首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 805 毫秒
1.
玉米籽粒构型与产量性状的关系及QTL作图   总被引:21,自引:1,他引:20  
 【目的】探讨玉米籽粒构型性状(粒长、粒宽、粒厚、粒形等)与产量性状间的相互关系,进行籽粒构型性状相关QTL的检测与定位。【方法】以自交系齐319和黄早四构建的226个F2:3家系为试验材料,利用相关分析、主成分分析、出籽率模拟运算及QTL定位等方法,对在不同生态环境下(北京春播和河南夏播)玉米籽粒构型与产量性状间相关性进行探讨,并初步分析籽粒构型性状遗传基础。【结果】单穗产量与绝大多数籽粒构型性状显著相关,特别是与粒长的相关系数最高。主成分分析结果表明,对单穗产量影响较大的性状有粒长、粒厚、穗长、出籽率和粒长/穗半径。出籽率是影响果穗同化产物分配状况的衡量指标,受到粒长、粒长/穗半径、穗长和粒宽的显著影响。模拟运算亦表明粒长/穗半径与出籽率具有十分紧密的关系。对在两个生态环境下籽粒构型性状和产量性状的相关QTL进行了检测,共检测到了36个QTL。进一步分析发现,在不同生态环境下的部分QTL定位在相同的染色体区域;同时,还有不同性状的QTL定位在相同或临近的染色体区域。【结论】玉米籽粒构型性状与产量性状具有较高的相关关系,籽粒构型QTL与产量相关QTL的重叠区域对剖析玉米产量形成遗传机制可能具有重要的研究价值。  相似文献   

2.
【目的】研究1BL.1RS易位对小麦籽粒特征的影响及其遗传效应,为小麦籽粒性状的遗传改良提供理论依据。【方法】以豫麦49/周麦16杂交后代的176个F5重组自交系为材料,于2008-2010年连续2年对籽粒性状进行分析,并结合SSR和STS标记对1BL.1RS染色体进行籽粒性状的QTL检测。【结果】小麦籽粒性状中粒长和密度因子主要受基因型影响,千粒质量、粒宽、周长、面积及形态因子等性状受基因型和环境及其互作的影响较大,1BL.1RS易位能显著提高千粒质量、粒长、粒宽、周长和面积,但对形态因子和密度因子影响不显著。千粒质量与粒长、粒宽和密度因子均呈极显著偏正相关;而粒长和粒宽呈极显著偏负相关。位于1BL.1RS染色体短臂上的HVM20-AF1/AF4标记区间携带有控制千粒质量、粒宽和面积的QTL,可解释17.2%~21.0%的表型变异;AF1/AF4-Xg-wm582标记区间存在有控制粒长和周长的QTL,分别解释21.5%和14.9%的表型变异;与Nor-4紧密连锁的形态因子QTL可解释12.2%的表型变异,受环境影响较大。【结论】1RS携带有提高千粒质量、粒长、粒宽、周长、面积及形态因子的QTL,通过分子标记跟踪选择1BL.1RS易位系可有效改良小麦籽粒性状,进而提高千粒质量和产量。  相似文献   

3.
普通小麦(T.aestivum L.)不同作图群体抽穗期QTL分析   总被引:7,自引:0,他引:7  
 【目的】对小麦抽穗期进行数量性状位点(QTL)分析。【方法】以旱选10号/鲁麦14和温麦6号/山红麦两个作图群体为材料,在大田及温室条件下,观察小麦抽穗期等性状。利用混合线性模型,进行QTL分析。【结果】抽穗期在两个作图群体中均呈现连续分布,表现为多基因控制的数量性状;共检测到9个 QTL位点,分别位于染色体2D、3B(2个)、3D、4A、5B、6B、6D和7D上,对抽穗期的贡献率在3.97%~22.91%之间;有15组QTL位点之间存在基因互作效应,互作的加性效应大小范围为0.77~2.16 d,互作效应对性状的贡献率在4.35%~21.44%之间。【结论】抽穗期QTL的检测受环境影响较大;抽穗期QTL位点在染色体上的分布较多;不同染色体间则存在基因互作现象。  相似文献   

