首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combined compound-specific stable carbon isotopic methods and fatty acid abundance determinations have been used to examine feeding preferences and C allocation in organisms where direct observation of feeding is difficult. In order to examine the effect of differing diets on the δ13C values of fatty acids and sterols of Collembola, the diets of two collembolan species, Folsomia candida and Proisotoma minuta, were switched from a yeast diet to one of four isotopically distinct diets, and the δ13C values of the lipids monitored over the next 39 d. Cholesterol remained the only sterol detected in both collembolan species, despite the diets containing widely differing sterol compositions. The δ13C values of collembolan lipids recorded after long term feeding were often different to those of the same components in the diet, indicating that fractionation or partitioning occurs during digestion, assimilation and biosynthesis within the Collembola, thereby shifting consumer lipid δ13C values away from those of the corresponding dietary components. The rates of change of δ13C values differed among compounds, with half-lives ranging between 29 min and 14 d. Some of these differences appear to be related to the abundance of dietary components, such that fatty acids present in high abundance in the diet (e.g. 18:2(n−6)) were rapidly assimilated in high proportions into collembolan lipids, leading to a rapid change in δ13C values. Similarly, isotopic turnover in the 16:1(n−7) fatty acid, present in the newly presented diets in only low abundances, was significantly correlated to the rate of removal of this component from the consumer fatty acid pool. The rates of change of δ13C values in P. minuta lipids did not vary significantly with diet, whilst the rates of change of δ13C values of lipids in F. candida were affected by the diets the Collembola consumed. Results of an experiment providing F. candida and P. minuta with two diets of different quality demonstrated that F. candida responded to the high quality diet with increased growth and fecundity, whilst P. minuta responded with increased fecundity only. Thus, the abilities of the two species to respond to diets of varying quality, amongst other factors, is concluded to lead to differences in the rates of change of δ13C values reflecting differences in lipid turnover.  相似文献   

2.
Fatty acid (FA) analysis is used as a promising tool to investigate trophic interactions in soil food webs. The FA profile of neutral lipids in consumers is affected by the diet, and the occurrence and amount of certain FAs can reflect feeding strategies. We investigated the lipid composition of the Collembola Folsomia candida, Heteromurus nitidus and Protaphorura fimata with the fungus Chaetomium globosum as food source. The impact of environmental temperature and life stage was assessed, with special respect to linoleic acid (18:2ω6,9) as a marker FA for fungal feeding. In all Collembola species the ratio of C16/C18 in neutral lipid fatty acids (NLFAs) increased with decreasing temperature. In the NLFAs of F. candida and H. nitidus the Unsaturation Index and the amount of 18:2ω6,9 decreased with temperature, whereas in P. fimata effects were the opposite. The composition of phospholipid fatty acids (PLFAs) differed between species, but was little affected by temperature. The degree of unsaturation in NLFAs increased with the age of Collembola, mainly due to higher amounts of 18:2ω6,9 and a lower proportion of 18:1ω9. The biomarker linoleic acid represented over 20% of FAs in all fungal feeding Collembola. Despite considerable influence of temperature and life stage on its proportion, the amount was always higher than in individuals reared on other diets. This suggests that linoleic acid can serve as marker for fungal feeding independent of such physiological variations in Collembola.  相似文献   

3.
We used fatty acid (FA) analysis to investigate green algae and cyanobacteria as food sources for Collembola. We studied the effects of food quality on body mass and on neutral lipid (NLFA) and phospholipid (PLFA) fatty acid patterns of Collembola. Folsomia candida, Heteromurus nitidus and Protaphorura fimata were fed with common green algae (Chlorella vulgaris), filamentous soil algae (Klebsormidium flaccidum), cyanobacteria (Nostoc commune) and baker's yeast (Saccharomyces cerevisiae). Body mass of F. candida and H. nitidus was highest when reared on C. vulgaris and S. cerevisiae. P. fimata gained the most weight when fed baker's yeast. K. flaccidum and N. commune as resources resulted to low biomass in all Collembola. The four diets caused significant differences in the NLFA and PLFA composition of Collembola after six weeks of feeding. Two new trophic biomarker FAs indicating algal diets were assigned with 16:3ω3,6,9 and 16:2ω6,9, which were only present in NLFAs of Collembola consuming C. vulgaris and K. flaccidum. The amount of FAs from the ω7 family was high in Collembola lipids with cyanobacteria and yeast as food sources, whereas only trace amounts occurred in the NLFA fraction with algae as the resource. In summary, common soil algae and cyanobacteria differed in food quality for Collembola, depending on their growth form (unicellular versus filamentous) and/or secondary metabolites (e.g. cyanobacteria). The new FA biomarkers detected will allow further investigation of these trophic interactions under field conditions; for example, assessing the role of collembolan grazers in the formation of biological soil crusts.  相似文献   

