长QTLs,11个粒宽QTLs和13个粒厚QTLs,它们分布于第1,2,3,4,5,11和12号染色体上,可分别解释14.45%~38.48%,28.98%~52.36%和38.77%~44.23%的表型变异;进一步分析发现,在第3,5和12号染色体上检测到的粒形性状QTL位点较多,且呈簇分布;此外,检测到q GL12a,q GL12b,q GW1,q GW5a,q GT11a和q GT12b等6个较新的QTLs位点,其中控制粒宽的q GW5a连续3年表达稳定,是一个重演性极好的QTL位点。以上结果将为水稻粒形性状的QTL克隆和遗传改良奠定基础。  相似文献   

3.
水稻粒形调控基因的研究进展   总被引:1,自引:0,他引:1  
水稻粒形是重要的产量和品质性状,阐明其形成机理,是进一步提高水稻单产和改良其品质的基础.粒形是受多基因共同作用的数量性状,但其每一个构成基因,尤其是主效基因符合单基因孟德尔遗传模型,基于这一特点以及基因组学和分子生物学的巨大进步,目前,已有大量的数量性状基因座和不少于22个粒形相关基因被克隆.本文总结了水稻粒形的遗传特点,重点阐述了已克隆基因的功能以及存在的问题.  相似文献   

4.
在现代水稻育种中,如何有效提高产量和改良稻米品质仍是亟待解决的关键问题。水稻粒形主要由粒长、粒宽和长宽比等因素组成,是影响水稻产量与品质的重要农艺性状。粒形是受多基因调控的数量性状,不同粒形基因之间存在着不同程度的相互作用。近年来,由于分子标记技术和现代遗传学的飞速发展,有更多的粒形基因逐渐被定位和克隆,将这些基因合理地应用于水稻育种,对增加水稻产量和有效改良粒形有至关重要的意义。综述水稻粒形的遗传特性,对已定位克隆的107个粒形相关基因的功能进行总结,发现粒形基因通过转录因子、G蛋白信号、泛素途径以及植物激素等途径进行调控,基因间的相互作用以及不同粒形基因在品质改良及育种中的应用,为水稻高产优质育种奠定了重要的理论基础和遗传资源,讨论并指出了水稻粒形基因研究中存在的问题,可为水稻育种今后的工作提供思路和参考。  相似文献   

5.
粒形是水稻重要的品质和产量性状。本文综述了前人对粒形调控基因的克隆,重点阐述了粒形基因间的互作与驯化的研究成果,为水稻粒形基因间互作关系和驯化历史的研究提供一定的方向,也为水稻分子设计改良育种提供一定的参考。  相似文献   

6.
粒长是水稻重要的农艺性状之一,既影响水稻产量,又影响稻米品质。水稻的粒长是数量性状,遗传机理复杂。对控制水稻粒长基因的QTL定位、粒长基因的克隆与功能分析、粒长基因的相互作用及粒长基因在分子育种上的应用等方面进行综述,旨在为水稻的粒形育种与品质改良提供参考。  相似文献   

7.
水稻粒形的遗传研究进展   总被引:1,自引:0,他引:1  
粒形不仅是影响水稻产量的要素,还与稻米的外观品质密切相关,是决定稻米品质的重要因素。随着现代遗传学和基因组学相关理论和技术的发展,人们对粒形的遗传研究日趋深入,目前已有数十个控制水稻粒形的基因被克隆。本文概述了水稻粒形遗传研究主要进展,同时也指出了水稻粒形遗传研究中存在的主要问题,分析了粒形遗传研究的前景。  相似文献   

8.
水稻粒形遗传及QTLs定位研究进展   总被引:4,自引:1,他引:3  
粒形性状是水稻产量的重要构成因子,不仅影响水稻产量的高低,还影响着稻米品质的优劣,因此有关水稻粒形的遗传、粒形与稻米品质的相关性、粒形性状的QTLs定位等研究一直受到人们广泛的关注,至今已有许多研究报道,取得了可喜的研究进展。但至今所报道的研究中大多数采用籼稻与籼稻或籼稻与粳稻的杂交后代为材料,而利用粳稻与粳稻杂交后代为材料开展粳稻粒形性状遗传研究报道较少,且研究主要集中于粒长、粒宽、长宽比和粒重,而对粒厚的研究报道甚少。今后应加强对粳稻粒形的遗传及分子机理、水稻粒厚的遗传、粒形性状与稻米功能性成分的相关性等研究。  相似文献   

