首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 468 毫秒
1.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

2.
为实现果实拾捡机器人在光照不均、菠萝与周围环境的颜色相似性及果实间的遮挡和重叠等田间复杂环境下对单类别菠萝的快速准确识别,提出采用深度学习下的深层残差网络改进YOLOv3卷积神经网络结构,通过单个卷积神经网络遍历整个图像,回归果实的位置,将改进的YOLOv3的3个尺度检测分别融合相同尺度模块特征层的信息,在保证识别准确率的情况下,采用多尺度融合训练网络实现田间复杂环境下端对端的单类别菠萝果实检测。最后,对改进的算法进行性能评价与对比试验,结果表明,该算法的检测识别率达到95%左右,较原始方法检测性能提升的同时,检测速度满足实时性要求,该研究为拾捡果实机器人在复杂环境下提高识别菠萝果实的工作效率和环境适应性提供理论基础。  相似文献   

3.
刘志军 《南方农机》2023,(23):68-73
【目的】解决麦穗检测中麦穗之间相互遮挡、麦穗在图像中难以检测和不同环境造成目标模糊等情况导致麦穗检测精度低的问题。【方法】笔者提出一种基于改进YOLOv5s的算法,通过将数据集同时进行离线增强和在线增强,再将YOLOv5s的骨干网络进行改进,增添具有注意力机制的transformer模块,强化主干网络的全局特征信息提取能力,neck结构由原来的PAFPN改为具有双向加强融合的BiFPN特征融合网络,进行多尺度的特征融合。最后,在head部分使用EIoU-NMS来替代NMS,提高对遮挡麦穗的识别度。【结果】相比于其他改进单一结构的YOLOv5s模型,此综合性改进模型具有更好的检测效果,使mAP@0.5:0.95提高了1.4%,改进的算法比原始YOLOv5s算法的mAP@0.5提高了1.8%。【结论】使用离线增强和在线增强的方式可以使模型的精度有所提升;该模型的改进有效增强了麦穗识别过程中特征融合的效率,提高了麦穗检测的效果,能够为后续相关模型的改进升级提供参考。  相似文献   

4.
为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。  相似文献   

5.
[目的/意义]针对小麦叶片病虫害在自然环境下形态和颜色特征较为复杂、区分度较低等特点,提出一种高质量高效的病虫害检测模型,即YOLOv8-SS (You Only Look Once Version 8-SS),为病虫害的预防与科学化治理提供准确的依据。[方法]基于YOLOv8算法,采用改进的轻量级卷积神经网络ShuffleNet V2作为主干网络提取图像特征即YOLOv8-S,在保持检测精度的同时,减少模型的参数数量和计算负载;在此基础上增加小目标检测层和注意力机制SEnet (Squeeze and Excitation Network),对YOLOv8-S进行改进,在不降低检测速度和不损失模型轻量化程度的情况下提高检测精度,提出YOLOv8-SS小麦叶片病虫害检测模型。[结果与讨论]YOLOv8-SS模型在实验数据集上的平均识别精度和检测准确率分别达89.41%和91.00%,对比原模型分别提高10.11%和7.42%。因此,本研究所提出的方法可显著提高农作物病虫害的检测鲁棒性,并增强模型对小目标图像特征的提取能力,从而高效准确地进行病虫害的检测和识别。[结论]本研究使用的方法具...  相似文献   

6.
疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚架梨园花序识别算法Ghost-YOLOv5s-BiFPN。通过对田间采集的梨树花苞与花朵图像进行标注与数据扩充后送入算法进行训练得到检测模型。Ghost-YOLOv5s-BiFPN运用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始的路径聚合网络(Path Aggregation Network,PAN)结构,对网络提取的不同尺寸目标特征进行有效的融合。同时运用Ghost模块替换传统卷积,在不降低准确度的同时减少模型参数量和提升设备运行效率。田间试验结果表明,改进的Ghost-YOLOv5s-BiFPN算法对梨树花序中花苞与花朵的检测精度分别为93.2%和89.4%,两种目标平均精度为91.3%,检测单张图像时间为29 ms,模型大小为7.62 M。相比于原始YOLOv5s算法,检测精度与召回度分别提升了4.2%和2.7%,检测时间和模型参数量分别降低了9 ms和46.6%。本研究提出的算法可对梨树花苞与花朵进行精确的识别和分类,为后续梨园智能化疏花的实现提供技术支持。  相似文献   

