首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
研究气候变化情景下豫北地区农业需灌水次数的变化情况,可为当地灌溉以及保证农业可持续发展提供参考。本文分析处理近63 a(1951—2013年)气象数据和新乡七里营站点土壤数据,结合作物生长参数,利用降水、灌溉、作物蒸散发与土壤水分之间变化关系,建立干旱灌水指数模型。此模型中干旱灌水指数(DII)分布在[-1,1]之间,小于0时即干旱需灌水。在现有冬小麦-夏玉米种植制度下,利用干旱灌水指数模型计算多年需干旱灌水指数,并进一步得到灌水次数。选择冬小麦生长季分别为湿润(1985—1986年)、正常(2004—2005年)、干旱(1983—1984年)的3个典型实际代表年度,夏玉米生长季分别为湿润(2003年)、正常(1993年)、干旱(2009年)的3个典型实际代表年,计算了不同代表年冬小麦、夏玉米作物需水情况。进一步计算得到了冬小麦、夏玉米在典型湿润、正常、干旱3个不同代表年的干旱灌水指数,并进行了有无灌水的干旱情况分析。结果表明:近63 a冬小麦-夏玉米系统每年需灌水2~7次不等,平均需灌水5.1次。冬小麦和夏玉米湿润、正常、干旱3个代表年蒸散发量(ETC)分别为489.4 mm、551.4 mm、481.7 mm和466.1 mm、477.8 mm、529.3 mm。在无灌水条件下典型代表年内,冬小麦、夏玉米都会遭遇不同程度干旱,典型湿润、正常、干旱代表年冬小麦分别灌水2次、3次、4次,夏玉米分别需灌水1次、2次、3次后,基本可以消除干旱对其正常生长影响。综上,通过干旱灌水指数来量化需灌溉次数是可行的。气候变化情景下,近10年(2003—2013年)需灌水频次变化大,年际间干旱事件频发,更好的科学灌溉管理可减少干旱对作物的影响。  相似文献   

2.
针对海河平原地下水位持续下降和维持小麦—玉米两熟较高产量之间的矛盾,对不同降水年型小麦—玉米不同灌溉制度下产量和水分利用效率(WUE)进行模拟分析,结果对平衡该区域地下水可持续利用与粮食生产提供重要科学决策依据。利用研究区域站点长时间序列气象数据,以小麦不同水分处理地上部生物量、叶面积和周年土壤水分动态田间试验数据为基础,对APSIM小麦玉米遗传参数和土壤水分等相关参数进行了校准和验证。利用校准和验证的APSIM模型,对不同降水年型小麦—玉米不同生长阶段水分亏缺指数(CWDI)进行了分析,并模拟了8种不同灌溉制度情景下小麦玉米产量、水分利用效率和灌溉水利用效率(IWUE)。结果表明:不同降水年型小麦各生育阶段CWDI均较高,说明无论干旱、平水和湿润年份小麦需水量远大于降水量,尤其是拔节—成熟期水分严重亏缺,属极旱;玉米抽雄前基本不受干旱胁迫影响,但抽雄后的灌浆阶段处于中旱或重旱,对水分需求迫切。兼顾产量和水分利用效率的灌溉制度,干旱、平水及湿润年份全年灌溉3次,灌水量为225 mm(小麦播种75 mm+拔节期75 mm+开花期75 mm)时可获得较高的周年产量和最大WUE。不同降水年型周年产量和WUE在干旱年份分别为17 357.6 kg/hm~2和29.6 kg/(hm~2·mm),平水年份分别为18 827.9 kg/hm~2和25.9 kg/(hm~2·mm),湿润年份分别为19 685.2 kg/hm~2和25.8 kg/(hm~2·mm)。此灌溉制度下,小麦、玉米可获得较高的产量和水分利用效率,为该区域水—粮权衡的重要灌溉策略和措施。  相似文献   