9.
水稻籽粒大小相关性状QTL定位   总被引:1,自引:0,他引:1  
【目的】水稻籽粒大小是影响产量和品质的数量性状,籽粒大小相关QTLs的定位是进一步克隆、功能研究以及分子育种的基础。【方法】用1个大粒水稻ZD05321和斯里兰卡的极小粒Suwandel为亲本,创建了1个246个单株的F2群体,用48个SSR标记对控制粒长、粒宽、千粒重和长宽比进行QTLs定位分析。【结果】F2群体粒长、粒宽、千粒重等性状呈现连续分布的数量性状遗传特点,多数植株的表型偏向大粒亲本。粒长、粒宽与千粒重都存在极显著的正相关;随着粒重的增加,粒长对粒重的作用逐渐变小。在第1、4、6、7、8和9号染色体上,共检测到15个与籽粒大小相关的QTL,单个性状QTL为3~5个,可分别解释1.02%~16.52%的相应性状变异。在第9染色体上检测到同时控制粒长、粒宽、千粒重和长宽比等4个性状的4个QTL,它们位于该染色体的RM3609~RM7586和RM6543~RM566区段上。【结论】大粒亲本ZD05321中可能存在控制籽粒大小的效应值较大的QTLs,第9染色体上存在同时控制多个粒形性状区域,为下一步精细定位这些新的粒形相关QTL奠定了基础。  相似文献   

10.
水稻籽粒性状是水稻产量构成的重要因子。反映籽粒形状的指标主要有粒长、粒宽、粒厚及长宽比,而尤以粒长最能反映籽粒形状,籽粒大小则多以千粒重计量。其中水稻粒长遗传复杂,研究结果因材料选择的不同而不同,选择籽粒粒形性状差异大的特殊材料进行研究,结论多趋向于质量性状控制,选择籽粒粒形性状差异小的材料进行研究,结论趋向于数量性状控制。关于粒宽的研究,多数研究结果表明,粒宽由多基因所控制,也有研究认为,个别品种的粒宽受单基因或主效基因所控制,显性方向因组合而不同,且存在细胞质效应。长宽比是决定稻米外观品质的重要指标之一,众多研究表明,谷粒长宽比在F1中基本上表现为正态分布。长宽比性状中加性和非加性基因效应都很显著,以加性效应为主。关于粒厚遗传的研究结论相差不大,多数研究表明粒厚受多基因控制。大部分研究认为,粒重在F2代基本上呈正态分布,是由多基因加性效应所控制的数量性状。也有研究认为,粒重的遗传受许多非等位基因的相互作用,存在细胞质效应。在遗传环境中,一般认为粒重是受多基因的加性效应所控制。笔者认为,粒重的遗传不能简单的看作数量性状遗传,粒重的遗传研究结果与研究过程中选择材料的不同而不同。有些特殊材料的粒重遗传就表现为质量性状。随着水稻粒形研究的深入,近年来,越来越多的学者开始研究粒形各性状间的遗传关系。多数研究认为,粒长与长宽比、千粒重以及粒宽与粒厚、千粒重均呈正相关;粒宽与长宽比呈负相关,与粒厚呈正相关;粒厚与千粒重呈正相关。经过多年的遗传研究探索,水稻粒形遗传研究取得了较大的进展,但在某些方面仍有待加强。在水稻粒形遗传中,需拓宽粒形研究面、加强粒形遗传机制研究和对特色资源粒形遗传及潜在价值研究等。  相似文献   

11.
水稻主要粒型基因及其遗传调控的研究进展   总被引:1,自引:0,他引:1  
水稻粒型是决定产量最重要的因素之一。籽粒大小主要是受遗传因子的严格调控。目前,已经克隆了多个控制水稻籽粒大小的(QTL),这些QTL可以作用在独立的遗传途径,与其他已鉴定的粒型基因一起主要参与蛋白酶体降解、激素和G蛋白介导的信号途径,调节细胞增殖和细胞伸长。本文综述了近年来克隆的主要控制水稻籽粒大小的QTL及其调控的分子机制,为理解粒型的分子遗传基础和水稻遗传改良提供理论依据。  相似文献   