4.
不同生态环境下冬小麦籽粒大小相关性状的QTL分析   总被引:5,自引:1,他引:4  
 【目的】鉴定影响籽粒大小相关性状的QTL,并估计QTL的表型效应;分析不同环境下QTL的稳定性。【方法】以冬小麦小粒地方品种和尚麦为母本,大粒育成品种豫8679为父本及其F7:8重组自交系的142个株系为试验材料,分析籽粒长度、宽度、厚度、体积及千粒重在北京(2006、2007)、合肥(2007)和成都(2007)4个不同环境下的性状表现,并利用已构建的含有170个SSR标记和2个EST标记的遗传图谱,对这5个性状进行QTL定位分析。【结果】4个环境下共检测到93个影响籽粒长度、宽度、厚度、体积及千粒重的QTL,这些QTL分布在除1D和6A之外的所有小麦染色体上。在检测到的QTL中,与籽粒长度、宽度、厚度、体积和千粒重相关的QTL分别为17、16、18、21和21个。另外,本研究还在1A、1B、2A、2D、3A、3B、5A、5B、5D、6A、6D、7B和7D染色体上共发现了18个QTL富集区。【结论】获得93个影响小麦籽粒大小相关性状的QTL,这些QTL可作为利用分子标记辅助育种途径进行小麦遗传改良的依据。  相似文献   

5.
小麦粒长和粒宽的QTL定位分析   总被引:1,自引:0,他引:1  
【目的】粒长、粒宽是小麦种子重要的形态性状,该性状对籽粒的外观商品品质、产量及磨粉品质均至关重要,研究不同环境条件下小麦粒长、粒宽的单个标记和复合区间作图的QTL定位,对小麦粒长、粒宽的分子标记辅助选择具有重要参考作用。【方法】应用一个由115个系组成的W7984/Opata 85重组自交系(RIL)群体,建立了由394个DNA分子标记组成的遗传连锁图,在2种不同环境条件下对小麦粒长、粒宽进行了单个标记的回归分析和复合区间作图的QTL定位。【结果】在单个标记的回归分析中检测到5个粒长的QTLs、3个粒宽的QTLs;复合区间作图分析结果表明,控制粒长的QTLs分别位于5BL和7DS上,在5BL上的贡献率为20.20%~20.81%,LOD值为4.50~4.55;在7DS上的贡献率为13.54%~13.91%,LOD值为2.94~3.20。控制粒宽的QTL位于2B上,贡献率为13.71%~19.30%,LOD值为2.98~4.18。【结论】位于5B和7D上的控制粒长的QTL和位于2B上的控制粒宽的QTL在2种条件下均能检测到。  相似文献   

6.
【目的】定位大豆粒形性状的主效QTL、环境互作和QTL间上位性。【方法】以栽培大豆晋豆23为母本,半野生大豆灰布支黑豆(ZDD2315)为父本所衍生的447个RIL构建的SSR遗传图谱及混合线性模型分析方法,对3年大豆粒形性状进行主效QTL、环境互作和QTL间上位性检测。【结果】共检测到7个与粒长、粒宽、粒厚以及长宽比、长厚比和宽厚比相关的QTL,分别位于D2、C2、J_2和O连锁群上,其中粒长、长厚比和宽厚比均表现为遗传正效应,说明增加其等位基因来源于母本晋豆23。同时,检测到3对影响粒宽和宽厚比的加性×加性上位性互作效应及其与环境互作的QTL。【结论】主效QTL对粒形性状遗传产生的影响最大,上位性次之,环境互作最小,说明加性效应、加性×加性上位性互作是大豆粒形性状的重要遗传基础。  相似文献   

