首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the interactive effects of drought, heat and elevated atmospheric CO2 concentration ([CO2]) on plant water relations and grain yield in wheat, two wheat cultivars with different drought tolerance (Gladius and Paragon) were grown under ambient and elevated [CO2], and were exposed to post‐anthesis drought and heat stress. The stomatal conductance, plant water relation parameters, abscisic acid concentration in leaf and spike, and grain yield components were examined. Both stress treatments and elevated [CO2] reduced the stomatal conductance, which resulted in lower leaf relative water content and leaf water potential. Drought induced a significant increase in leaf and spike abscisic acid concentrations, while elevated [CO2] showed no effect. At maturity, post‐anthesis drought and heat stress significantly decreased the grain yield by 21.3%–65.2%, while elevated [CO2] increased the grain yield by 20.8% in wheat, which was due to the changes of grain number per spike and thousand grain weight. This study suggested that the responses of plant water status and grain yield to extreme climatic events (heat and drought) can be influenced by the atmospheric CO2 concentration.  相似文献   

2.
The allelopathic water extracts (AWEs) may help improve the tolerance of crop plants against abiotic stresses owing to the presence of the secondary metabolites (i.e., allelochemicals). We conducted four independent experiments to evaluate the influence of exogenous application of AWEs (applied through seed priming or foliage spray) in improving the terminal heat and drought tolerance in bread wheat. In all the experiments, two wheat cultivars, viz. Mairaj‐2008 (drought and heat tolerant) and Faisalabad‐2008 (drought and heat sensitive), were raised in pots. Both wheat cultivars were raised under ambient conditions in the wire house till leaf boot stage (booting) by maintaining the pots at 75% water‐holding capacity (WHC). Then, managed drought and heat stresses were imposed by maintaining the pots at 35% WHC, or shifting the pots inside the glass canopies (at 75% WHC), at booting, anthesis and the grain filling stages. Drought stress reduced the grain yield of wheat by 39%–49%. Foliar application of AWEs improved the grain yield of wheat by 26%–31%, while seed priming with AWEs improved the grain yield by 18%–26%, respectively, than drought stress. Terminal heat stress reduced the grain yield of wheat by 38%. Seed priming with AWEs improved the grain yield by 21%–27%; while foliar application of AWEs improved the grain yield by 25%–29% than the heat stress treatment. In conclusion, the exogenous application of AWEs improved the stay green, accumulation of proline, soluble phenolics and glycine betaine, which helped to stabilize the biological membranes and improved the tolerance against terminal drought and heat stresses.  相似文献   

3.
To study the effects of early drought priming at 5th‐leaf stage on grain yield and nitrogen‐use efficiency in wheat (Triticum aestivum L.) under post‐anthesis drought and heat stress, wheat plants were first exposed to moderate drought stress (drought priming; that is, the leaf water potential reached ca. ?0.9 MP a) at the 5th‐leaf stage for 11 days, and leaf water relations and gas exchange rates, grain yield and yield components, and agronomic nitrogen‐use efficiency (ANUE ) of the primed and non‐primed plants under post‐anthesis drought and heat stress were investigated. Compared with the non‐primed plants, the drought‐primed plants possessed higher leaf water potential and chlorophyll content, and consequently a higher photosynthetic rate during post‐anthesis drought and heat stress. Drought priming also resulted in higher grain yield and ANUE in wheat under post‐anthesis drought and heat stress. Drought priming at vegetative stage improves carbon assimilation and ANUE under post‐anthesis drought and heat stress and their combination in wheat, which might be used as a field management tool to enhance stress tolerance of wheat crops to multiple abiotic stresses in a future drier and warmer climate.  相似文献   