3.
采用田间试验方法,研究了不同穴播种植方式与施肥对旱地春小麦产量及水分利用效率的影响.结果表明,在采取的4种穴播种植方式中,全膜覆土穴播种植方式有利于小麦碳水化合物的合成,增加了小麦干物质积累量,N,P和K平衡施肥干物质积累量增加效果明显;全膜覆土穴播种植方式较全膜小垄沟覆土穴播、全膜不覆土穴播和露地穴播种方式小麦产量分别增加4.9%~8.0%,20.4%~22.6%和59.7%~72.8%,干旱年份增产效果尤为突出;该种植方式下,N,P2O5和K2O)的用量分别为180,120和90 kg/hm2时(Z0F1处理),小麦产量和水分利用效率最高,较露地穴播提高72.8%和111.1%.表明春小麦在全膜覆土穴播栽培技术条件下,合理配方施肥可显著提高小麦籽粒产量和水分利用效率,干旱年份效果极为明显.  相似文献   

4.
为了明确分层施肥在不同灌水条件下对冬小麦产量、耗水特性和水分利用效率的影响,为黄淮海地区小麦高产高效生产实践提供理论依据。结合当地冬小麦灌溉制度采用水肥2因素裂区试验,水分为主区,施肥方式为副区,设置3个灌溉处理:春季不灌水(W_0)、春季拔节期灌水(W_1)、春季拔节期灌水+开花期灌水(W_2),灌水量90 mm/次;2种施肥方式处理:常规施肥处理(F_1)和分层施肥处理(F_2),分析了不同灌水与施肥模式下冬小麦产量、耗水特性和水分利用效率的特点。结果表明:与F_1相比,F_2处理40—120 cm土层土壤贮水消耗量、冬小麦拔节期—开花期耗水强度和农田耗水量显著增加,其中以W_2F_2处理农田耗水量最高。分层施肥处理冬小麦水分利用效率较常规施肥提升14.2%~3.0%,其中以W_1F_2处理水分利用效率最高。在3种灌水条件下,分层施肥处理较常规施肥显者增加了冬小麦的单位面积穗数,产量增加19.8%~6.4%,其中W_(2 )F_2产量最高。因此,建议在水分充足地区,采取小麦春季灌溉拔节水和开花水结合底肥分层施用的管理方式;在水资源短缺地区,采取小麦春季灌溉拔节水结合底肥分层施用的管理方式。  相似文献   

5.
基于RZWQM模型的石羊河流域春小麦灌溉制度优化   总被引:5,自引:3,他引:2  
为探讨石羊河流域春小麦适宜灌水上限及不同生育期计划湿润层深度,在该地区开展田间试验。利用田间试验资料对RZWQM(root zone water quality model)模型进行率定和验证,并应用模型模拟了灌水上限及不同生育阶段计划湿润层深度对春小麦籽粒产量、灌水量、籽粒灌溉水利用效率及灌水次数的影响。结果表明:不同灌水处理间产量差异较小,但所需灌水量有较大差异,存在节水空间;灌水上限对于灌水量的影响要远远大于对产量的影响,灌水上限的降低会增加灌水次数,从而提高小麦产量;适宜的计划湿润层深度可以保证灌溉水尽可能多的分布于根系吸收范围内,避免浪费,达到节水目的;试验证明,通过调控灌水上限和各生育期计划湿润层深度可以达到节水增产的目的。综合考虑各控制因素对产量、所需灌水量及籽粒灌溉水利用效率的影响,建议该地区春小麦灌溉制度为:灌水上限选择80%田间持水量,苗期计划湿润层深度为30 cm,拔节期计划湿润层深度为60 cm,抽穗期计划湿润层深度为50 cm,灌浆期计划湿润层深度为70 cm。  相似文献   

6.
施肥和降水年型对旱地玉米产量及水分利用的影响   总被引:1,自引:0,他引:1  
在我国北方半湿润偏旱区的山西省寿阳县旱农试验区,经过长达10年的定位试验结果表明,施肥可使水分利用效率明显提高,是不施肥处理的2.25倍;旱地玉米产量和水分利用效率,同时受生育期降水量和播前土壤贮水量两个因素的影响.干旱年份,玉米产量的提高更依赖于土壤水分、养分的协调供应,施肥的增产效果受到土壤水分亏缺的限制,合理施肥、培肥土壤、保蓄水分,可增强旱地玉米抵御干旱的能力;丰水年份和正常年份,肥料的增产作用得到充分发挥,丰水年份应注意蓄水保墒.  相似文献   