7.
黄瓜果实相关性状QTL定位分析   总被引:4,自引:5,他引:4  
 【目的】果实性状对黄瓜的商品性及产量具有重要影响,对黄瓜果实性状进行QTL定位分析将有助于了解其遗传机制,为黄瓜果实性状改良以及高产、稳产育种提供有益参考和帮助,同时也可为基因的精细定位及克隆奠定基础。【方法】利用华北保护地类型黄瓜材料9930和欧洲温室类型黄瓜材料9110Gt为亲本构建的遗传图谱,结合不同年份、不同季节4次表型鉴定数据,采用MapQTL4.0软件对12个黄瓜果实相关性状进行多座位QTL模型(MQM)检测。【结果】检测到与8个商品瓜性状相关的QTLs 18个:瓜长Fl(3个)、把长Fsl(1个)、瓜粗Fd(1个)、瓜长/把长Lsr(5个)、瓜长/瓜粗Ldr(1个)、刺色Fsc(4个)、刺密度Fsd(1个)、果瘤大小Fws(2个);与4个种瓜性状(种瓜长Sfl、种瓜粗Sfd、种瓜重Sfw、种瓜果皮颜色Sfc)相关的QTLs 14个。其中表型贡献率≥10.0%的主效QTL有27个,占QTL总数的84.4%,这些QTL大都分布在Chr.5和Chr.6上。各QTLs的LOD值在3.53—42.21,可解释8.4%—73.1%的表型变异。【结论】本研究检测到与12个黄瓜果实性状相关的QTL共32个,其中刺色和果瘤大小2个性状在2006—2009年春秋两季均检测到主效QTL位点,并获得紧密连锁的特异标记 (SSR02697、SSR19256、SSR15818、SSR06003、SSR00116、SSR05321、SSR00004、SSR02309),可用于基因精细定位研究。  相似文献   

8.
【目的】籽粒大小是影响水稻产量的主要农艺性状之一。采用籼稻品种 V20B 与细长型爪哇稻品种 CPSLO17 衍生的重组自交系开展水稻糙米籽粒大小 QTL 定位研究,挖掘遗传稳定的主效 QTL,为优质高产稻品种培育提供新的基因资源和科学依据。【方法】基于 V20B/CPSLO17 遗传背景的高密度遗传连锁图谱,结合150 份重组自交系在 4 种环境(2019 年贵州贵阳、2020 年贵州贵阳、2021 年贵州贵定、2021 年海南三亚)中的糙米籽粒大小表型数据,采用 IciMapping 4.0 软件的 ICIM-ADD 方法进行 QTL 扫描。【结果】亲本 V20B 的糙米籽粒大小显著大于 CPSLO17,重组自交系的糙米籽粒大小在 4 种环境间差异显著,均表现出连续的单峰分布。4 种环境共检测到分布于 7 条染色体上的 11 个与糙米籽粒大小相关的 QTL,LOD 值均介于 3.00~14.57 之间。4 个 QTL(qRGS5、qRGS7.1、qRGS7.2 和 qRGS11.3)的表型贡献率超过 10%,其中 qRGS5 在 4 种环境中均被重复检测到,分别解释群体表型变异率的 29.71%、28.77%、17.27% 和 12.50%。3 个 QTL(qRGS2.1、qRGS2.2和 qRGS12)的增效等位基因源自亲本 CPSLO17,8 个 QTL(qRGS4.1、qRGS5、qRGS7.1、qRGS7.2、qRGS8、qRGS11.1、qRGS11.2 和 qRGS11.3)的增效等位基因源自亲本 V20B,qRGS5 在 4 种环境中的增效等位基因均源自亲本 V20B。【结论】亲本 V20B 和 CPSLO17 间糙米籽粒大小差异极显著,糙米籽粒大小性状易受环境影响。QTL qRGS5 是影响糙米籽粒大小且遗传稳定的主效 QTL,在糙米籽粒大小性状基因挖掘和高产优质稻分子育种中具有潜在的应用价值。  相似文献   