4.
Drought and heat are among the main abiotic stresses causing severe damage to the cereal productivity when occur at reproductive stages. In this study, ten wheat cultivars were screened for combined heat and drought tolerance imposed at booting, heading, anthesis and post‐anthesis stages, and role of the foliage applied plant extracts was evaluated in improving the performance of differentially responding wheat cultivars under terminal heat and drought stresses. During both years, wheat crop was raised under ambient temperature and 70% water holding capacity (WHC) till leaf boot stage. The plant extracts (3% each) of sorghum, brassica, sunflower and moringa were foliage applied at booting, anthesis and post‐anthesis stage; and after one week of application of these plant extracts, combined heat and drought was imposed at each respective stage. Heat and drought stresses were imposed at each respective stage by placing pots in glass canopies with temperature of 4 ± 2°C above than the ambient temperature in combination with drought stress (35% WHC) until maturity. Combination of drought and heat stresses significantly reduced the performance of tested wheat cultivars; however, stress at the booting and heading stages was more damaging than the anthesis and post‐anthesis stages. Cultivars Mairaj‐2008 and Chakwal‐50 remained green with extended duration for grain filling, resulting in the maintenance of number of grains per spike and 100‐grain weight under stress conditions and thus had better grain yield and water‐use efficiency. However, in cultivars Fsd‐2008, and Shafaq‐2006, the combined imposition of drought and heat accelerated the grain filling rate with decrease in grain filling duration, grain weight and grain yield. Foliar application of all the plant extracts improved the wheat performance under terminal heat and drought stress; however, brassica extract was the most effective. This improvement in grain yield, water‐use efficiency and transpiration efficiency due to foliage applied plant extracts, under terminal heat and drought stress, was owing to better stay‐green character and accumulation of more soluble phenolics, which imparted stress tolerance as indicated by relatively stable grain weight and grain number. In crux, growing of stay‐green wheat cultivars with better grain filling and foliage application of plant extracts may help improving the performance of bread wheat under combined heat and drought stresses.  相似文献   

5.
Chickpea (Cicer arietinum L.) is a dry season food legume largely grown on residual soil moisture after the rainy season. The crop often experiences moisture stress towards end of the crop season (terminal drought). The crop may also face heat stress at the reproductive stage if sowing is delayed. The breeding approaches for improving adaptation to these stresses include the development of varieties with early maturity and enhanced abiotic stress tolerance. Several varieties with improved drought tolerance have been developed by selecting for grain yield under moisture stress conditions. Similarly, selection for pod set in the crop subjected to heat stress during reproductive stage has helped in the development of heat‐tolerant varieties. A genomic region, called QTL‐hotspot, controlling several drought tolerance‐related traits has been introgressed into several popular cultivars using marker‐assisted backcrossing (MABC), and introgression lines giving significantly higher yield than the popular cultivars have been identified. Multiparent advanced generation intercross (MAGIC) approach has been found promising in enhancing genetic recombination and developing lines with enhanced tolerance to terminal drought and heat stresses.  相似文献   

6.
Drought tolerance in plants is a complex trait involving morphological, physiological, and biochemical mechanisms. Hundreds of genes underlie the response of plants to the stress. For crops, selecting cultivars that can produce economically significant yields under drought is a priority. Potato (Solanum tuberosum L.) is considered as drought sensitive crop, although cultivar-dependent differences in tolerance have been described. Cultivar ‘Katahdin’ possesses many appropriate characteristics and is widely used for breeding purposes worldwide; it also has enhanced tolerance to drought stress. In this study, we evaluated cv. ‘Katahdin’ and a half-sib family of 17 Katahdin-derived cultivars for leaf relative water content (RWC) and tuber yield under drought stress. The yields of cultivars ‘Wauseon’, ‘Katahdin’, ‘Magura’, ‘Calrose’, and ‘Cayuga’ did not significantly decline under drought stress. Among these five, Wauseon exhibited the lowest reduction in both tuber yield and relative water content under water shortage. The data showed that ‘Wauseon’ is the most attractive cultivar for studies of molecular and physiological processes under drought and for potato breeding due to low yield losses that correspond with high RWC values. This cultivar can serve as a reservoir of potentially useful genes to develop cultivars with enhanced tolerance to this abiotic stress.  相似文献   

