首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
水分含量对秸秆还田土壤碳矿化和微生物特性的影响   总被引:6,自引:0,他引:6  
An 80-d incubation experiment was conducted to investigate straw decomposition,the priming effect and microbial characteristics in a non-fertilized soil(soil 1) and a long-term organic manure-fertilized soil(soil 2) with and without13 C-labeled maize straw amendment under different moisture levels. The soil 2 showed a markedly higher priming effect,microbial biomass C(Cmic),and β-glucosidase activity,and more abundant populations of bacteria and fungi than the soil 1. Also,soil CO2 emission,Cmic,β-glucosidase activity,and bacterial and fungal population sizes were substantially enhanced by straw amendment. In the presence of straw,the amount of straw mineralization and assimilation by microbes in the soil at 55% of water holding capacity(WHC) were significantly higher by 31% and 17%,respectively,compared to those at 25% of WHC. In contrast,β-glucosidase activity and fungal population size were both enhanced as the moisture content decreased. Cmicdecreased as straw availability decreased,which was mainly attributed to the reduction of straw-derived Cmic. Amended soils,except the amended soil 2 at 25% of WHC,had a more abundant fungal population as straw availability decreased,indicating that fungal decomposability of added straw was independent of straw availability. Non-metric multidimensional scaling analysis based on fungal denatured gradient gel electrophoresis band patterns showed that shifts in the fungal community structure occurred as water and straw availability varied. The results indirectly suggest that soil fungi are able to adjust their degradation activity to water and straw availability by regulating their community structure.  相似文献   

2.
Amino sugars, as a microbial residue biomarker, are highly involved in microbial-mediated soil organic matter formation. However, accumulation of microbial biomass and responses of bacterial and fungal residues to the management practices are different and poorly characterized in rice soils. The objectives of this study were to evaluate the effects of mineral fertiliser (MIN), farmyard manure (FYM) and groundnut oil cake (GOC) on crop yield and co-accumulation of microbial residues and microbial biomass under rice-monoculture (RRR) and rice–legume–rice (RLR) systems. In the organic fertiliser treatments and RLR, rice grain yield and stocks of soil and microbial nutrients were significantly higher than those of the MIN treatment and RRR, respectively. The increased presence of saprotrophic fungi in the organic fertiliser treatments and RRR was indicated by significantly increased ergosterol/Cmic ratio and extractable sulphur. In both crop rotation systems, the long-term application of FYM and GOC led to increased bacterial residues as indicated by greater accumulation of muramic acid. In contrast, the higher fungal C/bacterial C ratio and lower ergosterol/Cmic ratio in the MIN treatment, is likely caused by a shift within the fungal community structure towards ergosterol-free arbuscular mycorrhizal fungi (AMF). The organic fertiliser treatments contributed 22 % more microbial residual C to soil organic C compared to the MIN treatment. Our results suggest that the negative relationship between the ratios ergosterol/Cmic and fungal C/bacterial C encourages studying responses of both saprotrophic fungi and AMF when assessing management effects on the soil microbial community.  相似文献   

3.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

4.
In 11 rain‐fed arable soils of the Potohar plateau, Pakistan, the amounts of microbial‐biomass C (Cmic), biomass N (Nmic), and biomass P (Pmic) were analyzed in relation to the element‐specific total storage compartment, i.e., soil Corg, Nt, and Pt. The effects of climatic conditions and soil physico‐chemical properties on these relationships were highlighted with special respect to crop yield levels. Average contents of soil Corg, Nt, and Pt were 3.9, 0.32, and 0.61 mg (g soil)–1, respectively. Less than 1% of Pt was extractable with 0.5 M NaHCO3. Mean contents of Cmic, Nmic, and Pmic were 118.4, 12.0, and 3.9 µg (g soil)–1. Values of Cmic, Nmic, Pmic, soil Corg, and Nt were all highly significantly interrelated. The mean crop yield level was closely connected with all soil organic matter– and microbial biomass–related properties, but showed also some influence by the amount of precipitation from September to June. Also the fraction of NaHCO3‐extractable P was closely related to soil organic matter, soil microbial biomass, and crop yield level. This reveals the overwhelming importance of biological processes for P turnover in alkaline soils.  相似文献   