9.
水稻籽粒大小相关性状QTL定位   总被引:1,自引:0,他引:1  
【目的】水稻籽粒大小是影响产量和品质的数量性状,籽粒大小相关QTLs的定位是进一步克隆、功能研究以及分子育种的基础。【方法】用1个大粒水稻ZD05321和斯里兰卡的极小粒Suwandel为亲本,创建了1个246个单株的F2群体,用48个SSR标记对控制粒长、粒宽、千粒重和长宽比进行QTLs定位分析。【结果】F2群体粒长、粒宽、千粒重等性状呈现连续分布的数量性状遗传特点,多数植株的表型偏向大粒亲本。粒长、粒宽与千粒重都存在极显著的正相关;随着粒重的增加,粒长对粒重的作用逐渐变小。在第1、4、6、7、8和9号染色体上,共检测到15个与籽粒大小相关的QTL,单个性状QTL为3~5个,可分别解释1.02%~16.52%的相应性状变异。在第9染色体上检测到同时控制粒长、粒宽、千粒重和长宽比等4个性状的4个QTL,它们位于该染色体的RM3609~RM7586和RM6543~RM566区段上。【结论】大粒亲本ZD05321中可能存在控制籽粒大小的效应值较大的QTLs,第9染色体上存在同时控制多个粒形性状区域,为下一步精细定位这些新的粒形相关QTL奠定了基础。  相似文献   

10.
利用单片段代换系定位水稻粒形QTL   总被引:21,自引:4,他引:21  
 【目的】水稻谷粒形状(粒长、粒宽和长宽比)是衡量稻米外观品质的重要指标之一,为更好地开展粒形分子育种,对水稻粒形QTL进行分子定位。【方法】以单片段代换系(SSSL)为材料构建分离群体,利用微卫星标记对控制水稻谷粒长和谷粒宽的2个粒形QTL进行分子定位。【结果】粒宽QTL Gw-8被定位于第8染色体长臂末端微卫星标记RM502与RM447之间, 遗传距离均为0.3 cM。在此基础上构建了覆盖Gw-8的物理图谱,RM502与RM447位于同一克隆AP005529,两者之间的物理距离为55.0 kb。粒长QTL gl-3被定位于第3染色体着丝粒附近的微卫星标记RM6146和PSM377之间,遗传距离分别为1.5 cM和11.0 cM。【结论】利用单片段代换系能准确地定位水稻粒形QTL,这两个粒形QTL的定位为其克隆及稻米外观品质的分子育种奠定了基础。  相似文献   

11.
【目的】小麦穗发芽严重影响小麦产量和品质,是全球小麦生产面临的重大问题之一。通过鉴定挖掘抗穗发芽QTL,聚合穗发芽抗性位点,选育抗穗发芽小麦品种,为四川小麦穗发芽抗性改良提供技术和材料支撑。【方法】以川麦42/川农16重组自交系(RIL,F8)为材料,于2016—2018年分别在2个环境下对RIL群体进行籽粒发芽指数(GI,2016和2018)、籽粒发芽率(GR,2016和2018)和整穗发芽率(SGR,2017和2018)3个穗发芽指标测定。利用90K SNP芯片构建的遗传图谱检测全基因组穗发芽相关QTL,并分析抗性QTL聚合效应。【结果】双亲间GI、GR和SGR指标值差异显著,亲本川农16穗发芽抗性明显优于亲本川麦42。共检测到11个与穗发芽抗性有关的QTL,主要分布在2B、2D、3A、3D、4A、5A、5B和6B染色体上。5B染色体上检测到的单个环境表达的整穗发芽QTL解释的表型变异率最大,达到29%;在2D和3A染色体上检测到的整穗发芽主效QTL,以及5A染色体上检测到的与种子休眠相关的籽粒发芽主效QTL,在2个环境下均能表达,其抗穗发芽等位变异均来源于川农16。基因型分析发现,RIL群体中不同株系聚合抗性QTL的数量变幅为1—9个,表现为抗穗发芽的株系均携带4—9个与穗发芽相关的抗性QTL。重组自交系群体中6个株系GI、GR和SGR值均在15%以下,表现出高抗穗发芽特性;这6个优异株系聚合了多个与穗发芽相关的抗性QTL,且均聚合了川麦42在4A染色体上的微效QTL(QGi.saas-4AQGr.saas-4A),以及川农16在2D和5B染色体上的主效QTL(QSgr.saas-2DQSgr.saas-5B);编号为104和125的优异株系已通过审定,定名为川麦104和川麦64。其中,川麦104于2012年同时通过国家和四川省审定,其抗穗发芽能力强,产量、品质、抗病等优良性状突出,聚合了7个正向穗发芽QTL,包括2B、2D和5B染色体上来源于川农16的4个抗性QTL(QGi.saas-2BQGr.saas-2BQSgr.saas-2DQSgr.saas-5B),以及4A和6B染色体上来源于川麦42的3个QTL(QGi.saas-4AQGr.saas-4AQGr.saas-6B);近年来,川麦104已成为西南麦区小麦育种的核心亲本,育成小麦品种(系)18个。【结论】共检测到11个抗穗发芽QTL,其中3个来源于川麦42,8个来源于川农16;RIL群体中的抗穗发芽株系均携带4—9个抗性QTL,优异株系川麦104和川麦64高抗穗发芽,均聚合了7个穗发芽抗性QTL。  相似文献   