7.
果实识别是视觉检测技术重要的环节,其识别精度易受复杂的生长环境及果实状态的影响。以大棚环境下单个、一簇、光照、阴影、遮挡、重叠6种复杂生长状态下的番茄果实为对象,提出一种基于改进YOLOv4网络模型与迁移学习相结合的番茄果实识别方法。首先利用ImageNet数据集与VGG网络模型前端16卷积层进行模型参数预训练,将训练的模型参数初始化改进模型的权值以代替原始的初始化操作,然后使用番茄数据集在VGG19的卷积层与YOLOV4的主干网络相结合的新模型中进行训练,获得最优权重实现对复杂环境下的番茄果实进行检测。最后,将改进模型与Faster RCNN、YOLOv4-Tiny、YOLOv4网络模型进行比较。研究结果表明,改进模型在6种复杂环境下番茄果实平均检测精度值mAP达到89.07%、92.82%、92.48%、93.39%、93.20%、93.11%,在成熟、半成熟、未成熟3种不同成熟度下的F1分数值为84%、77%、85%,其识别精度优于比较模型。本文方法实现了在6种复杂环境下有效地番茄果实检测识别,为番茄果实的智能采摘提供理论基础。  相似文献   

8.
【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑橘种植园中多场景拍摄的5 926张图片作为训练集、738张图片作为验证集、608张图片作为测试集,采用DeepSort算法结合改进YOLOv5算法的方式,通过在主干部分加入SE注意力机制以实现对算法的改进,从而提高对柑橘果实的识别效果;在柑橘果实计数部分,主要采用DeepSort算法给予每个柑橘果实单独的ID编号以实现对柑橘果实的计数。【结果】改进后的YOLOv5算法对柑橘果实的平均识别准确率为93.712%,相比改进前的CenterNet算法、EfficientDet算法、SSD算法、YOLOv4算法、YOLOX算法,平均识别准确率提升了1.354个百分点,并且精确度和召回率也有一定的提升,结合DeepSort算法后对柑橘果实的平均多目标跟踪准确率为88.465%,可较准确地实现对柑橘果实的计数。【结论】DeepSort算法具有提升目标被环境等其他因素遮挡情况下的计数效...  相似文献   

9.
黄明辉  程忠 《南方农机》2023,(16):135-138
【目的】在算力资源有限的嵌入式设备上对目标苹果进行快速、准确的识别与定位。【方法】研究小组对采摘机器人的目标识别与定位方法进行研究,以YOLOv4网络模型为基础,对YOLOv4进行轻量化改进,使用MobileNet V3作为特征提取的主干网络,减少模型的计算量,并结合ZED双目相机与定位算法在嵌入式平台上进行实验。【结果】实验表明:1)在目标识别方面,改进后模型的平均检测精度为87.32%,模型的大小为53.76 MB,较改进前降低了79%。2)采用ZED相机结合测距算法进行了苹果目标定位实验,ZED双目相机的测距误差可控制在0.02 m以内,同时改进的YOLOv4算法的平均检测速度在15FPS左右。【结论】改进后的YOLOv4网络模型更适合部署在算力有限的嵌入式设备中进行苹果采摘任务,且能够满足苹果采摘任务的实时性要求。因此,该方法可以为苹果采摘机器人的识别与定位提供技术参考。  相似文献   