7.
Drought stress and zinc (Zn) deficiency are serious abiotic stress factors limiting crop production in Turkey, especially in Central Anatolia. In this study, the effects of Zn deficiency and drought stress on grain yield of 20 wheat cultivars (16 bread wheat, Triticum aestivum; four durum wheat, Triticum durum cultivars) were investigated over 2 years under rainfed and irrigated conditions in Central Anatolia where drought and Zn deficiency cause substantial yield reductions. Plants were treated with (+Zn: 23 kg Zn ha−1, as ZnSO4·7H2O) and without (−Zn) Zn under rainfed and irrigated conditions. Both Zn deficiency and rainfed treatments resulted in substantial decreases in grain yield. Significant differences were determined between both bread wheat and durum wheat cultivars in terms of drought stress tolerance. Considering drought sensitivity indices over 2 years, the bread wheat cultivars Yayla‐305, Gerek‐79, Dagdas‐94 and Bolal‐2973 were found to be more drought‐tolerant than the other cultivars under both −Zn and +Zn treatments. Especially the durum wheat cultivars Cakmak 79 and Selcuklu 97 showed much greater drought susceptibility under Zn deficiency, and irrigation alone was not sufficient to obtain satisfying grain yield without Zn application. The results indicate that sensitivity to Zn deficiency stress became more pronounced when plants were drought‐stressed. The effect of irrigation on grain yield was maximized when Zn was adequately supplied, leading to the suggestion that efficient water use in Central Anatolia seems to be highly dependent on the Zn nutritional status of plants.  相似文献   

8.
Drought‐induced damages in crop plants are ranked at top amid all losses instigated by diverse abiotic stresses. Terminal drought (drought at reproductive phase) has emerged as a severe threat to the productivity of wheat crop. Different seed enhancement techniques, genotypes and distribution of crop plants in different spacings have been explored individually to mitigate these losses; however, their interaction has rarely been tested in improving drought resistance in wheat. This study was conducted to evaluate the potential role of different seed enhancement techniques and row spacings in mitigating the adversities of terminal drought in two wheat cultivars during two consecutive growing seasons of 2010–2011 and 2011–2012. Seeds of wheat cultivars Lasani‐2008 (medium statured) and Triple Dwarf‐1 (dwarf height) soaked in water (hydropriming) or CaCl2 (osmopriming) were sown in 20‐, 25‐ and 30‐cm spaced rows; just before heading, the soil moisture was maintained at 100 % field capacity (well watered) or 50 % field capacity (terminal drought) till maturity. Terminal drought significantly reduced the yield and related traits compared with well‐watered crop; however, osmopriming improved the crop performance under terminal drought. Among different row spacings, wheat sown in 20‐cm spaced rows performed better during both years of study. Wheat cultivar Lasani‐2008 performed better than cultivar Triple Dwarf‐1 under both well‐watered and stress conditions. Maximum net returns and benefit–cost ratio were recorded from osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows under well‐watered condition. Nonetheless, osmoprimed seeds of cultivar Lasani‐2008 sown in 20‐cm spaced rows were better able to produce good yield under terminal drought.  相似文献   

9.
Twenty-four wheat lines, developed by Aegilops tauschii Coss. introgressions and previously selected for heat or salinity stress tolerance, were evaluated under a drought-rewatering-drought cycle for two years. The objective was to select breeding lines that are resilient to more than one abiotic stress. The experiment was designed in alpha lattice with three replications. Drought was imposed by withholding water during flowering. The results revealed considerable genetic variability in physio-agronomic traits, reflecting the variation in the introgressed segments. High heritability estimates (above 47%) were recorded for most traits, including days to 50% heading, plant height, and thousand-grain weight, indicating the genetic control of these traits which may be useful for cultivar development. The trait-trait correlations within and between water regimes highlighted a strong association among the genetic factors controlling these traits. Some lines exhibited superior performance in terms of stress tolerance index and mean productivity compared with their backcross parent and elite cultivars commonly grown in hot and dry areas. Graphical genotyping revealed unique introgressed segments on chromosomes 4B, 6B, 2D, and 3D in some drought-resilient lines which may be linked to drought resilience. Therefore, we recommend these lines for further breeding to develop climate-resilient wheat varieties.  相似文献   