12.
【目的】周8425B是中国小麦重要骨干亲本之一,小偃81是李振声院士选育的高产、优质、多穗型品种。千粒重是影响小麦产量的重要因素,发掘周8425B和小偃81的千粒重及相关性状的QTL,并分析不同生态区小麦品种所含QTL的单倍型与千粒重的关系,发掘优异单倍型,为不同生态区提高小麦产量及分子辅助育种提供基因型参考。【方法】以周8425B×小偃81衍生的重组自交系群体(F8)为研究对象,分别于2015和2016年在陕西杨凌(早晚播)进行田间种植,收获后对籽粒相关性状进行测量。利用90K芯片标记构建的高密度遗传图谱对3个环境下的千粒重、籽粒长、籽粒宽和籽粒厚进行QTL定位。同时,针对稳定的主效QTL开发相应的KASP分子标记,并以479份国内外小麦种质组成的自然群体为材料进行分子检测,结合自然群体的千粒重等性状进行关联分析;此外,从479份小麦中挑选出106份含有660K芯片基因型数据的当前黄淮麦区推广的小麦品种,以主效QTL置信区间的差异SNP为基础,进行目标QTL定位区间的单倍型分析,从而判断黄淮麦区中陕西、河南和山东种质材料中的优势类群。【结果】QTL定位结果显示,3个环境下共在8条染色体上检测到22个QTL,表型变异解释率(PVE)范围为4.77%—19.95%,12个位点为主效QTL(PVE>10%),其中Qkgw.nwafu-6B可能为新QTL。4A、6A、6B、7D染色体上的QTL在多个环境中被检测到,其中,4A和7D染色体处QTL与已报道的相关位点位置相同或接近。6A染色体上的QTL区间包含已知千粒重基因TaGW2-6A,根据TaGW2-6A的分子功能标记检测结果,周8425B和小偃81同时含有TaGW2-6A,此外,基于单倍型分析结果,二者存在于不同的类群中,因此,该位点不同于TaGW2-6A,也可能为新的QTL。单倍型分析结果显示,Qkgw.nwafu-6A总共分为5种单倍型,在不同产区占比超过20%的为6A_h1,其在3个地点千粒重数据均高于其他单倍型;Qkgw.nwafu-6B总共分为8种单倍型,在不同产区占比超过20%的为6B_h6,在河南两点千粒重数据较高,推测含有这两类单倍型的材料为优势类群。此外,针对Qkgw.nwafu-6B开发出共分离的KASP标记,并在479份材料组成的自然群体显著性检测中证明该位点与千粒重表型显著相关。【结论】Qkgw.nwafu-6AQkgw.nwafu-6B可能为新的与千粒重相关的主效QTL位点,6A_h16B_h6为优势单倍型,开发了一个与Qkgw.nwafu-6B共分离的分子标记KASP_IWA349,可用于分子标记辅助育种。  相似文献   