7.
旱灾多发是气候变化中农业生产面临的日益严重的挑战。而干旱半干旱区农业对旱灾表现出明显的脆弱性。本文收集了2009年和2003年山西省垣曲县农业生产调查资料和山西省农业科学院在该县的肥料试验示范地小麦生产试验资料,统计分析了2009年干旱下小麦产量与正常气候年(2003年)对比的变化,表明气候变化下小麦生长期干旱导致大田小麦减产超过30%,并田块间产量变率由正常气候年的10%左右提高到22%-42%。在雨养旱地,施肥技术试验示范地减产幅度在6%以下;干旱年水浇地的增产效果达到48%-64%,而施肥技术的增产效果达到30%-44%。而水浇地优化施肥示范地产量甚至比正常气候年产量提高36%~77%。肥水协调技术大幅度减缓了干旱下产量损失,同时大大降低了田块间产量变率,达到有效抵御干旱对小麦产量的影响。因此,发展优化施肥及肥水协调技术在应对气候变化的影响中具有显著的减缓潜力,而水资源的有效供应可能成为北方气候变化下干旱对旱地作物生产的主要挑战。  相似文献   

8.
不同降水年型小麦丰产抗灾技术的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
旱作小麦在不同降水年型的产量反应相差甚大,主要原因是降水年季分布不均匀,根据不同降水年型确定小麦丰产抗旱技术,从品种、播期、播量,施肥种类和肥料配比及田间管理等方面采取相应对策,取得小麦生产的最佳效益。  相似文献   

9.
干旱沙漠区小麦田水肥管理效率模拟   总被引:1,自引:0,他引:1  
干旱沙漠区小麦田水肥管理效率模拟试验研究结果表明,在干旱沙漠区30cm厚的黄河灌淤沙地中进一步降低灌溉标准至田间持水量的40%以下是可能的,更低的灌溉标准将有利于提高小麦的水分利用效率,并降低渗漏损失率.在目前施有效氮、磷、钾总量<800kg/hm2的水平下,施肥差异不会导致水分渗漏、蒸发和小麦对水分利用比例的差异,但小麦籽粒产量随施肥量的增加而增加.0.12kg/m3的高肥水指数(有效氮、磷、钾施用总量/灌水总量)可获得近5500kg/hm2小麦籽粒产量和约0.74kg/m3的水分生产率.  相似文献   

10.
有限供水条件下旱地春小麦水分的高效利用   总被引:10,自引:1,他引:10  
全球气候变化最令人担忧的问题是干旱,而水分又是影响小麦产量的重要因素之一,农田水分的管理与有效利用已经受到人们的高度重视。作者以春小麦为实验材料,采用盆栽和小区试验相结合的方法,针对黄土高原半干旱地区的有限水分环境,研究了有限供水的高效利用问题。盆栽条件下,采用3种肥力水平与拔节期、孕穗期和灌浆期有限供水组合处理。对生长发育、产量构成和水分利用效率等指标测定的结果表明,施肥可以显著增大叶面积,促进根系生长,提高子粒产量;而施肥条件下,拔节期有限供水能够显著增加穗粒数和粒重。小区试验结果表明,满足春小麦最大产量所需的灌水量约为200mm,获得作物水分利用效率最高时的适宜灌水量约为100mm,而拔节期60mm的灌水量可以使灌水利用效率接近最大值。拔节期60mm灌水条件下,耗水量、作物水分利用效率和灌水利用效率同步增长,同时土壤的贮存水也得到了有效利用。根据以上结果可得出:在黄土高原缺水地区,春小麦有限灌溉的适宜灌水量下限应不低于60mm,一次性补充灌溉的最佳时期为拔节期  相似文献   