5.
ABSTRACT

Management of grassland may affect the dynamics of soil organic carbon (SOC). Objectives were to analyze the effect of different harvesting frequencies and nitrogen fertilization regimes on SOC and total N stocks in a field trial on a sandy loam to loamy sand soil of a grassland site near Kiel (Germany). Additionally, effects on microbial biomass C (Cmic) and ergosterol (as proxy for fungi) contents, water-stable aggregate size-classes and density fractions were studied. In the surface soil (0–10 cm), SOC and total N stocks, amounts of large water-stable macroaggregates (> 2000 µm) and contents of Cmic and ergosterol were significantly higher under a five cut regime. Cmic (rSpearman = 0.61) and ergosterol contents (rSpearman = 0.67) were correlated with amounts of large water-stable macroaggregates suggesting that fungi and microbial biomass play an important role in binding of small macroaggregates into large macroaggregates. The free light fraction of SOM showed significantly higher C concentrations under three cut compared to five cut at 30–60 cm, presumably related to the C/N ratio and the decomposability of root litter. This study indicates the importance of cutting frequency on SOC and total N stocks, amounts of large macroaggregates and contents of Cmic and ergosterol.  相似文献   

6.
The response of microbial biomass carbon (Cmic), nitrogen (Nmic), basal respiration, and the metabolic quotient to 3 years of a natural succession fallow were studied in a field experiment on sandy soil in Northeast Saxony/Germany from 1996 to 1998. Soil samples were taken from Eutric Cambisol and Mollic Cambisol every six weeks during the vegetation period at soil depths of 0—10 and 10—30 cm. The Cmic content in the topsoils increased with time of succession in both soil types. This trend was more distinct in the Mollic Cambisol (70.7 μg g—1 in June 1996 to 270.9 μg g—1 in October 1998 at 0—10 cm) than in the Eutric Cambisol (69.7 μg g—1 in June 1996 to 175.0 μg g—1 in October 1998 at 0—10 cm). By contrast, the Nmic content slightly decreased in the Eutric Cambisol from 18.9 μg g—1 to 17.7 μg g—1 during the same time period. In the Mollic Cambisol, the Nmic increased from 18.8 μg g—1 in spring 1996 to 35.5 μg g—1 in fall 1998, however to a lower extent than the Cmic. Subsequently, the (C:N)mic ratio increased from 4.3 to 5.8 at soil depth of 0—10 cm and from 3.5 to 6.5 at 10—30 cm during the 3‐year‐study at the Eutric Cambisol. In the Mollic Cambisol, the enhancement of (C:N)mic ratio was more pronounced (i.e. from 4.3 to 6.7 at 0—10 cm and from 3.5 to 7.2 at 10—30 cm). Most likely this results from a shift in microbial populations towards a dominance of soil fungi. The already low basal respiration of, on average, 0.26 mg CO2 g—1 (24h)—1 (0—10 cm) in June 1996 decreased with time of succession fallow to 0.15 and 0.22 mg CO2 g—1 (24h)—1 in October 1998 in the Eutric and the Mollic Cambisol, respectively. Thus, the metabolic quotient as an indicator for the efficiency of organic matter turnover in soil was very low in both soils. During the summer months, the metabolic quotients reached minimum levels of ≤ 0.1 μg CO2 C (g Cmic)—1 h—1, probably because of low soil moisture contents. Correlation analyses revealed close relationships between Nmic and total N, Nmic and water content, and Nmic and pH values. These relationships became even more pronounced with the time period of natural succession. For the samples from fall 1998, highly significant correlations were determined between Nmic and total N (coefficients were rs = 0.91***), Nmic and water content (rs = 0.91***), and Nmic and pH value (rs = 0.76***). The values for all biological parameters studied were larger in the Mollic than in the Eutric Cambisol. This indicates higher turnover rates of different C and N fractions in the Mollic Cambisol. In general, set aside of formerly agricultural managed sandy soils resulted in greater Cmic : Nmic ratios and thus, in a change in the microbiological community structure as well as in reduced C and N turnover rates (i.e. low metabolic quotient) under the climatic conditions of the East German lowlands.  相似文献   