10.
作物病害的初期快速准确识别是减小作物经济损失的重要保障。针对实际生产环境中,作物叶片黄化曲叶病毒病(Yellow leaf curl virus,YLCV)患病初期无法应用传统图像处理算法通过颜色或纹理特征进行准确和快速识别,并且YOLO v5s通用模型在复杂环境下识别效果差和效率低的问题,本文提出一种集成改进的叶片病害检测识别方法。该方法通过对Plant Village公开数据集中单一患病叶片图像以及实际生产中手机拍摄获取的患病作物冠层图像两种来源制作数据集,并对图像中的患病叶片进行手动标注等操作,以实现在复杂地物背景和叶片遮挡等情况下正确识别目标,即在健康叶片、患病叶片、枯萎叶片、杂草和土壤中准确识别出所有的患病叶片。此外,用智能手机在生产现场拍摄图像,会存在手机分辨率、光线、拍摄角度等多种因素,会导致识别正确率降低等问题,需要对采集到的图像进行预处理和数据增强以提高模型识别率,通过对YOLO v5s原始模型骨干网络重复多次增加CA注意力机制模块(Coordinate attention),增强YOLO算法对关键信息的提取能力,利用加权双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN),增强模型不同特征层的融合能力,从而提高模型的泛化能力,替换损失函数EIoU(Efficient IoU loss),进一步优化算法模型,实现多方法叠加优化后系统对目标识别性能的综合提升。在相同试验条件下,对比YOLO v5原模型、YOLO v8、Faster R-CNN、SSD等模型,本方法的精确率P、召回率R、平均识别准确率mAP0.5、mAP0.5:0.95分别达到97.40%、94.20%、97.20%、79.10%,本文所提出的算法在提高了精确率与平均精度的同时,保持了较高的运算速度,满足对作物黄化曲叶病毒病检测的准确性与时效性的要求,并为移动端智能识别作物叶片病害提供了理论基础。  相似文献   

11.
针对现有花椒簇检测算法模型参数量多、计算量大、检测速度低、很难部署到嵌入式设备的问题,提出一种基于轻量化YOLOv5s的花椒簇检测算法模型。首先将ShuffleNet v2主干网络替代原YOLOv5s中的主干网络进行重构;同时将SPPF嵌入至ShuffleNet v2骨干中;其次引入轻量级注意力机制CBAM;最后使用SIoU_Loss代替CIoU_Loss作为回归损失函数。试验结果表明:改进后的轻量化YOLOv5s网络参数降低85.6%,计算量降低87.7%,对花椒簇的检测精度mAP@0.5达到92.6%,较原YOLOv5s模型提高3.4%,mAP@0.5:0.95达到61.4%,检测时间为11 ms,相比原模型16 ms缩短31.3%,可以满足在现场环境下对花椒簇的检测。  相似文献   

12.
果树测产是果园管理的重要环节之一,为提升苹果果园原位测产的准确性,本研究提出一种包含改进型YOLOv5果实检测算法与产量拟合网络的产量测定方法。利用无人机及树莓派摄像头采集摘袋后不同着色时间的苹果果园原位图像,形成样本数据集;通过更换深度可分离卷积和添加注意力机制模块对YOLOv5算法进行改进,解决网络中存在的特征提取时无注意力偏好问题和参数冗余问题,从而提升检测准确度,降低网络参数带来的计算负担;将图片作为输入得到估测果实数量以及边界框面总积。以上述检测结果作为输入、实际产量作为输出,训练产量拟合网络,得到最终测产模型。测产试验结果表明,改进型YOLOv5果实检测算法可以在提高轻量化程度的同时提升识别准确率,与改进前相比,检测速度最大可提升15.37%,平均mAP最高达到96.79%;在不同数据集下的测试结果表明,光照条件、着色时间以及背景有无白布均对算法准确率有一定影响;产量拟合网络可以较好地预测出果树产量,在训练集和测试集的决定系数R2分别为0.7967和0.7982,均方根误差RMSE分别为1.5317和1.4021 ㎏,不同产量样本的预测精度基本稳定;果树测产模型在背景有白布和无白布的条件下,相对误差范围分别在7%以内和13%以内。本研究提出的基于轻量化改进YOLOv5的果树产量测定方法具有良好的精度和有效性,基本可以满足自然环境下树上苹果的测产要求,为现代果园环境下的智能农业装备提供技术参考。  相似文献   