11.
华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析   总被引:35,自引:13,他引:35  
通过田间试验研究了华北地区冬小麦/夏玉米轮作体系对氮素的环境承受力。结果表明,冬小麦和夏玉米达到最高产量时的施氮量分别是112和180.kg/hm2。氮肥利用率和农学利用率随施氮量的增加而降低,生理利用率表现出抛物线的趋势。在农户习惯施氮条件下,冬小麦和夏玉米的氮肥利用率分别是10%和6%,每千克氮肥分别增产2和3千克。灌水和集中降雨是引起土壤硝态氮明显下移的主要因素。氮素平衡计算的结果表明,低施氮量时,氮素盈余以残留Nmin为主,高量施氮则以表观损失为主。将收获后090.cm土壤中的硝态氮的量控制到150kg/hm2,可以在兼顾环境的前提下获得较高的产量;此时冬小麦季的施氮量是122.kg/hm2,产量(干物重)达到最高产量4331.kg/hm2;夏玉米季的施氮量是145.kg/hm2,产量(干物重)是7965.kg/hm2,达到最高产量的97%。  相似文献   

12.
Conserving irrigation water resources is a most important measure for sustainable wheat production in the North China Plain. In the present study, the effect of phosphorus (P) application for saving irrigation water was evaluated. The application of fertilizer P increased nitrogen and phosphorus uptake, shoot biomass, head number, seed number and, consequently, grain yield, and increased soil water use and seasonal evapo-transpiration. The lower the volume of irrigation water applied, the more obvious were these effects. When winter wheat was basally fertilized with 88.5 kg P2O5/ha and irrigated with 90 mm at the jointing stage, the highest fertilizer P use efficiency, apparent P recovery and net profit (due to irrigation and/or fertilizer P) were obtained. The results suggested that fertilizer P should be used for saving irrigation water resources in the North China Plain.  相似文献   

13.
The wheat (Triticum aestivum L.) plant type in major producing areas of the U.S. is changing rapidly from tall cultivars to high‐yielding semidwarf cultivars. Objectives of experiments were to determine if nitrogen and phosphorus nutritional requirements differ between traditional tall cultivars and modern semidwarf cultivars under dryland and irrigated conditions. ‘Larned’, a tall cultivar; ‘Newton’, a semidwarf cultivar; and ‘Plainsman V, a high‐protein semidwarf cultivar, were grown with all combinations of three nitrogen fertilizer levels (0, 84, and 168 kg N/ha) and two phosphorus fertilizer levels (0 and 90 kg P2O5/ha) at Colby, Kansas for two years. Three levels of irrigation—dryland, limited irrigation, and full irrigation—were applied. Grain yields were highest with 84 kg N/ha under dryland and with 168 kg N/ha under irrigation. Phosphorus increased grain yield under dryland conditions one year, but had no effect under irrigated conditions. Cultivar X nutrition interactions from differential yield responses to fertility levels occurred under the dryland and limited irrigation regimes one year. Grain protein content was increased by nitrogen fertilization under all regimes both years and was decreased only by phosphorus fertilization under dryland conditions one year. Cultivar X nitrogen interactions for grain protein occurred under all irrigation regimes. We concluded that nutrient requirements do not differ between tall and semi dwarf wheat culti‐vars under any irrigation regime. Raising the recommended level of nutrients, particularly nitrogen, should be considered for all cultivars, both tall and semidwarf.  相似文献   

14.
太行山前平原农田生态系统氮素循环与平衡研究   总被引:17,自引:0,他引:17  
在中国科学院栾城生态农业试验站1公顷小麦玉米轮作农田,运用乙炔抑制原状土柱培育法、微气象学法和陶土头多孔杯水量平衡法分别定量测定了氮素硝化反硝化损失、氨挥发、NO3--N淋溶损失等氮素循环转化途径。研究结果表明,每年因氨挥发而造成的肥料氮损失量为N.60.kg/hm2,占施入肥料氮的15%;NO3--N淋溶损失量为N.68~4.kg/hm2,占肥料施用量的1.4%2~0.3%;每年因硝化反硝化过程造成的肥料损失量为N.2.021~0.49.kg/hm2,占肥料施入量的0.51%1~.37%。氨挥发、NO3--N淋溶和硝化反硝化损失主要发生在施肥灌溉/降雨之后,玉米季肥料损失明显高于小麦生长季节。氨挥发和NO3--N淋溶损失是本区域农田氮素损失的主要途径,是氮肥利用率低的重要原因。在当地农民所采用的常规农业管理措施下,小麦玉米轮作农田氮素平衡处于盈余状态,小麦季盈余N+115.5~+124.5.kg/hm2,明显高于玉米季;由于玉米季氮素损失严重,氮素盈余较少,甚至出现亏缺,玉米季氮素平衡状况为-54.6~+14.3.kg/hm2。  相似文献   

