首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Globe artichoke (Cynara scolymus L.) and cultivated cardoon (C. cardunculus L. var. altilis DC.) are horticulturally important crop plants. These species have potential as biomass and oilseed crops. We field tested, for 3 years, two artichoke and two cardoon cultivars and one wild cardoon (C. cardunculus L. var. sylvestris Lam.) population on the Sicilian plain of Catania (37°27′ N, 15°04′ E, 10 m a.s.l.). On a 3-year average, the dry aboveground biomass resulted about 31 t ha−1 in both cultivated cardoons, 18.8 t ha−1 in wild cardoon, 13.7 t ha−1 in globe artichoke ‘3/10 V.S.’ and 9.9 t ha−1 in globe artichoke ‘374’ F1. The caloric values of aboveground biomass (except for seeds), which was not significantly different among genotypes, ranged between 16 005 and 17 028 KJ kg−1 of dry matter. The cultivated cardoon ‘Gigante di Lucca’ had the greatest grain yield (on 3-year average, 2.6 t ha−1), whereas the two globe artichokes had the lowest yield (on 3-year average, 0.5 t ha−1). Regardless of genotypes and years, the grains contain 20.1% crude protein, 24.4% oil, 18.5% crude fiber and 4.1% ash (dry weight basis). The grains of globe artichokes showed the highest crude protein content (21.6%), whereas those of cardoons the highest oil content (25.2%).  相似文献   

2.
Large scale cultivation of the cardoon Cynara cardunculus L. for biomass production was installed using common agricultural practices and machinery in a total of 77.4 ha in southern Portugal in a region characterized by very hot and dry summers. This species is a perennial with an annual growth cycle. Installation by sowing was successful in spite of the extreme drought that occurred during this first cycle (221 mm), and the plants developed well during the second cycle (with 556 mm rainfall) with a mean density of 27 thousand plants per ha. Aerial photographs showed that 45.8 ha of the field had over 50% of ground cover by cardoon plants. The observed differences in soil occupation could be explained by rock outcrops, soil heterogeneity and land topography. The field biomass yield was estimated at 7.5 t ha−1 and the plants at harvest had on average 2.1 m height and 2.2 cm stalk diameter, with 5.3 capitula per plant. Stalks represented 59.1% of total dry biomass. The capitula contain small oil seeds with an average of 126 seeds per capitulum and weighing 32 g per 1000 seeds. The mean seed yield was 603 kg ha−1. The results of this experiment confirm that Cynara crops are suitable for biomass production in Mediterranean regions and that large scale operation can be applied including whole plant harvest or field fractionation for seed recovery. Careful attention to cultural practices was deemed important for field homogeneity and production. The observed plant variation, namely in oil seed production, suggests potential improvements through breeding.  相似文献   

3.
Cardoon (Cynara cardunculus L.) is a Mediterranean perennial plant. Studies were conducted on cardoon for biomass production, in order to assess the plant as an alternative low input management crop in a Mediterranean environment. The grain oil has similar composition to sunflower or saffron oils and can be easily extracted. In this work, the results of cardoon biomass and grain oil production under Sicilian (South Italy) low input conditions are shown. In a completely randomized block, during 1998–2001, 14 genotypes of C. cardunculus L., five cultivated cardoons and nine wild cardoons, were evaluated for lignocellulosic biomass production, grain yield and chemical composition of the grain. The results showed, on average for the genotypes, a 3-year cumulative aboveground biomass of 47.4 t ha−1 DM, the 6.3% of which was grain. Differences within the 3 years of cultivation were observed, due to varying water availability (rainfall differences) and age of the crop. The results showed some genotypes are very promising for biomass, grain and oil production. Moreover, the good range of variability observed among genotypes is important for developing cultivars suitable for varying cropping systems in breeding programs.  相似文献   

4.
This study was conducted to measure the biomass, organic carbon and mineral matter contents of abaca at different stages of growth as baseline information for material cycling of the plant. These were attained through destructive sampling of the identified sample plants. Different parameters such as moisture content, dry matter, organic carbon and mineral matter contents were determined. Regression and correlation analyses were also conducted to find out possible relationship between growth parameters and plant biomass.Biomass contents ranged from 11 to 21% regardless of the growth stages of abaca. Based on the weight of partitioned components, biomass, organic carbon and mineral matter contents (g/plant) of all tissues increased as the growth of abaca plant progressed. Pseudostem tissue showed the highest percent moisture content but it also showed the highest biomass (dry weight per plant) during the vegetative and flagleaf stages of growth. The pseudostem biomass accounted nearly two-thirds of the above-ground biomass at harvesting stage in the production system. Cumulative effect could be disadvantageous and would most likely result to nutrient imbalance in the system due to crop removal and nutrient mining. A strong relationship was found between biomass and pseudostem length (r = 0.997).  相似文献   