13.
【目的】花生是重要的油料作物和经济作物,高产一直是花生育种的主要目标,决定产量的因素是单位面积的种子数和仁重。单位面积种子数是种植密度、每株荚数和每荚种子数的乘积。因此,对花生每荚果种子数相关性状进行QTL分析,有助于发掘该性状相关基因/位点,为花生产量相关性状分子育种提供重要的理论依据。【方法】以四粒红×冀农黑3号构建的RIL群体为研究材料,于2018年(E1)和2020年(E2)在河北省保定市河北农业大学清苑试验站(115°30′E,38°40′N)种植鉴定,收获时调查统计单仁果数、双仁果数以及多仁果数表型值,利用河北农业大学花生创新团队实验室构建的高密度遗传图谱,采用QTL Icimapping V4.2中的完备区间作图法对2个环境下的每荚种子数相关性状进行QTL定位与分析。【结果】单仁果率与双仁果率均呈正态分布,多仁果率呈偏正态分布。3个性状的QTL定位分析结果表明,共检测到11个QTL,可解释4.66%—22.34%的表型变异,加性效应为-9.35—9.42。其中,定位到5个多仁果率QTL,可解释3.19%—22.34%的表型变异,有1个QTL的加性效应为负值(-4.77),来自冀农黑3号,其余4个QTL的加性效应为正值(3.59—9.42),均来自母本四粒红;定位到2个单仁果率QTL,可解释4.97%—6.43%的表型变异,加性效应均为负值(-4.45和-4.54),均来自冀农黑3号;定位到4个双仁果率QTL,可解释3.46%—20.87%的表型变异,加性效应均为负值(-9.35—-3.84),均来自冀农黑3号。这些QTL中,6个为主效QTL,其中,qRMSPA05被重复检测到,且可遗传表型变异为16.58%—17.34%,加性效应为7.69—8.12。【结论】定位6个主效QTL和1个主效稳定的多仁果率QTL,有助于改良花生产量性状,可以作为遗传改良的重要候选区段,用于分子标记辅助选择与精细定位研究。  相似文献   

14.
[目的]进一步挖掘小麦穗长具有利用价值的数量遗传位点(QTL),同时深入探究穗长与其他重要农艺性状之间的遗传关系,为精细定位和分子辅助选择育种奠定基础.[方法]以20828为母本、SY95-71为父本,构建126份F7代重组自交系群体.将亲本及其重组自交系分别于2016-2017年和2017-2018年生长季种植在中国...  相似文献   

15.
【目的】谷子生育期及穗部性状是影响谷子品种适应性及产量的关键因素。通过对相关性状进行QTL定位分析,为探明谷子复杂产量性状的分子遗传机制奠定基础。【方法】以优良品种豫谷18和冀谷19为亲本构建的包含400个家系的RIL群体为试验材料,于2018—2019年分别在4个不同环境下调查谷子抽穗期、抽穗-成熟天数、全生育期及穗长、穗粗和单穗重等穗相关性状的表型值。同时,利用已构建的由1 304个bin标记组成的全长为2 196 cM,标记间平均距离为1.68 cM的高密度遗传连锁图谱。采用复合区间作图法(composite interval mapping,CIM)对生育期及穗部性状进行QTL定位分析,并对所获得的QTL置信区间进行候选基因的预测。【结果】重组自交系群体生育期及穗部性状在4个环境中均表现为连续分布且存在双向超亲分离现象,符合数量性状的遗传特征,适宜进行QTL分析。相关分析表明,谷子抽穗期与全生育期呈极显著正相关,与抽穗-成熟天数呈显著负相关,穗长与穗粗呈显著正相关。共检测到88个与谷子生育期及穗部性状相关的QTL,分布在第1、3、5、6、8和9染色体上。其中45个QTL与抽穗期相关,单个QTL能够解释表型变异的1.61%—27.60%;7个QTL与抽穗-成熟天数相关,单个QTL能够解释表型变异的2.65%—12.14%;20个QTL与全生育期相关,单个QTL能够解释表型变异的1.98%—16.97%;9个QTL与穗长相关,单个QTL能够解释表型变异的3.51%—11.65%;5个QTL与穗粗相关,单个QTL能够解释表型变异的3.74%—8.34%;2个QTL与单穗重相关,单个QTL能够解释表型变异的5.16%—5.20%。本研究共检测到12个主效QTL,其中,qEHD-9-1qEHD-9-2qHMD-9-2qGRP-9-2qPL-5-1在至少2个环境和BLUP值中被重复检测到。控制生育期的主效QTL(qEHD-9-1qHMD-9-1qGRP-9-1)与控制穗长的主效QTL(qPL-9-1)在第9染色体重叠;qEHD-9-2qHMD-9-3qGRP-9-2qPL-9-3也在第9染色体重叠;控制穗长的主效QTL(qPL-5-1)和控制穗粗的QTL(qPD-5-1)在第5染色体重叠。对3个QTL簇的置信区间进行基因注释,筛选出5个与生育期及穗部性状相关的候选基因,其中,2个候选基因在谷子生育期调控和穗部性状发育中均发挥重要作用。【结论】共检测到88个与谷子生育期及穗部性状相关的QTL,12个为主效QTL,其中5个主效QTL在多个环境被重复检测到,且成簇分布。基于基因注释,共筛选了5个与谷子生育期和穗部性状相关的候选基因。  相似文献   