10.
Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions. Under heat stress, all cultivars yielded narrow-shaped seeds, and increased protein contents as compared to the control plants grown under normal conditions. The specific sedimentation values used to estimate the gluten quality varied between cultivars. We identified cultivars that could maintain good flour quality under heat stress conditions: ‘Imam’, which possessed the Glu-D1d allele responsible for the suitable bread-making; ‘Bohaine’, which displayed high expression level of SSPs; and ‘Condor’, which possessed slight variations in the ratio of each SSP under heat stress conditions. Combining the desirable traits from these cultivars could yield a wheat cultivar with heat tolerance and good flour quality.  相似文献   

11.
Development of rapid and inexpensive screening tools for heat and drought stress tolerance is needed and will be helpful in cotton breeding programs and selecting cultivars for a niche environment. In this study, several pollen-based traits at optimum and high temperatures and physiological parameters measured during the boll-filling period were used to evaluate variability among the cultivars for heat and drought stresses. Principal component analysis and drought stress response index methods were used to categorize cotton cultivars into three heat and drought tolerant clusters. Based on the combined analysis, PX532211WRF has been identified as heat- and drought-tolerant, and would be expected to perform better under both heat- and drought-stressed environments. A poor correlation between reproductive and physiological indices indicates that screening breeders have to use different traits to screen cultivars for reproductive and vegetative tolerance. Identified traits could serve as valuable screening tools in cotton breeding programs aimed at developing genotypes to a changing climate. Moreover, cultivar-dependent relative scores will aid in the identification of cultivars best suited to niche environments to alleviate the influences of abiotic stresses at both vegetative and reproductive stages.  相似文献   

12.
The study, consisting of two independent experiments, was conducted to evaluate the role of seed priming with ascorbic acid (AsA) in drought resistance of wheat. In the first experiment, seeds of wheat cultivars Mairaj‐2008 and Lasani‐2008 were either soaked in aerated water (hydropriming) for 10 h or not soaked (control). In the second experiment, seeds of same wheat cultivars were soaked in aerated (2 mm ) AsA solution (osmopriming) or water (hydropriming) for 10 h. In both experiments, seeds were sown in plastic pots (10 kg) maintained at 70 % and 35 % of water‐holding capacity designated as well watered and drought stressed, respectively. Both experiments were laid out in a completely randomized design with six replications. Drought caused delayed and erratic emergence and disturbed the plant water relations, chlorophyll contents and membranes because of oxidative damage; however, root length in cultivar Lasani‐2008 was increased under drought. Hydropriming significantly improved the seedling emergence and early growth under drought and well‐watered conditions; however, improvement was substantially higher from osmopriming with AsA. Similarly, osmopriming with AsA significantly improved the leaf emergence and elongation, leaf area, specific leaf area, chlorophyll contents, root length and seedling dry weight. Owing to increase in proline accumulation, phenolics and AsA, by seed priming with AsA, plant water status was improved with simultaneous decrease in oxidative damages. These improved the leaf emergence and elongation, and shoot and root growth under drought. However, there was no difference between the cultivars in this regard. In conclusion, osmopriming with AsA improved the drought resistance of wheat owing to proline accumulation and antioxidant action of AsA and phenolics, leading to tissue water maintenance, membrane stability, and better and uniform seedling stand and growth.  相似文献   

13.
In this study, some morphological, physiological and biochemical parameters of two chickpea cultivars, cv. Gökçe and Canıtez, were analysed to understand their tolerance to drought stress. Twenty-day-old plants were subjected to three different regimes of drought stress by withholding water for 3, 5 or 7 days, and then rewatering for 2 days after the initial 7 days of drought stress. Drought treatments only reduced shoot elongation in the Canıtez cultivar. Leaf production and fresh biomass decreased in both cultivars under all drought treatments, however to a greater extent in Canıtez. In both cultivars, malondialdehyde, proline and anthocyanin accumulation increased significantly, whereas relative water content declined under drought stress. The total chlorophyll and carotenoid contents of Gökçe were not affected by drought stress, whereas the chlorophyll content of Canıtez increased greatly at the end of the treatments. Using chlorophyll a fluorescence measurements, we found that extended drought treatment caused photoinhibition of PSII activity in both cultivars. However, this was greater in Canıtez, especially under severe drought stress. Although Canıtez recovered quickly from drought stress and exhibited a good ability to overcome drought stress, via activation of many protection mechanisms such as increasing antioxidant enzymes and proline and anthocyanin accumulation during vegetative stage, our results show that Canıtez is less drought tolerant than Gökçe.  相似文献   