5.
The globe artichoke is a widely consumed vegetable in the Mediterranean Basin, with Italy being the leading producer. In southern Italy, its cultivation contributes to local economic stability and social development. The producers are increasingly choosing to replace autochthonous varieties, such as ‘Violetto di Sicilia’, with cultivars bred or selected outside of the region, putting pressure on the maintenance of traditional varieties. Here, we have undertaken a detailed morphological and chemical analysis of a group of clones selected from a population of ‘Violetto di Sicilia’. All the traits measured displayed genetic variation, particularly the total content of phenolics and minerals. The capitula of the ‘Violetto di Sicilia’ clones contained, on average, 6.3 g kg−1 of fresh weight total phenolics, compared with 4.5 g kg−1 in the two commercial varieties. The clones also had more inulin than commercial varieties (254 vs. 225 g kg−1 of dry matter), as well as a good mineral content. The set of clones is of interest in the context of the proposed improvement of the crop through breeding and selection of genotypes with high nutritional quality and a specific end-use (industrial processing or fresh consumption).  相似文献   

6.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

7.
Modelling of the Acetosolv treatment of the cardoon bark (Cynara cardunculus) was accomplished using a second-order face-centred factorial design. We considered as independent (experimental) variables: cooking time (60–180 min), acetic acid concentration in the cooking liquor (60–90%) and hydrochloric acid concentration in the cooking liquor (0.20–0.80%); as well as dependent variables: pulp yield, kappa number and viscosity.Empirical models were deduced to satisfactorily fit experimental data with the values of the independent variables and allow quantifying the effects of each variable.An optimisation with constraints led to the calculation of the region of the experimental domain (time = 180 min, acetic acid concentration  71.3% and HCl concentration > 0.41%) leading to pulps with kappa numbers < 25 at a maximal pulp yield and viscosity, giving us maximum possible values for pulp yield (46.3%) and viscosity (557 mL/g).  相似文献   

8.
Three different lignocellulosic energy crops (a local clone of Arundo donax L., Miscanthus x giganteus Greef et Deu. and Cynara cardunculus L. var. altilis D.C. cv. “Cardo gigante inerme”) were compared over 5 years (2002–2007) for crop yield, net energy yield and energy ratio. In a hilly interior area of Sicily (Italy), two different irrigation treatments (75 and 25% of ETm restoration) and two nitrogen fertilization levels (100 and 50 kg ha−1) were evaluated in a split-plot experiment. In the fourth and fifth years of the field experiment (2005–2007) no fertilizer or irrigation was used.From crop establishment to the third year, above ground dry matter yield increased over all studied factors, in A. donax from 6.1 to 38.8 t ha−1 and in M. x giganteus from 2.5 to 26.9 t ha−1. Fifteen months after sowing, C. cardunculus yielded 24.7 t ha−1 of d.m. decreasing to 8.0 t ha−1 in the third year. In the fourth and fifth years, above ground dry matter yields of all crops decreased, but A. donax and M. x giganteus still maintained high productivity levels in both years. By contrast the yield of C. cardunculus yield fell to less than 1 t ha−1 of d.m. by the fourth year.Energy inputs of A. donax and M. x giganteus were higher in the year of establishment than that of C. cardunculus (34 GJ ha−1 for A. donax and M. x giganteus and 12 GJ ha−1 for C. cardunculus), mainly due to irrigation.Net energy yield showed low or negative values in the establishment year in A. donax and M. x giganteus. In the second and third year, net energy yield of A. donax was exceptionally high (487.2 and 611.5 GJ ha−1, respectively), whilst M x giganteus had lower values (232.2 and 425.9 GJ ha−1, respectively). M x giganteus attained its highest net energy yield in the fourth year (447.2 GJ ha−1). Net energy yield of C. cardunculus reflected energy output of the crop, being high in the first compared to subsequent years (364.7, 277.0 and 119.2 GJ ha−1, respectively for the first, second and third years).A significant effect of the different irrigation treatments was noted on all the studied parameters in all species. Conversely, only A. donax was affected by nitrogen fertilization.  相似文献   