12.
Grain size is a major determinant of grain weight and a trait having important impact on grain quality in rice.The objective of this study is to detect QTLs for grain size in rice and identify important QTLs that have not been well characterized before.The QTL mapping was first performed using three recombinant inbred line populations derived from indica rice crosses Teqing/IRBB lines,Zhenshan 97/Milyang 46,Xieqingzao/Milyang 46.Fourteen QTLs for grain length and 10 QTLs for grain width were detected,including seven shared by two populations and 17 found in one population.Three of the seven common QTLs were found to coincide in position with those that have been cloned and the four others remained to be clarified.One of them,qGS10 located in the interval RM6100-RM228 on the long arm of chromosome 10,was validated using F_(2:3) populations and near isogenic lines derived from residual heterozygotes for the interval RM6100-RM228.The QTL was found to have a considerable effect on grain size and grain weight,and a small effect on grain number.This region was also previously detected for quality traits in rice in a number of studies,providing a good candidate for functional analysis and breeding utilization.  相似文献   

13.
Grain size is one of the most important agronomic components of grain yield. Grain length, width and thickness are controlled by multiple quantitative trait loci(QTLs). To understand genetic basis of large grain shape and explore the beneficial alleles for grain size improvement, we perform QTL analysis using an F2 population derived from a cross between the japonica variety Beilu 129(BL129, wide and thick grain) and the elite indica variety Huazhan(HZ, narrow and long grain). A total number of eight major QTLs are detected on three different chromosomes. QTLs for grain width(q GW), grain thickness(q GT), brown grain width(q BGW), and brown grain thickness(q BGT) explained 7 7.67, 36.24, 89.63, and 39.41% of total phenotypic variation, respectively. The large grain rice variety BL129 possesses the beneficial alleles of GW2 and q SW5/GW5, which have been known to control grain width and weight, indicating that the accumulation of the beneficial alleles causes large grain shape in BL129. Further results reveal that the rare gw2 allele from BL129 increases grain width, thickness and weight of the elite indica variety Huazhan, which is used as a parental line in hybrid rice breeding. Thus, our findings will help breeders to carry out molecular design breeding on rice grain size and shape.  相似文献   

14.
【目的】水稻粒型是与产量直接相关的重要农艺性状,影响稻米的外观品质和商品价值。挖掘新的水稻粒型相关基因,对揭示水稻粒型调控的遗传机理研究有重要意义,同时可为水稻粒型分子育种提供新的基因资源。【方法】以极端粒型差异的粳稻TD70和籼稻Kasalath,以及杂交构建的186个家系的重组自交系群体为研究材料,利用高通量测序技术对亲本和RIL株系进行深度测序。统计186个RIL基因型数据,利用滑动窗法(SNP/InDel数目为15),将窗口内SNP/InDel信息转换成窗口的基因型,预测染色体上的重组断点构建RIL群体的BinMap遗传图谱,结合2年的粒长、粒宽、粒厚和千粒重的表型数据,运用QTL IciMapping软件,采用复合区间作图法对RIL群体的4个性状进行QTL定位。【结果】构建了一张包含12 328个Bin标记的高密度遗传图谱,该图谱各染色体Bin标记数为763—1 367个,标记间平均物理距离为30.26 kb。粒长、粒宽、粒厚和千粒重4个性状在RIL群体中呈近正态连续分布,且2年间的变化趋势相似,符合QTL作图要求。2018年对粒长、粒宽、粒厚及千粒重进行QTL分析,共检测到40个粒型QTL,其中,粒长12个,粒宽9个,粒厚8个,千粒重11个,2019年对粒长、粒宽、粒厚及千粒重进行QTL分析,检测到56个籽粒相关的QTL,粒长15个,粒宽11个,粒厚13个,千粒重17个。分析定位到的96个粒型QTL位点,连续2年都能检测到的QTL位点有11个,其中7个为已克隆的粒型基因位点,4个为未知的新位点,分别分布于第1、3、4、5染色体上,分别为粒长qGL-1-2qGL5-2、粒厚qGT-3-2、粒宽qGW-4-1。【结论】构建了一张包含12 328个Bin标记的分子遗传连锁图谱,解析大粒粳稻资源的粒型基因,获得了qGW-4-1qGL5-2qGT-3-2qGL-1-2等4个新的粒型QTL,可用于后续粒型调控基因的精细定位及克隆研究。  相似文献   