14.
Six wheat ( Triticurn aestivum L.) and ten triticale (x Triticosecale Wittmack) cultivars were screened for water stress tolerance during germination and seedling stages in the laboratory and growth chamber, respectively. Germinating seeds and hydroponically-grown seedlings were subjected to osmotic stresses of –0.3 and –0.6 MPa using polyethylene glycol M. W. 8000. Both species and cultivar differences were found among the tested genotypes for all the parameters analyzed in both germination and seedling tests. Germination stress index was lower for seed exposed to -0.6 MPa than for -0.3 MPa osmotic stress. A significant relationship was found among plant height, fresh weight and dry weight stress indices evaluated during the seedling test. The cultivars that grew taller under stress conditions had greater dry matter accumulation, as well as higher germination and water uptake stress indices indicating the reliability of height to predict cultivar performance under such conditions. The cultivars Stacy (wheat) and Eu 14/15 (triticale) had higher dry matter accumulation, higher water uptake and leaf water potential, greater height and better germination under stress conditions than the other cultivars tested. Conversely, the cultivars GA 781014 (wheat) and Am 4147 (triticale) performed poorly with respect to all the parameters analyzed. Based on results from germination and seedling tests, the cultivars Stacy and Eu 14/15 were selected for more stress studies in the greenhouse and field.  相似文献   

15.
The physiological responses of potato (Solanum tuberosum L) cultivars to soil drought at the tuberization phase and their impact on agronomically important traits were investigated in potted plants under semi‐controlled conditions. Genotype‐dependent responses of potato to water deficiency were evaluated on two pairs (tolerant/sensitive) of Polish cultivars. Each pair of cultivars had a similar genetic background but was extremely different in terms of drought tolerance evaluated on the basis of loss of tuber yield under field conditions. The results clearly indicate different mechanisms of tolerance to water deficiency and the ability to recover from soil drought in two tolerant but genetically unrelated cultivars. When subjected to soil drought, the cultivar Gwiazda had low rates of transpiration and photosynthesis and low levels of stomatal conductance due to hypersensitivity to ABA, but its maximal photochemistry efficiency and PSII performance index were unchanged. Another strategy was displayed by the dehydration‐avoidant cultivar Tajfun, which kept the stomata partially open. Thus, the plants were able to retain a relatively high rate of photosynthesis over transpiration. The parameters measured for cultivar Tajfun for photosynthesis and transpiration were the same after plant rewatering, similar to the control plants. This was not the case for the cultivar Gwiazda. The ability of plants to regenerate after soil drought relief appears to be a good indicator of potato susceptibility to soil drought and allows the yield of potato tubers to be predicted. The physiological traits identified in closely related potato cultivars but differed in their drought tolerance seem to be useful for genetic engineering and breeding programmes.  相似文献   

16.
Seventeen determinate soybean ( Glycine max L.) cultivars from maturity groups V through VIII were screened for drought tolerance during germination and seedling stages. Germinating seeds and hydroponically-grown seedlings were subjected to osmotic stresses of -0.3 and -0.5 MPa using polyethylene glycol M.W. 8000. Genotypic variability was found among the cultivars for all the parameters analyzed in both germination and seedling tests. Germination stress index was lower for seeds exposed to -0.5 MPa than for -0.3 MPa osmotic stress. Lower osmotic potential in the treatment medium was also correlated with lower leaf water potential in seedlings subjected to it. A significant relationship was found between fresh weight and height stress indices. The cultivars that grew taller under drought stress conditions had greater dry matter accumulation and higher germination stress indices indicating the reliability of height to predict cultivar performance under such conditions. The cultivars Lee-74 and Wright had higher dry matter accumulation, greater height, and better germination under stress conditions than the other cultivars tested. Conversely, the cultivars Ra 401 and Bay performed poorly in the drought tests at both levels. In the seedling tests, there was no strong relationship between the leaf water potential and the overall performance of the plant suggesting no clear osmoregulatory mechanism. Based on results from germination and seedling tests, the cultivars Lee-74, Wright , and Ra 401 were selected for further studies in greenhouse and field trials.  相似文献   