9.
Little is known about the intercropping of perennial legumes with annual cereals although intercropping system is widely applied and studied. The main objective of this study was to determine the aboveground biomass yield and interspecific competitiveness in an intercropping system of alfalfa (Medicago sativa L.) with corn (Zea mays L.). A 3-year (2007-2009) field experiment was conducted, including four intercropping patterns by alternating alfalfa and corn row ratios of 2:2, 3:2, 4:2 and 5:2. Mono-cultured corn and alfalfa were used as the control. The biomass yield of alfalfa was measured at early blooming, whereas that of corn was at physiological maturity. Competitiveness indices examined were land equivalent ratio (LER), aggressivity (A), relative crowding coefficient (K values) and competitive ratio (CR). The biomass yields of mono-cultured alfalfa and all intercropping patterns increased each year. In all years, the 5:2 intercropping pattern always displayed a biomass yield advantage based on greater LER values. Alfalfa had higher relative crowding coefficients (K values), CR, and A values than corn. The intercropping of alfalfa with corn had yield advantages compared to alfalfa or corn monoculture. The intercropping pattern of 5:2 (alfalfa:corn row ratio) was an optimal pattern in our study. Alfalfa was the superior competitor when grown with corn, and its productivity dominated the total biomass yields. Thus, intercropping of alfalfa with corn has the potential to improve performance with high land-use efficiency.  相似文献   

10.
The effect of botanical composition and nutrient availability on the relative allocation of biomass to stems and leaves in a permanent upland pasture in the central Pyrenees was assessed. Six short-term and medium-term fertilizer treatments (nitrogen and phosphorus) were applied to a meadow to create large differences in the proportions of the different species and a wide range of herbage nutrient status. The above-ground herbage dry-matter components (green leaves, sheaths and stems for grasses and dicotyledons, and senescent material) were measured for the first growth cycle.
The leaf mass depended mainly on the herbage N status, whereas the stem mass depended both on the botanical composition and on the herbage N and P status. During spring growth, the proportion of leaves in the above-ground dry matter decreased faster in plots that had the highest nutrient status or that were composed of species characteristic of nutrient-rich ( Festuca -poor) habitats. Application of fertilizer decreased the proportion of leaves both for grasses and dicotyledons, but to a larger extent for grasses. There was a single relationship between the proportion of leaves in the above-ground dry matter and the total mass of above-ground dry matter, irrespective of the sampling date, the botanical composition or the herbage nutrient status. This statistical relationship resulted from (i) a faster increase in stem mass than leaf mass for a given botanical composition when the herbage nutritional status increased, (ii) a greater stem mass when the sward was composed of species usually found in nutrient-rich habitats.  相似文献   

11.
The capitula of Cynara cardunculus contain hairs and pappi representing 7% of the total plant biomass. These low density biomass components could be mechanically separated without apparent losses using a whole-plant processing prototype. Hairs and pappi are filamentous structures made up of longitudinally aligned fibre cells, without intercellular voids or pitting, with the following dimensions regarding length, width and wall thickness: 1.35 mm, 19.8, and 4.8 μm for hairs and 1.78 mm, 10.4, and 2.9 μm for pappi. Chemically hairs and pappi have low content of ash (1.9% and 1.1%, respectively), extractives (5.4% and 6.0%) and lignin (10.6% and 17.8%), and high content of holocellulose (77.5% and 72.8%) and α-cellulose (55.2% and 46.8%).Pulps could be produced using a conventional kraft process with high yields and low residual lignin, e.g. 63% at Kappa 7 for hairs and 48% at Kappa 11 for pappi, low coarseness values (0.04 and 0.03 mg m?1) and adequate pulp properties for paper (40 and 42 N mg?1 tensile index; 3.6 and 3.4 kPa m2 g?1 burst index in unrefined pulps of hairs and pappi, respectively). The results also indicated that there is scope for improving pulp quality by optimising pulping conditions to this type of new raw materials. The differences between hairs and pappi may also be further exploited namely the lower lignin content of hairs and the higher slenderness and wall thickness of pappi fibres.The utilization of hairs and pappi may strengthen the differentiated use of biomass fractions of the Cynara plant and its potential as a bioenergy crop.  相似文献   