15.
水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响   总被引:3,自引:1,他引:2  
为给强筋小麦(Triticum aeativum L.)高产优质栽培的水、氮合理运筹提供理论依据,在高产地力条件下,选用强筋小麦品种济麦20,设置不施氮(N0)、施氮180 kg/hm2 (N1)、240 kg/hm2 (N2)3个施氮水平,每个施氮水平下设置不灌水(W0)、底墒水+拔节水+开花水(W1)、底墒水+冬水+拔节水+开花水(W2)、底墒水+冬水+拔节水+开花水+灌浆水(W3)4个灌水处理,每次灌水量均为60 mm,研究了水氮互作对麦田耗水量、土壤硝态氮运移、氮素利用效率和水分利用效率的影响。结果表明,(1)增加施氮量,开花期和成熟期0—140 cm各土层的土壤硝态氮含量显著升高;增加灌水时期,土壤硝态氮向深层的运移加剧,成熟期0—80 cm各土层的土壤硝态氮含量降低,120—140 cm土层的土壤硝态氮含量升高。N1W1处理在开花期0—60 cm土层的土壤硝态氮含量较高,成熟期土壤硝态氮向100—140 cm土层运移少,有利于植株对氮素的吸收。(2)随施氮量的增加,子粒产量先升高后降低,以N1最高。N1水平下,W1处理获得了较高的子粒产量、子粒氮素积累量、氮素利用效率、氮肥农学利用率和氮肥偏生产力;在此基础上增加冬水(W2),上述指标无显著变化;再增加灌浆水(W3),上述指标显著降低。(3)施氮提高了小麦对土壤水的利用能力,随施氮量增加,土壤供水量及其占总耗水量的比例显著升高。N1水平下,W1处理获得了最高的水分利用效率;再增加灌水时期,水分利用效率显著降低,开花至成熟阶段的耗水模系数显著升高,灌水量占总耗水量的比例升高,降水量和土壤供水量占总耗水量的比例降低。本试验条件下,施氮为180 kg/hm2,灌底墒水+拔节水+开花水3水的N1W1处理,是兼顾高产、高效的水氮运筹模式。  相似文献   

16.
不同施钾量对旱作冬小麦产量、品质和生理特性的影响   总被引:4,自引:2,他引:2  
在河南洛阳孟津干旱试验区通过田间试验研究了不同施钾量对旱作冬小麦产量、品质、生理特性和钾肥回收率的影响,结果表明:适宜的钾肥用量能明显提高旱作区冬小麦产量、改善其品质和提高光合性能。钾肥用量在225 kg/hm2以下,随钾肥用量的增加冬小麦株高、穗数、穗粒数、千粒重和产量均明显增加。施钾量在75~150 kg/hm2能明显地增加冬小麦籽粒赖氨酸含量、出粉率、面粉沉淀值、面团形成时间和稳定时间,与K0处理相比,不同施钾处理的上述前5项指标分别增加了10.8%~13.5%、2.7%~11.8%、4.3%~13.3%、23.5%~41.2%、26%~34%,且弱化度降低28.6~31.6%。施钾为150 kg/hm2时能明显促进旱作冬小麦旗叶硝酸还原酶(NR)的活性,进一步提高钾肥用量则导致NR活性降低。在供试施钾量范围内,同一生育期旗叶和子粒中的GPT活性、叶绿素和PSII随施钾量的增加而提高,而同一处理随生育期的延续而降低。冬小麦植株钾素积累量随施钾量的增加而增加,钾素当季回收率则随着施钾量的增加而减少,施钾75 kg/hm2的钾素当季回收率最高,为43.3%。  相似文献   