17.
小麦耐热性研究   总被引:20,自引:0,他引:20  
对8个小麦品种开花后的耐热性研究结果表明,耐热性在小麦品种间存在着较大的遗传差异,耐热性的高低与品种叶片的叶绿素含量、丙二醛含量、冠层温度显著相关,它直接影响到品种开花后的同化物积累量;叶片细胞膜热稳定性和冠层温度可以作为小麦抗热性育种的选择指标。  相似文献   

18.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.  相似文献   

19.
There is a lack of knowledge about factors contributing to the chilling‐induced alleviatory effects on growth of plants under salt stress. Thus, the primary objective of the study was to determine whether chilling‐induced changes in endogenous hormones, ionic partitioning within shoots and roots and/or gaseous exchange characteristics is involved in salt tolerance of two genetically diverses of wheat crops. For this purpose, the seeds of two spring wheat (Triticum aestivum) cultivars, MH‐97 (salt intolerant) and Inqlab‐91 (salt tolerant) were chilled at 3°C for 2 weeks. The chilled, hydroprimed and non‐primed (control) seeds of the two wheat cultivars were sown in both Petri dishes in a growth room and in the field after treatment with 15 dS m?1 NaCl salinity. Chilling was very effective in increasing germination rate and subsequent growth when compared with hydropriming and control under salt stress. Results from field experiments clearly indicated the efficacy of chilling over hydropriming in improving shoot dry biomass and grain yield in either cultivar, particularly under salt stress. This increase in growth and yield was related to increased net photosynthetic rate, greater potential to uptake and accumulate the beneficial mineral elements (K+ and Ca2+) in the roots and reduced uptake and accumulation of toxic mineral element (Na+) in the shoots of both wheat cultivars when grown under salt stress. Salt‐stressed plants of both wheat cultivars raised from chilled seed had greater concentrations of indoleacetic acid, abscisic acid, salicylic acid and spermine when compared with hydropriming and control. Therefore, induction of salt tolerance by pre‐sowing chilling treatment in wheat could be attributed to its beneficial effects on ionic homeostasis and hormonal balance. The results presented are also helpful to understand the chilling‐induced cross adaptation of plants in natural environments. Moreover, efficacy of pre‐sowing chilling treatment over hydropriming suggested its commercial utilization as a low risk priming treatment for better wheat crop production under stressful environments.  相似文献   

20.
不同甘薯品种抗旱性评价及耐旱指标筛选   总被引:3,自引:0,他引:3  
在人工控水条件下,以15个甘薯品种为试验材料,设置干旱胁迫和正常灌水2个处理,研究了干旱胁迫条件下不同甘薯品种产量和农艺性状差异。根据产量抗旱系数法分级,抗旱品种(抗旱系数≥0.6)为济薯21、济薯25、济徐23、济薯15、烟薯25;中等抗旱品种(0.4≤抗旱系数0.6)为徐薯18、济薯26、北京553、济紫薯2号、济薯18;不抗旱品种(抗旱系数0.4)为郑薯20、济紫薯3号、济薯22、济紫薯1号、凌紫。干旱胁迫导致甘薯的叶片数、蔓长、叶面积系数和生物量下降,品种间降幅不同,抗旱性强的品种降幅小,抗旱性弱的品种降幅大。这些农艺性状指标与甘薯品种的抗旱性呈显著正相关,可作为甘薯品种抗旱性鉴定的指标。徐薯18可作为甘薯品种抗旱性鉴定的标准品种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号