16.
【目的】小麦单位面积穗数和籽粒粒长是小麦产量相关的重要农艺性状,对其进行遗传改良有利于提高小麦的产量。通过对前期QTL定位鉴定到的提高单位面积穗数的主效QTL位点QSn.sau-2D.2和提高籽粒粒长的主效QTL位点QKl.sau-3D.2开发相应的KASP分子标记,并在川农18和T1208构建的RILs群体中进行验证及评价,为更好地利用这两个QTL以及分子标记辅助育种奠定基础。【方法】利用前期在川农18和T1208构建的高代自交群体中鉴定到的控制小麦单位面积穗数主效QTL位点QSn.sau-2D.2和控制籽粒粒长主效QTL位点QKl.sau-3D.2,结合在这两个QTL区间内的55K SNP分子标记序列,开发设计KASP分子标记,并在亲本间筛选具有多态性的KASP分子标记。将筛选到的KASP分子标记在川农18×T1208的RILs群体中分别进行基因分型和鉴定相应表型性状的高低,并分析这两个主效QTL对于其他农艺性状的影响。【结果】KASP-AX-111151907KASP-AX-109962767在亲本中具有多态性,KASP-AX-111151907KASP-AX-109962767在群体中的验证表明这两个分子标记分别与QSn.sau-2D.2QKl.sau-3D.2连锁。KASP-AX-111151907KASP-AX-10996276能将群体材料的基因型分为2类,按照表型划分,在3年试验中,KASP-AX-111151907对多穗材料的平均选择率均达到72.58%,对少穗材料的平均选择率达到71.68%;KASP-AX-10996276对长粒材料的平均选择率达到69.86%,对短粒基因型的平均选择率可达61.52%,表明这两个标记的可靠性。基于KASP分子标记的基因分型结果表明,这两个QTL对于株高、千粒重、粒长、粒宽、粒径比、单位面积穗数、穗粒重均具有显著性影响。在川农17×川农11的RILs群体中进行验证也表明这两个分子标记对相应性状的选择具有一定的作用。【结论】针对单位面积穗数主效QTL位点QSn.sau-2D.2和籽粒粒长主效QTL位点QKl.sau-3D.2分别开发了1对与之连锁的KASP分子标记,可用于相应性状的选择,与KASP标记连锁的QTL分别能显著提高单位面积穗数和籽粒粒长。QSn.sau-2D.2对株高、千粒重、粒长、粒宽、粒径比、穗粒重是负向影响,QKl.sau-3D.2对株高、千粒重、粒宽、粒径比和穗粒重是正向影响,但对单位面积穗数是负向影响,这两个QTL及开发的KASP标记可应用于小麦高产育种中。  相似文献   