15.
利用单片段代换系定位水稻粒形QTL   总被引:21,自引:4,他引:21  
 【目的】水稻谷粒形状(粒长、粒宽和长宽比)是衡量稻米外观品质的重要指标之一,为更好地开展粒形分子育种,对水稻粒形QTL进行分子定位。【方法】以单片段代换系(SSSL)为材料构建分离群体,利用微卫星标记对控制水稻谷粒长和谷粒宽的2个粒形QTL进行分子定位。【结果】粒宽QTL Gw-8被定位于第8染色体长臂末端微卫星标记RM502与RM447之间, 遗传距离均为0.3 cM。在此基础上构建了覆盖Gw-8的物理图谱,RM502与RM447位于同一克隆AP005529,两者之间的物理距离为55.0 kb。粒长QTL gl-3被定位于第3染色体着丝粒附近的微卫星标记RM6146和PSM377之间,遗传距离分别为1.5 cM和11.0 cM。【结论】利用单片段代换系能准确地定位水稻粒形QTL,这两个粒形QTL的定位为其克隆及稻米外观品质的分子育种奠定了基础。  相似文献   

16.
随着人民生活水平的提高,稻米需求呈现多样化趋势,在产量仍作为重要指标的同时,稻米品质也越来越受到重视。提高产量、改良稻米品质是现代水稻育种的两个主要目标,而水稻粒长不仅是影响水稻产量的重要农艺性状,还与外观品质性状密切相关,细长粒稻米通常表现较好的外观品质,且世界上的大多数地区的消费者更偏爱于长粒型的稻米。因此,改良水稻粒长成为重要的育种目标。水稻粒长是数量性状,遗传机理较为复杂,分析其遗传特点并鉴定水稻籽粒大小相关数量性状位点(QTL)对揭示其遗传机制具有重要意义。随着新一代测序技术和功能基因组学的迅猛发展,有关水稻粒长的研究取得了较大进展,目前已经定位的与水稻粒长相关的QTLs有120多个,并克隆了一些控制粒长的相关基因。就水稻粒长的影响因素、粒长与其他相关性状的关系、QTL定位、重要粒长基因的克隆与功能分析以及粒长基因在分子育种上的应用等方面进行综述,以期为提高水稻产量和改善稻米品质提供参考。  相似文献   

17.
稻米品质性状基因的克隆与功能研究进展   总被引:9,自引:1,他引:8  
水稻是中国重要的粮食作物之一,高产与优质一直是品种改良的主要目标。目前,中国稻米品质表现总体偏低,在一定程度上影响了其市场竞争力。稻米品质属综合性状,是指稻米或稻米相关产品满足消费者或生产加工需求的各种特性,主要涉及稻米的物理和化学特性,包括精米率、米粒形状、透明度、蒸煮时间、米饭质地与香味、冷饭质地以及营养成分等指标。通常用碾磨品质、外观品质、蒸煮与食味品质和营养品质4个方面来评价稻米品质。近10年来,在上述稻米品质性状相关基因的克隆与功能研究领域已取得了长足的进展。水稻粒形不仅是重要的产量性状也是碾磨和外观品质的重要决定因素,目前已克隆了多个粒形相关的QTL和基因。根据粒形相关基因的表型效应可将其分为3类,即伴随植株矮化的小粒控制基因(第一类,包括D1、D2、D11、D61和SMG1等)、粒形特异基因(第二类,如GS3、GL3.1、GW7、GW2、GW5、GS5、GS6、TGW6、GW8、BG2、GW6a和GS2等)和小圆粒基因(第三类,即SRS),其中只有第二类基因具有较好的育种利用价值。垩白是决定稻米外观品质的首要性状,同时也会影响碾磨品质。目前尽管已经鉴定了大量QTL,但只有少数QTL被精细定位和克隆,如Chalk5、cyPPDK、G1F1、OsRab5a、FLOURYENDOSPERM2、PDIL1-1和SSG4等主要通过调控胚乳灌浆和储藏物积累而影响稻米外观表现。淀粉占精米胚乳干重的90%以上,其组成与结构是决定稻米外观和蒸煮与食味品质的最重要因素。淀粉的合成是由多基因参与的复杂调控网络,直接参与淀粉合成的淀粉合成酶类基因的功能已经比较清楚;此外,参与胚乳淀粉代谢的一些转录因子如Dull、OsEBP89、OsEBP5、OsRSR1和OsbZIP58等也已被陆续鉴定和克隆。蛋白质是稻米的第二大成分,目前已克隆了众多的贮藏蛋白编码基因,并且已鉴定克隆了多个与蛋白质转运调控有关的基因如OsSar、OsRab5a、OsAPP6、RISBZ1、RPBF、OsVPS9A、OsGPA3和GEF2等。赖氨酸是稻米中的第一限制必须氨基酸,通过过量表达富含赖氨酸蛋白(如RLRH1和RLRH2)或调控游离赖氨酸代谢等途径,均可显著提高稻米中的赖氨酸含量。稻米香味主要由2-AP决定,目前,已克隆了BADH2和OsP5CS等参与2-AP合成调控的基因。在与稻米贮藏有关的脂质代谢方面,已克隆了脂肪酸氧化酶基因LOX-1、LOX-2和LOX-3以及脂质转运基因OsLTP36。此外,在稻米维生素、花青素和矿物质等合成调控方面也已鉴定克隆了多个重要基因。综上,稻米各品质性状都是由多基因控制,并且各性状间彼此交叉,其遗传调控非常复杂。本文重点就近年来控制稻米粒形与垩白、蒸煮与食味品质、储藏蛋白、脂类、维生素与矿质元素等合成与调控相关基因的克隆、等位变异和功能研究进行了综述,并对重要品质相关基因的育种利用进行了展望,期望为水稻优质育种提供参考。  相似文献   