12.
The chemical compositions of essential oil, concrete, absolute from the capitula of Tagetes patula (family Asteraceae) were analysed by GC-FID and GC/MS. The major compounds identified were (Z)-β-ocimene, (E)-β-ocimene, terpinolene, (Z)-ocimenone, (E)-ocimenone and δ-elemene. In addition, the volatiles of live and plucked capitula (flowers) were analysed by SPME technique using PDMS/DVB/CAR fiber. The SPME-GC-FID analyses of live capitula showed that the volatiles were rich in monoterpenoids in comparison to the plucked capitula. On the other hand, the plucked capitula recorded with significant increase in sesquiterpenoids in comparison to the living capitula.  相似文献   

13.
Nitrogen (N) use efficiency (NUE), defined as grain produced per unit of fertilizer N applied, is difficult to predict for specific maize (Zea mays L.) genotypes and environments because of possible significant interactions between different management practices (e.g., plant density and N fertilization rate or timing). The main research objective of this study was to utilize a quantitative framework to better understand the physiological mechanisms that govern N dynamics in maize plants at varying plant densities and N rates. Paired near-isogenic hybrids [i.e., with/without transgenic corn rootworm (Diabrotica sp.) resistance] were grown at two locations to investigate the individual and interacting effects of plant density (low—54,000; medium—79,000; and high—104,000 pl ha−1) and sidedress N fertilization rate (low—0; medium—165; and high—330 kg N ha−1) on maize NUE and associated physiological responses. Total aboveground biomass (per unit area basis) was fractionated and both dry matter and N uptake were measured at four developmental stages (V14, R1, R3 and R6). Both plant density and N rate affected growth parameters and grain yield in this study, but hybrid effects were negligible. As expected, total aboveground biomass and N content were highly correlated at the V14 stage. However, biomass gain was not the only factor driving vegetative N uptake, for although N-fertilized maize exhibited higher shoot N concentrations than N-unfertilized maize, the former and latter had similar total aboveground biomass at V14. At the R1 stage, both plant density and N rate strongly impacted the ratio of total aboveground N content to green leaf area index (LAI), with the ratio declining with increases in plant density and decreases in N rate. Higher plant densities substantially increased pre-silking N uptake, but had relatively minor impact on post-silking N uptake for hybrids at both locations. Treatment differences for grain yield were more strongly associated with differences in R6 total biomass than in harvest index (HI) (for which values never exceeded 0.54). Total aboveground biomass accumulated between R1 and R6 rose with increasing plant density and N rate, a phenomenon that was positively associated with greater crop growth rate (CGR) and nitrogen uptake rate (NUR) during the critical period bracketing silking. Average NUE was similar at both locations. Higher plant densities increased NUE for both medium and high N rates, but only when plant density positively influenced both the N recovery efficiency (NRE) and N internal efficiency (NIE) of maize plants. Thus plant density-driven increases in N uptake by shoot and/or ear components were not enough, by themselves, to increase NUE.  相似文献   

14.
A field investigation was carried out on red sandy soil in the semi-arid tropical climate of south India to investigate the response of industrially important, multi-harvest, aromatic crop palmarosa {Cymbopogon martinii (Roxb.) Wats. var. motia Burk., family: Poaceae} to foliar application (2.5 g/L single application for each harvest at 700 L nutrient solution per hectare) of magnesium (Mg), manganese (Mn), iron (Fe), zinc (Zn), boron (B) and their residual effect on the succeeding harvest. During the experimental period, palmarosa crop afforded four harvests, 49.5-70.6 t/ha total biomass yield (fresh weight), 211.4-384.2 kg/ha total essential oil yield and Rs. 232,540-422,620/ha (US$ 4844.6-8804.6/ha) gross returns. Fifth harvest (no nutrients were applied) performed to examine the residual effect of Mg and micronutrients applied to the previous four harvests revealed the absence of residual effect pointing to the need for application of nutrients to individual harvests. Foliar application of Mg and micronutrients significantly increased the yield attributes (plant height, tiller number/plant, leaf number/plant), biomass yield, essential oil yield and gross returns of palmarosa. Mg and micronutrients enhanced the total biomass yields by 37.0-42.6% and the total essential oil yields by 44.6-81.7% in comparison to the control (water spray).All the treatments produced good quality essential oils with 1.5-3.2% linalool, 79.7-85.8% geraniol and 4.5-10.3% geranyl acetate. Mg and B additions declined linalool (%) in the second and fourth harvests and increased geraniol (%) in the first harvest. Mg and micronutrients application improved geraniol (%) in the second harvest. Except Zn, all the other nutrients decreased geranyl acetate (%) in the second harvest, but in the third and fourth harvests Mn and B increased geranyl acetate (%).  相似文献   