7.
Interactions between microbial communities and organic matter were analyzed for soils from the project regions ’︁Ecosystem Research in the Agricultural Landscape/FAM, Munich’ in southern Germany and ’︁Ecosystem Research in the Bornhöved Lake district’ from northern Germany using ratios between microbial biomass content (Cmic), microbial metabolic quotient (qCO2) and organic carbon content (Corg). In the agricultural soils in southern Germany, the qCO2/Corg ratio differed significantly with respect to agricultural management in contrast to ecophysiological Cmic/Corg ratio. In addition, Cmic/Corg ratio decreased from 39 to 21 mg Cmic g—1 Corg and qCO2/Corg ratio increased from 72 to 180 mg CO2‐C g—1 Cmic h—1 (g Corg g—1 soil)—1 with increasing soil depth. For the upper soil horizons from the landscape in northern Germany the two quotients differed significantly with reference to land use showing highest microbial colonization under grassland and lowest under beech forest. In contrast, C use efficiency was lowest in arable field under maize monoculture and highest in a wet grassland having a high organic C content.  相似文献   

8.
In two layers of the humus horizons in soddy-podzolic soils of different biogeocenoses (Kostroma oblast) representing a succession series, the carbon content in the microbial biomass (Cmic) was determined using the method of substrate-induced respiration and the rate of microbial CO2 production (basal respiration, BR). The Cmic content was from 110 to 755 μg/g soil, and the BR was from 0.40 to 2.52 μg CO2-C/g/h. A gradual increase in the Cmic content and BR was found in the following sequence: cropland—fallow (7-year-old)—young (20- and 45-year-old) forests—secondary and native (primary) forests (90- and 450-year-old, respectively). In the litter, the Cmic content was higher in the 45-year-old forest than in the secondary and native forests: 10423, 6459, and 4258 μg C/g of substrate, respectively. The portion of Cmic in the soil organic carbon content in the upper layer of the soils studied varied from 1.3 to 5.4%; its highest value was in the soils under the secondary and native forests. The pool of microbial biomass carbon and the microbial CO2 production in the upper 25-cm layer of the soils were calculated.  相似文献   

9.
 Fungal and bacterial biomass were determined across a gradient from a forest to grassland in a sub-alpine region in central Taiwan. The respiration-inhibition and ergosterol methods for the evaluation of the microbial biomass were compared. Soil fungal and bacterial biomass both significantly decreased (P<0.05) with the shift of vegetation from forest to grassland. Fungal and bacterial respiration rates (evolved CO2) were, respectively, 89.1 μl CO2 g–1 soil h–1 and 55.1 μl CO2 g–1 soil h–1 in the forest and 36.7 μl CO2 g–1 soil h–1 and 35.7 μl CO2 g–1 soil h–1 in the grassland surface soils (0–10 cm). The fungal ergosterol content in the surface soil decreased from the forest zone (108 μg g–1) to the grassland zone (15.9 μg g–1). A good correlation (R 2=0.90) was exhibited between the soil fungal ergosterol content and soil fungal CO2 production (respiration) for all sampling sites. For the forest and grassland soil profiles, microbial biomass (respiration and ergosterol) declined dramatically with depth, ten- to 100-fold from the surface organic horizon to the deepest mineral horizon. With respect to fungal to bacterial ratios for the surface soil (0–10 cm), the forest zone had a significantly (P<0.05) higher ratio (1.65) than the grassland zone (1.05). However, there was no fungal to bacterial ratio trend from the surface horizon to the deeper mineral horizons of the soil profiles. Received: 30 March 2000  相似文献   