18.
利用染色体片段置换系定位水稻粒型QTL   总被引:7,自引:3,他引:4  
水稻粒型是衡量稻米外观品质的重要指标之一,鉴定和定位水稻粒型QTL对开展水稻粒型分子育种具有重要意义.本研究以8个染色体片段置换系为材料,选用分布水稻12条染色体上的153个SSR标记检测染色体片段置换系的置换片段,采用代换作图法对控制水稻粒型的3个主效QTL进行定位.结果表明:153个SSR标记中有104个标记在亲本间具有多态性,多态率为68.0%;8个染色体片段置换系在第3和第5染色体分别有6个和2个置换片段,置换片段长度分别为14.8 cM、16.6 cM、 15.5 cM、18.9 cM、29.1 cM、35.0 cM、17.9 cM 和17.0 cM,平均长度为20.6 cM;8个置换片段上共鉴定出3个粒型QTL,控制粒长的qGL-3-1 和qGL-3-2分别被界定在水稻第3染色体RM5551与RM6832及RM6832与RM3513之间,遗传距离分别为14.8 cM和5.3 cM的范围内,控制粒宽的qGW-5被界定在水稻第5染色体RM267与RM169之间遗传距离约11.7 cM的范围内.利用染色体片段置换系能准确地定位水稻粒型QTL,qGL-3-1、qGL-3-2和qGW-5的鉴定和初步定位为其进一步精细定位及分子标记辅助选择奠定了基础.  相似文献   

19.
稻米外观品质是稻米品质的一个重要方面.是消费者选择的重要依据之一,在一定程度上影响稻米市场价格.采用一个日本优质粳稻品种越光(轮回亲本)和一个印度的籼稻品种Kasalath杂交产生的回交重组自交系(backcross recombinant inbred lines,BILs)对7个控制稻米外观品质主要性状(粒长、粒宽、粒厚、粒长宽比、垩白粒率、垩白大小和垩白度)数量性状基因位点(quantitative trait locus,QTL)进行定位分析.共检测到影响7个性状的22个QTLs,分布在8条染色体上,贡献率为5.65%~29.20%.其中在第5染色体上的R2232分子标记附近区域检测到影响4个性状的QTLs;在第3染色体上C1448和第6染色体G200分子标记附近区域分别检测到同时影响3个性状的QTLs,表明了这3个染色体区域对控制稻米外观品质性状中的有着重要作用.研究检测到的QTLs及其两侧的分子标记可以用于改良稻米外观品质的分子辅助育种.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号