15.
The color (L*, a*, b* parameters), the total phenols content and the global chemical composition (moisture, protein, fat, carbohydrates and ash) of four fresh varieties of olive leaves (Chemlali, Chemchali, Zarrazi and Chetoui) were determined. Fresh olive leaves are characterized by a green color (greenness parameter, a*, varying from ?5.01 ± 0.26 to ?9.14 ± 1.21), an intermediate moisture content (0.85 to 1.00 g/g dry matter, i.e. 46 to 50 g/100 g fresh matter) and a variable amount of total phenols according to the olive leaf variety (from ≈2.32 to ≈1.40 g caffeic acid/100 g dry matter).Fresh leaves were submitted to blanching and/or infrared drying at 40, 50, 60 and 70 °C in order to be stabilized by reducing their moisture contents. The impact of IR drying temperature on some quality attributes (color, total phenols and moisture rate removal) was evaluated. Nevertheless, the effect of prior blanching treatment on the quality attributes of dried leaves is less significant and it depends on the olive leaf variety. The infrared drying induces a considerable moisture removal from the fresh leaves (more than 85%) and short drying durations (varying from ≈162 at 40 °C to 15 min at 70 °C). IR drying temperature showed a significant effect of on total phenols content and the color of the leaves whatever the leaf variety. In fact, total phenols content of dried olive leaves increased if compared to fresh ones. For example, total phenols of Chemlali leaves increased from 1.38 ± 0.02 (fresh leaves) to 2.13 ± 0.29 (dried at 40 °C) and to 5.14 ± 0.60 g caffeic acid/100 g dry matter (dried at 70 °C). IR drying allows preserving the greenness color of fresh leaves and enhancing their luminosity. It could be suggested for preserving olives leaves before their use in food or cosmetic applications.  相似文献   

16.
Cover crops and mulches are a suitable choice for sustainable agriculture because they improve weed control and crop performance. The aim of this research was to investigate weed control and nitrogen supply by using different winter cover crop species which were converted into mulches in spring. We carried out a 2-year field experiment where a tomato crop was transplanted into four different types of mulches coming from winter cover crops [hairy vetch (Vicia villosa Roth.), subclover (Trifolium subterraneum L.), oat (Avena sativa L.), and a mixture of hairy vetch/oat)] and in conventional treatment (tilled soil without mulch). The mixture of hairy vetch/oat cover crop produced the highest aboveground biomass (7.9 t ha−1 of DM), while the hairy vetch accumulated the highest N in the aboveground biomass (258 kg N ha−1). The oat cover crop was the most effective cover crop for suppressing weeds (on average −93% of weed aboveground biomass compared to other cover crops). After mowing the cover crop aboveground biomass was placed in strips as dead mulch into which the tomato was transplanted in paired rows. Weed density and total weed aboveground biomass were assessed at 15 and 30 days after tomato transplanting to evaluate the effect of mulches on weed control. All mulches suppressed weeds in density and aboveground biomass compared to the conventional system (on average −80% and −35%, respectively). The oat was the best mulch for weed control but also had a negative effect on the marketable tomato yield (−15% compared to the conventional treatment). Amaranthus retroflexus L. and Chenopodium album L. were typical weeds associated with the conventional treatment while a more heterogeneous weed composition was found in mulched tomato. Legume mulches, in particular hairy vetch, gave the best marketable tomato yield 28% higher than the conventional system both with and without nitrogen fertilization. This research shows that winter cover crops converted into dead mulch in spring could be used successfully in integrated weed management programs to reduce weed infestation in tomato crops.  相似文献   