4.
Fatty acid (FA) analysis is a promising tool to study trophic relationships in soil food webs. We determined FA biomarkers to trace bacterial food sources (Bacillus megaterium, Pseudomonas putida, Enterobacter aerogenes) of Collembola (Heteromurus nitidus, Protaphorura fimata, Folsomia candida). In addition, δ15N, δ13C, C/N ratio, body weight and NLFA/PLFA ratio (neutral lipid/phospholipid fatty acids) of Collembola were assessed. These measures indicated that P. putida ranked first, B. megaterium second and E. aerogenes third in food quality. FAs specific for bacteria were found in the NLFAs of the Collembola reflecting the respective bacterial diet. Biomarker FAs for gram-positive bacteria were methyl branched i14:0, i15:0, a15:0 and i17:0. Consumption of gram-negative bacteria was reflected by the cyclic form cy17:0 (E. aerogenes, P. putida) and by 16:1ω5 (P. putida).  相似文献   

5.
The trophic preferences of soil invertebrates such as Collembola are often determined by the analysis of gut contents, or through visual observations of the location of individuals. As an alternative approach, two species of Collembola, Folsomia candida and Proisotoma minuta, were offered a choice of the soil fungus Cladosporium cladosporioides or the bacterial feeding nematode Panagrellus redivivus; each exhibited distinct fatty acid profiles and stable carbon isotopic compositions. Over 21 days, the fatty acids i15:0, i17:0, 18:1(n-7) and 18:2(n-6) all increased in abundance in both collembolan species consistent with direct routing from the nematode dietary choice which contained a high concentration of these components. Collembolan fatty acid δ13C values increased by between 5.7 and 21.6‰ over 21 days reflecting those of the nematode diet. Therefore, both fatty acid profiles and δ13C values were consistent with a strong feeding preference of F. candida and P. minuta for the nematodes over the offered fungi. In fact, neither collembolan species consumed any detectable amount of C. cladosporioides. Comparison of the δ13C values of the 16:0 and 18:0 fatty acids (which are biosynthesised by the Collembola as well as directly incorporated from the diet) and the 16:1(n-7) and 18:2(n-6) components (which are not biosynthesised by the Collembola) demonstrated that the input of distinct pools of C can lead to large shifts in δ13C values between diet and consumer. The fatty acids that were not biosynthesised by Collembola better reflected the δ13C values of the diet helping to differentiate between biosynthesised and directly incorporated compounds; an important prerequisite in the interpretation of compound-specific δ13C values in trophic behaviour tests. The combination of fatty acid distributions and δ13C values is a significant improvement on traditional methods of examining feeding preferences, since it determines directly the assimilated dietary carbon rather than relying on indirect observations, such as the proximity of individuals to a defined food source.  相似文献   

6.
To assess the potential of fatty acid (FA) compositions to act as biomarkers in the soil food web, two species of Collembola, Folsomia candida and Proisotoma minuta, were switched to four possible diets: Cladosporium cladosporioides (a common soil fungus), Panagrellus redivivus (a bacteria feeding nematode), Zea mays (maize) and Alnus glutinosa (alder). The change in FA content of the Collembola was observed over the following 39 days. The four diets produced significant shifts in the FA compositions of the Collembola, with P. redivivus causing the most extreme changes; Collembola fed P. redivivus gained complex FA compositions similar to those of the nematode diet. Changes in the relative abundances of some FAs were found to follow negative exponential curves, as the components either accumulated in, or were removed from, the FA pool in the Collembola; abundance half-lives varied between 0.5 and 22.4 days, indicating that Collembolan FA compositions changed readily with the input of new exogenous components. The results demonstrate that Collembolan FA compositions are influenced by diet, and that the abundances of FAs such as i15:0, i17:0 and 18:1(n-7) may be used as biomarkers of nematode consumption by Collembola. In contrast, the C20 polyunsaturated FAs cannot be used as biomarkers for nematode predation as Collembola possess the ability to biosynthesise high abundances of these compounds when not provided by the diet.  相似文献   