13.
基于改进YOLOX的自然环境中火龙果检测方法   总被引:1,自引:0,他引:1  
自然环境下果实的精准检测是火龙果采摘机器人执行采摘作业的先决条件。为提高自然环境下果实识别的精确性、鲁棒性和检测效率,本研究对YOLOX(You Only Look Once X)网络进行改进,提出了一种含有注意力模块的目标检测方法。为便于在嵌入式设备上部署,本方法以YOLOX-Nano网络为基准,将卷积注意力模块(Convolutional Block Attention Module,CBAM)添加到YOLOX-Nano的主干特征提取网络中,通过为主干网络提取到不同尺度的特征层分配权重系数来学习不同通道间特征的相关性,加强网络深层信息的传递,降低自然环境背景下对火龙果识别的干扰。对该方法进行性能评估和对比试验,经过训练后,该火龙果目标检测网络在测试集的AP0.5值为98.9%,AP0.5:0.95的值为72.4%。在相同试验条件下对比其它YOLO网络模型,该方法平均检测精度分别超越YOLOv3、YOLOv4-Tiny和YOLOv5-S模型26.2%、9.8%和7.9%。最后对不同分辨率的火龙果果园自然环境下采集的视频进行实时测试。试验结果表明,本研究提出的改进YOLOX-Nano目标检测方法,每帧平均检测时间为21.72 ms,F1值为0.99,模型大小仅3.76 MB,检测速度、检测精度和模型大小满足自然环境下火龙果采摘的技术要求。  相似文献   

14.
随着智慧农业技术和大田种植技术的不断发展,自动除草具有广阔的市场前景。关于除草剂自动喷洒的有效性,农田杂草的精准、快速地识别和定位是关键技术之一。基于此提出一种改进的YOLOv5算法实现农田杂草检测,该方法通过改进数据增强方式,提高模型泛化性;通过添加注意力机制,增强主干网络的特征提取能力;通过改进框回归损失函数,提升预测框的准确率。试验表明,在芝麻作物和多种杂草的复杂环境下,本文方法的检测平均精度均值mAP为90.6%,杂草的检测平均精度AP为90.2%,比YOLOv5s模型分别提高4.7%和2%。在本文试验环境下,单张图像检测时间为2.8 ms,可实现实时检测。该研究内容可以为农田智能除草设备提供参考。  相似文献   

15.
针对现有检测算法难以检测自然场景下小而密集的柑橘问题,提出一种DS-YOLO(Deformable Convolution SimAM YOLO)密集柑橘检测算法。引入可形变卷积网络(Deformable Convolution)代替原YOLOv4中的特征提取网络部分卷积层,使特征提取网络能自适应提取遮挡、重叠等导致柑橘形状信息缺失的位置特征,在特征融合模块中,增加新的检测尺度并融合SimAM注意力机制,增强模型对于小而密集柑橘特征的提取能力。试验结果表明:DS-YOLO算法相较于原YOLOv4准确率提高8.75%,召回率提高7.9%,F1分数提高5%,能够较准确检测自然环境下的密集柑橘目标,为密集水果产量预测和采摘机器人提供了有效的技术支持。  相似文献   

16.
基于改进YOLOv3网络模型的茶草位置检测算法   总被引:1,自引:0,他引:1  
精准高效的茶草识别是智能茶园植保机械进行除草工作的关键。针对目前茶园除草智能化程度较低等问题,提出改进YOLOv3网络模型的茶草检测算法。首先,分季节和时间段,在多个茶叶品种的种植园中以自适应的距离和角度采集茶草混合图像并建立试验数据集。接着,使用K均值聚类算法重新设计先验锚框尺度。然后,以YOLOv3网络模型为基础,选取17×17的网格划分图像区域;采用残差网络(ResNet)作为主干网;加入过程提取层,增强草株检测性能。最后在原损失函数中引入广义交并比损失。通过消融试验和不同目标检测算法对比试验验证此改进算法对茶树与杂草的检测效果。试验结果表明,改进 YOLOv3网络模型对杂草的检测精确率和召回率分别为85.34%和91.38%,对茶树的检测精确率和召回率最高达到82.56%和90.12%;与原YOLOv3网络模型相比,检测精确率提高8.05%,并且每秒传输帧数达到52.83 Hz,是Faster R-CNN网络模型的16倍。这些数据说明所提算法在茶园复杂环境下,不仅对于茶树和杂草具有更好的识别效果,而且满足实时检测的要求,可以为智能茶园植保机械提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号