17.
【目的】功能性保绿通常被认为是包括玉米在内的主要作物品种的理想性状。挖掘新的控制玉米保绿相关位点和候选基因,为玉米保绿遗传研究提供理论基础。【方法】以150份由许178和K12组配的重组自交系(recombinant inbred lines,RIL)群体为材料,通过Windows QTL Cartographer V2.5的复合区间作图法(composite interval mapping,CIM)对3个保绿相关性状(保绿度(visual stay green,VSG)、吐丝期绿叶数(green leaf number at silking stage,GLNS)和成熟期绿叶数(green leaf number at mature stage,GLNM))进行QTL定位。同时,以139份自然材料组成的关联群体为材料,基于混合线性模型(mixed linear model,MLM),结合50 790个高质量SNP标记,对这3个性状进行全基因组关联分析(genome-wide association study,GWAS)。【结果】基于CIM,利用单环境下的表型值和最佳线性无偏估计值(best linear unbiased prediction,BLUP)对GLNM、GLNS和VSG进行定位,共检测到37个QTL,分布在除第10染色体以外的其他染色体上,LOD范围为2.58—11.36,表型贡献率为4.34%—22.40%。GLNM、GLNS和VSG性状分别检测到14、12和11个位点。其中,4个遗传稳定的QTL(qGLNS2-1qVSG1-1qVSG1-2qVSG7-1),在3个及以上不同单环境中同时被检测到。利用MLM对保绿相关性状进行全基因组关联分析,共检测到44个超过阈值线的显著SNP,根据SNP标记在B73参考基因组的物理位置,发现共有15个位点落在连锁分析定位到的QTL区间内。【结论】通过QTL定位和全基因组关联分析共同检测到4个遗传稳定的共定位遗传区段(对应的B73参考基因组V4版物理位置区间为第1染色体6.2—8.2 Mb、第2染色体209.1—221.4 Mb、第6染色体96.8—102.1 Mb、第7染色体4.9—11.4 Mb),并挖掘到4个与光合作用和抗逆相关的候选基因(Zm00001d006119Zm00001d018975Zm00001d006535Zm00001d036763)。  相似文献   

18.
水稻第6染色体短臂产量性状QTL簇的分解   总被引:1,自引:0,他引:1  
【目的】将水稻第6染色体短臂上产量性状QTL分解到更小的区间中。【方法】从珍汕97B/密阳46重组自交系群体筛选到针对第6染色体短臂RM587-RM19784区间的剩余杂合体,衍生了一个由221个株系组成的F2:3群体,种植于海南和浙江两地,考察每株穗数、每穗实粒数、每穗总粒数、千粒重、结实率和单株产量,建立SSR标记连锁图,应用Windows QTL Cartographer 2.5检测QTL。【结果】在所分析的6个性状中,除穗数外在第6染色体短臂上的目标区间均检测到QTL,分别座落于目标区域中3个以上的不同区间中,单个QTL对群体性状表型变异的贡献率为6.3%~35.2%;控制产量构成因子的QTL基本以加性作用为主,但3个单株产量QTL的显性度分别为1.65、0.84和0.42。【结论】目标区间存在3个以上的产量性状QTL,且同一区间控制不同性状的QTL、不同区间控制同一个性状的QTL在遗传作用模式、效应方向和效应大小上存在一定差异。  相似文献   

19.
大豆异黄酮与脂肪、蛋白质含量基因定位分析   总被引:8,自引:2,他引:6  
 【目的】研究大豆异黄酮与脂肪、蛋白质含量基因定位及相关性,为大豆品质改良、分子育种及基因克隆等应用提供理论依据。【方法】利用SSR技术,对晋豆23号和灰布支杂交构建的F13代大豆重组自交系群体的474个家系进行了连锁图谱的构建。在此基础上,利用 WinQTLCart2.0 软件分析了影响大豆异黄酮含量、脂肪含量和蛋白质含量3个重要品质性状的QTL,通过复合区间作图分析,检测QTL;同时,对异黄酮与脂肪、蛋白质的含量相关性分析。【结果】检测到23个QTL,其中控制异黄酮含量QTL有6个,分别定位在J、N、D2和G染色体的连锁群上;控制脂肪含量的QTL有11个,分别定位在第A1、A2、B2、C2和D2染色体的连锁群上;控制蛋白质含量的QTL有6个,分别定位在B2、C2、G和H1染色体的连锁群上。相关性分析结果表明:异黄酮与蛋白质含量呈极显著负相关;蛋白质和脂肪含量呈极显著负相关;蛋白质和蛋白质脂肪总量呈极显著正相关。【结论】3个重要品质性状的部分基因定位结果与其相关性分析是一致的,其结果对大豆品质育种应用有重要利用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号