10.
Understanding carbon dynamics in soil is the key to managing soil organic matter. Our objective was to quantify the carbon dynamics in microcosm experiments with soils from long-term rye and maize monocultures using natural 13C abundance. Microcosms with undisturbed soil columns from the surface soil (0-25 cm) and subsoil (25-50 cm) of plots cultivated with rye (C3-plant) since 1878 and maize (C4-plant) since 1961 with and without NPK fertilization from the long-term experiment ‘Ewiger Roggen’ in Halle, Germany, were incubated for 230 days at 8 °C and irrigated with 2 mm 10−2 M CaCl2 per day. Younger, C4-derived and older, C3-derived percentages of soil organic carbon (SOC), dissolved organic carbon (DOC), microbial biomass (Cmic) and CO2 from heterothropic respiration were determined by natural 13C abundance. The percentage of maize-derived carbon was highest in CO2 (42-79%), followed by Cmic (23-46%), DOC (5-30%) and SOC (5-14%) in the surface soils and subsoils of the maize plots. The percentage of maize-derived C was higher for the NPK plot than for the unfertilized plot and higher for the surface soils than for the subsoils. Specific production rates of DOC, CO2-C and Cmic from the maize-derived SOC were 0.06-0.08% for DOC, 1.6-2.6% for CO2-C and 1.9-2.7% for Cmic, respectively, and specific production rates from rye-derived SOC of the continuous maize plot were 0.03-0.05% for DOC, 0.1-0.2% for CO2-C and 0.3-0.5% for Cmic. NPK fertilization did not affect the specific production rates. Strong correlations were found between C4-derived Cmic and C4-derived SOC, DOC and CO2-C (r≥0.90), whereas the relationship between C3-derived Cmic and C3-derived SOC, DOC and CO2-C was not as pronounced (r≤0.67). The results stress the different importance of former (older than 40 years) and recent (younger than 40 years) litter C inputs for the formation of different C pools in the soil.  相似文献   

11.
Soil samples from the upper 10-cm-thick layer of the humus horizon (without forest litter) were taken in Podol’sk and Serpukhov districts (1130 and 1080 km2, respectively) of Moscow oblast. At each sampling site, ecosystem (forest, plowland, or fallow), soil (soddy-podzolic, soddy-gley, bog-podzolic, meadow alluvial, gray forest, and anthropogenically transformed soils of lawns and industrial zones), predominant vegetation, and topography (floodplain and low, medium, and upper parts of watersheds) were determined. The carbon content of the microbial biomass (Cmic) was determined by the method of substrate-induced respiration; we also determined the rate of basal (microbial) respiration (BR) and the organic carbon content, pH, and particle-size distribution. Overall, 237 samples from Serpukhov district and 45 samples from Podol’sk district were analyzed. The BR/Cmic ratios (respiration quotient qCO2) and Cmic/Corg ratios were calculated. The Cmic content in the soils ranged from 43 to 1394 μg C/kg; the BR varied from 0.06 to 25 μg CO2-C/g per h, qCO2, from 0.34 to 6.52 μg CO2-C/mg Cmic per h; and the Cmic/Corg ratio, from 0.19 to 10.65%. It was found that the most significant factors affecting the variability of the Cmic and BR are the parameters of ecosystem (50% and 80%, respectively) and soil (30% and 9%, respectively). The most significant variability of these indices was found in forest soils; it was mainly controlled by the soil texture (33 and 23%) and the Corg content (19 and 24%). The Cmic parameter made it possible to differentiate the soils of the territory for the purposes of their evaluation, monitoring, and biological assessment more clearly than the BR value and the soil chemical characteristics.  相似文献   

12.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

13.
Metabolic quotients for CO2C (qCO2C) and microbial-C-loss (qD) were studied on soil microbial communities under long-term monoculture (M) or continuous crop rotations (CR). Under defined laboratory conditions the mean qCO2C (unit CO2C unit−1 Cmic h−1) of different microbial biomasses from 17 M systems amounted to 1.097 μg CO2qCO2CC as compared to 0.645 μg CO2C of microbial biomasses from 19 CR systems. The 1.7 times higher CO2C release per unit biomass and time of microbial biomasses from M systems was significantly different at the P =0.001 level.In addition, microbial C-loss in samples from M or CR plots was followed for 5 weeks. Again, mean qD per unit microbial biomass and time was 1.6 times higher (P = 0.01) for microbial biomasses from M systems (0.301 μg C, 14 soils) when compared with CR systems (0.188μg C, 14 soils).These differences were not related to soil texture, Corg or pH of these soils. The effects of environmental influences (soil management) on the microbial pool in terms of a changing energy demand are discussed.  相似文献   