17.
Optimum quantity of fertilizers and irrigation water to minimize the cost and increase the production is need of the day. Consequently, an experiment was conducted at CCS Haryana Agricultural University, Hisar during the winter season of 2014–15 and 2015–16 to study the effect of irrigation schedules and fertilizer levels on coriander. Irrigation at 25, 50, 75, and 100 days after sowing (DAS) gave higher growth and yield attributing characters, seed yield (16.48 q/ha), biological yield (50.79 q/ha), net return (Rs. 138,950.6), and benefit to cost ratio (2.36), which resulted in 40.9% and 15.3% increase in seed and biological yield over two irrigations, respectively. The application of fertilizers, i.e., N60 and P50 kg/ha, registered higher growth, seed yield attributes, consumptive use of water, whereas, net return and benefit to cost ratio was recorded maximum under fertilizers, i.e., N75 and P62.5 kg/ha. The interaction effect of irrigation and fertilizer on seeds per umbellet and seed yield was also found to be significantly positive. Hence, in Northern Plains of India four irrigations at 25, 50, 75, and 100 DAS in association with nitrogen 75 kg/ha and phosphorus 62.5 kg/ha is more profitable in coriander crop.  相似文献   

18.
2008~2009年通过大田试验,研究了限水灌溉条件下,不同施氮量对冬小麦产量、氮素利用、土壤硝态氮动态变化及氮素平衡的影响。结果表明,施用氮肥显著增加小麦穗数和穗粒数,对千粒重无显著影响。作物产量、吸氮量与施氮量均呈抛物线关系,施氮量超过N240 kg/hm2,产量和吸氮量随施氮量增加略有降低。小麦起身期后,0—100 cm土层都有硝态氮分布,且随土层深度增加而减少;相同土层则随施氮量的增加而增加。土壤硝态氮积累量随生育期推进而降低,N0和N120处理分别在拔节期和开花期后表现出氮素亏缺;成熟期,土壤表观盈余以残留为主,表观损失量占小部分。氮肥表观利用率、农学利用率随施氮量增加呈降低趋势,而氮素残留率随施氮量增加呈增加趋势。在本试验条件下,施氮量在N 180~220 kg/hm2水平可以达到产量、氮素表观利用率、氮素残留率的较好结合,是限水灌溉下兼顾经济效益与环境效益的适宜施氮量。  相似文献   

19.
通过对设施黄瓜进行灌水量、灌溉方式、水氮根区位置的不同耦合,研究了局部根区灌溉下不同水氮耦合措施对设施黄瓜生长、土壤中硝态氮分布及累积的影响.结果表明,灌水量、灌溉方式、水氮根区供应位置对黄瓜地上部生物量及产量存在着不同的交互作用.亏缺灌溉量处理的地上部生物量及产量均低于相应灌溉方式下的正常水量处理.相同灌溉量处理条件下,交替根区灌溉的黄瓜生物量与产量显著高于两侧均水均氮处理,以正常交替水氮异区处理黄瓜地上部生物量及果实产量最大,分别达到1 143kg/hm2(干重)和1.75×105 kg/hm2(鲜重);而固定根区灌溉下,尤其在水氮异区条件下,生物量与产量则下降.在亏缺灌溉量下,交替根区灌溉处理的黄瓜生物量以及产量与常规充足灌溉处理没有显著差异.在正常灌溉量条件下,通过对局部根区灌溉下不同水氮耦合对土壤中硝态氮分布的分析表明,施氮是造成土壤中硝态氮积累的原因,土壤水分的垂向运动是影响硝态氮向下淋洗的一个主要因子.固定水氮同区、交替水氮同区处理硝态氮向下淋洗较强,水氮异区处理硝态氮向下淋洗相对较弱.交替水氮异区处理氮素主要累积在0-110 cm土层,深层累积量显著低于其他水氮耦合处理.综合黄瓜生长、土壤硝态氮淋洗等因素考虑,交替水氮异区处理是最佳的水氮耦合处理方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号