17.
《Field Crops Research》2006,95(2-3):126-134
Increased longevity of leaves, or improved leaf retention, has been suggested as a possible means to increase productivity of cassava (Manihot esculenta Crantz). This study evaluated variation in leaf retention and its relation to cassava productivity under irrigated and stressed conditions. In the first trial 1350 clones were evaluated on the North Coast of Colombia with a 5-month dry period towards the end of the growth cycle. Clones with the leaf retention trait produced more total fresh biomass and yielded 33% more root dry matter than plants without the trait. In the irrigated trial 110 clones were evaluated on the CIAT farm at about 1000 mamsl. Leaf retention was quantified using a 1–5 visual score with five corresponding to excellent leaf retention. Genetic correlations between leaf retention and fresh foliage production (0.49), root dry matter yield (0.46), fresh root production (0.43) and root dry matter content (0.25) were obtained. Increased root yield under stressed and unstressed conditions was associated with increased total biomass production and increased harvest index. These finding concur with the results of cassava growth models that include leaf longevity as a variable. The lack of any negative genetic correlations between leaf retention and useful agronomic traits coupled with the relatively high genetic correlation for root yield and the high heritability (0.55) for leaf retention indicate that it should be relatively easy and advantageous to incorporate this characteristic in breeding and selection programs directed to increasing root yield under both water stressed and unstressed conditions.  相似文献   

18.
增施有机肥对夏玉米物质生产及土壤特性的影响   总被引:2,自引:0,他引:2  
2015和2016年在大田试验条件下,研究不施肥(CK)、常规施肥(NPK)、常规施肥+有机肥(增施鸡粪1 500 kg/hm~2,NPKM)对夏玉米物质生产及土壤特性的影响。结果表明,与CK相比,NPK和NPKM处理2015和2016年玉米产量分别增加13.62%和18.61%、36.75%和44.93%。植株叶片SPAD值、植株根系和地上部生物量均表现为NPKMNPKCK。与CK相比,增施有机肥后,土壤呼吸、硝态氮、铵态氮含量、脲酶、蔗糖酶活性均显著增高,过氧化氢酶活性降低。相关分析表明,连续两年玉米子粒产量均与拔节期、吐丝期、成熟期的SPAD值和硝态氮含量呈显著正相关,与吐丝期和成熟期的根系生物量、地上部生物量、蔗糖酶活性呈显著正相关。  相似文献   

19.
种植密度对青贮玉米品种产量及相关性状的影响   总被引:3,自引:0,他引:3  
以6个青贮玉米品种为试验材料,研究了3种种植密度对青贮玉米生物产量、干物质产量及相关性状的影响。结果表明,不同品种之间生物产量和干物质产量差异极显著;不同密度下品种的生物产量和干物质产量差异极显著;品种与密度互作之间生物产量和干物质产量差异分别为显著和极显著。龙育1号、高油169和高油115作为优质青贮高油玉米在黑龙江省适宜种植密度分别为7.0~8.0万株/hm2、7.0万株/hm2和6.0万株/hm2;黑饲1号在6万株/hm2时产量较高;龙辐208在7万株/hm2种植条件下,其生物产量和干物质产量均较高,尤其干物质产量最高;青贮玉米品种的青贮生育日数、株高、穗位、茎粗、收获期绿叶片数差异不大,品种之间差异主要由品种自身特性决定。中原单32可作为粒用玉米种植推广。  相似文献   

20.
《Plant Production Science》2013,16(4):241-246
Abstract

Capitulum of Artemisia capillaris is used as a crude drug in the Kampo medicines. Ten accessions of A. capillaris collected from various locations in Japan were examined for their flowering date, shoot growth and contents of choleretic substances i.e. capillarisin (GAP) and 6, 7-dimethylesculetin (DME), to select the important characters for capitulum yield and quality, and to characterize each accession. The experiment was conducted at the Tsukuba Medicinal Plant Research Station, Ibaraki, Japan. Accessions collected from higher latitude flowered earlier than those from lower latitude. Accordingly, dry weights of capitula, stems plus leaves and whole shoot in the accessions collected from higher latitudes were lower than those collected from lower latitudes. Larger shoot biomass, the consequence of longer vegetative growth period, was found to be important for higher capitula yield. Shoot length and contents of GAP and DME were not related with flowering date and the latitude of habitats. The results of principal component analysis (PGA) revealed that each accession from various locations was characterized by shoot length, shoot biomass and contents of CAP and DME and that the intra-accessional variations of shoot growth and contents of GAP and DME in the accessions collected from lower latitudes were greater than those from higher latitudes. Based on the results of PCA, the ten accessions were grouped into four types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号