14.
The humus-accumulative layer of soils (podzolic, gray, rzhavozem, burozem, and karbolitozem) of old-age forests (>60–450 years old) localized in various vegetation subzones (middle-taiga, southern taiga, subtaiga, dark coniferous forests outside the boreal region, and mountain forests) of the European part of Russia (22 sites of soil sampling of them, 13 in nature reserves and specially protected territories) was studied. The carbon content of the microbial biomass (Cmic) in the soil was determined by the substrate-induced respiration method. The fungal to bacterial ratio was determined by the selective inhibition technique with antibiotics. The basal respiration (BR) was also measured. The BR/Cmic = qCO2 ratio and the portion of Cmic in the total organic soil carbon was determined. It was shown that the Cmic and BR in the soils of a separate vegetation subzone varied significantly; however, their values increased from the middle-taiga to dark coniferous subzone and decreased in the mountain-forest zone (348 ± 44, 670 ± 66, 1000 ± 86, 1142 ± 49, 789 ± 79 μkg C/g soil and from 0.68 ± 0.23, 1.85 ± 0.10, 2.13 ± 0.15, 1.56 ± 0.14, 0.92 ± 0.07 μkg CO2-C/soil h, respectively). The fungal component in the humus-accumulative layer of soils is 53–99% of the total Cmic; however, its absolute values increase from the middle subzone to the southern one. The Cmic pool and the total BR in the profile of some soils (mineral horizons and forest litter) were calculated.  相似文献   

15.
《Soil biology & biochemistry》2001,33(12-13):1581-1589
The activity and biomass of soil microorganisms were measured in soils from 25 different arable sites in the Pacific region of Nicaragua with the objective of elucidating their interrelationship with soil textural and soil chemical properties. All soils developed from recent volcanic deposits but differ in their particle size distribution. Short-term phosphorus fixation capacity varied widely and was, on average, 11% of added P. In contrast, long-term P fixation capacity varied within a small range of around 55%. Mean basal respiration was 8.6 μg CO2–C d−1 g−1 soil, average contents of biomass C, biomass P, and ergosterol as an indicator of fungal biomass were 116, 1.95, and 0.34 μg g−1 soil, respectively. They were all, except biomass P, significantly lower in the sandy than in the loamy soils. The mean biomass C-to-soil C ratio was 0.69%, the mean metabolic quotient 95 mg CO2–C d−1 g−1 biomass C, the mean ergosterol-to-biomass C ratio 0.31% and the mean biomass C-to-P ratio 107. The very low ergosterol-to-biomass C ratio indicates that fungi contribute only a relatively small percentage to the microbial biomass. The biomass C-to-P ratio exceeded considerably the soil C-to-total P ratio. Metabolic quotient qCO2 and ergosterol-to-biomass C were both negatively correlated with biomass C-to-soil C ratio and clay content, indicating positive correlations between qCO2 and ergosterol-to-biomass C ratio and between biomass C-to-soil C ratio and clay content. Key problems of soil fertility and soil quality in Nicaragua are low availability of soil organic matter and phosphorus to soil microorganisms, which are magnified by a low percentage of fungi, probably reducing the ability of soil to provide nutrients for plant growth.  相似文献   

16.
Maize straw and pea straw were added to five Pakistani soils from a gradient in salinity to test the following hypotheses: Increasing salinity at high pH decreases proportionally (1) the decomposition of added straw and (2) the resulting net increase in microbial biomass. In the non-amended control soils, salinity had depressive effects on microbial biomass C, biomass N, but not on biomass P and ergosterol. The ratios microbial biomass C-to-N and biomass C-to-P decreased consistently with increasing salinity. In contrast, the ergosterol-to-microbial biomass C ratio was constant in the four soils at pH>8.9, but nearly doubled in the most saline, but least alkaline, soil (pH 8.2). The addition of the maize and pea straw always increased the contents of microbial biomass C, biomass N, biomass P and ergosterol, but without clear effects of salinity. Highest mean contents of microbial biomass C and biomass N were measured at day 0, immediately after the straw was added. Straw amendments increased the CO2 evolution rates of all five soils without any effect of salinity. The same was true for total C and total N in the two fractions of particulate organic matter (POM) 63–400 μm and >400 μm. Lowest percentage of straw-derived CO2-C and highest recoveries of POM-C and POM-N were observed in the maize straw treatment and the reverse in the pea straw treatment. Yield coefficients were calculated for maize and pea straw based on the assumption that the balance gap between CO2 and the amount of POM can be fully assigned to microbial products.  相似文献   

17.
Ergosterol and microbial biomass C were measured in 26 arable, 16 grassland and 30 forest soils. The ergosterol content ranged from 0.75 to 12.94 g g-1 soil. The geometric mean ergosterol content of grassland and forest soils was around 5.5 g g-1, that of the arable soils 2.14 g g-1. The ergosterol was significantly correlated with biomass C in the entire group of soils, but not in the subgroups of grassland and forest soils. The geometric mean of the ergosterol: microbial biomass C ratio was 6.0 mg g-1, increasing in the order grassland (5.1), arable land (5.4) and woodland (7.2). The ergosterol:microbial biomass C ratio had a strong negative relationship with the decreasing cation exchange capacity and soil pH, indicating that the fungal part of the total microbial biomass in soils increased when the buffer capacity decreased. The average ergosterol concentration calculated from literature data was 5.1 mg g-1 fungal dry weight. Assuming that fungi contain 46% C, the conversion factor from micrograms ergosterol to micrograms fungal biomass C is 90. For soil samples, neither saponification of the extract nor the more effective direct saponification during extraction seems to be really necessary.  相似文献   

18.
In the mineral horizons of the soils under different southern taiga forests (oak, archangel spruce, and aspen in the Kaluzhskie Zaseki Reserve of Kaluga region and the green moss spruce and spruce-broadleaved forests of the Zvenigorod Biological Station of Moscow State University in Moscow region), the carbon content in the microbial biomass (Cmic), the rate of the basal respiration (BR), and the specific microbial respiration (qCO2= BR/Cmic) were determined. The Cmic content was measured using the method of substrate-induced respiration (SIR). In the upper humus horizons of the soils, the Cmic content amounted to 762–2545 μg/g and the BR ranged from 1.59 to 7.55 μg CO2-C/g per h. The values of these parameters essentially decreased down the soil profiles. The portion of Cmic in the organic carbon of the humus horizons of the forest soils was 4.4 to 13.2%. The qCO2values increased with the depth in the soils of the Biological Station and did not change in the soils of the Reserve. The pool of Cmic and Corg and the microbial production of CO2 (BR) within the forest soil profiles are presented.  相似文献   

19.
Spatial location of carbon decomposition in the soil pore system   总被引:5,自引:0,他引:5  
We sought to examine the distribution of carbon (C) decomposition within the framework of the soil pore system. Soils were sampled from a transect having a natural gradient in pore‐size distribution. After the addition of labelled wheat straw (13C) the repacked soil columns were incubated (25°C) at soil water matric potentials of either ?75 kPa or ?5 kPa and for either 4 or 90 days. Pore‐size distribution was determined for each soil column after incubation and soils were then analysed for soluble C, label‐derived residual C, label‐derived and native biomass C, nematode abundance, and ergosterol concentration as an indicator of fungal biomass. Overall, the data suggested that pore‐size distribution and its interaction with soil water give rise to a highly stratified biogeography of organisms through the pore system. This results in different rates of decomposition in pores of different size. Added plant material seemed to decompose most rapidly in soils with a relatively large volume of pores with neck diameters c. 15–60 µm and most slowly in soils with large volumes of pores with neck diameters < 4 µm. Regression analysis suggested that at matric potentials of both ?75 kPa and ?5 kPa the fastest decomposition of organic substrate occurred close to the gas–water interface. This analysis also implied that slower rates of decomposition occur in the pore class 60–300 µm. Correlations between the mass of soil biota and the pore volume of each pore class point to the importance of fungi and possibly nematodes in the rapid decomposition of C in the pores c. 15–60 µm during the early stages of decomposition.  相似文献   

20.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号