7.
We investigated the effect of the fungal toxin sterigmatocystin on the fitness and stable isotope fractionation of two Collembola species (Folsomia candida and Heteromurus nitidus) feeding on mixed vs. single diets. Four knock out mutants of Aspergillus nidulans with the sterigmatocystin production blocked at different steps along the biosynthetic pathway were combined in mixed diets with either the high quality fungus Cladosporium cladosporioides or the low quality fungus A. nidulans (wildtype). Using fungi labeled with stable isotopes (13C and 15N) we evaluated the incorporation of carbon and nitrogen from individual fungi. We hypothesised that (i) Collembola fitness decreases with the putative toxicity of the fungi (ii) Collembola benefit from ingestion of mixed diets due to toxin dilution and (iii) fractionation of 13C and 15N is more pronounced in more toxic diets. Mixed diets did not uniformly improve fitness. Toxin dilution, however, played an important role in Collembola fitness. The fractionation of 13C and 15N varied with sterigmatocystin mutant strains, and Collembola species often differed from the expected enrichment per trophic level. The results show that fungal toxin production may affect stable isotope fractionation, presumably by altering consumer excretion rates necessary for detoxification.  相似文献   

8.
Collembola are abundant and ubiquitous soil decomposers, being particularly active in the rhizosphere of plants where they are assumed to be attracted by high microbial activity and biomass. While feeding on root associated microorganisms or organic matter they may also ingest plant roots, e.g. particularly root hairs and fine roots. Employing stable isotope analysis we investigated Collembola (Protaphorura fimata Gisin) feeding preferences and types of ingested resources. We offered Collembola two resources with distinct isotope signatures: a C4 plant (Zea mays L.) planted in soil mixed with 15N labelled litter of Lolium perenne L. (C3 plant). We hypothesised that Collembola obtain their nutrients (C and N) from different resources, with their carbon being mainly derived from resources that are closely associated to the plant root, e.g. root exudates, causing enrichment in 13C in Collembola tissue, while the incorporated nitrogen originating from litter resources. In contrast to our hypothesis, stable isotope analysis suggests that in absence of plant roots Collembola derived both the incorporated C and N predominantly from litter whereas in presence of plant roots they switched diet and obtained both C and N almost exclusively from plant roots.The results indicate that Collembola in the rhizosphere of plants, being assumed to be mainly decomposers, in fact predominately live on plant resources, presumably fine roots or root hairs, i.e. are herbivorous rather than detritivorous or fungivorous. These findings have major implications on the view how plants respond to decomposers in the rhizosphere.  相似文献   

9.
Although soil Collembola are known to contribute to soil carbon (C) cycling, their contribution to the mineralization of C sources that differ in bioavailability, such as soil organic C (SOC) and leaf litter, is unknown. Stable C isotopes are often used to quantify the effects of both soil C and litter C on C mineralization. Here, 13C-labeled litter was used to investigate the effects of Collembola (Folsomia candida) on the mineralization of both SOC and litter C in laboratory microcosms. The three microcosm treatments were soil alone (S); soil treated with δ13C-labeled litter (SL); and soil treated with δ13C-labeled litter and Collembola (SLC). The presence of Collembola did not significantly affect soil microbial biomass or litter mass loss and only had a small effect on CO2 release during the first week of the experiment, when most of the CO2 was derived from litter rather than from SOC. Later, during the experiment (days 21 and 63), when litter-derived labile C had been depleted and when numbers of Collembola had greatly increased, Collembola substantially increased the emission of SOC-derived CO2. These results suggest that the effect of Collembola on soil organic C mineralization is negatively related to C availability.  相似文献   

10.
We hypothesized that the combined effect of rising levels of atmospheric carbon dioxide (CO2) and increasing use of genetically modified (GM) crops in agriculture may affect soil food-webs. So we designed a study for the assessment of the effects of elevated CO2 (eCO2) concentrations and GM barley on a soil-mesofauna community employing a 2nd tier mesocosm test system. The GM barley, Hordeum vulgare cv. Golden Promise, had a modified content of amino acids and it was compared with three non-GM barley cultivated varieties including the isogenic line. Our mesocosm experiment was conducted in a greenhouse at ambient (aCO2) and eCO2 (+80 ppm) levels and included a multispecies assemblage of Collembola, Acari and Enchytraeidae with either a GM or conventional spring barley varieties. To detect food-web changes we added dried maize leaves naturally enriched in δ13C and δ15N relative to the soil substrate. Soil, plants and animals were collected after five and eleven weeks. We found that the eCO2 concentration did not affect the plant biomass, but the predatory mite and two collembolan species showed significantly lower abundances at eCO2. The densities of three collembolan species (Folsomia fimetaria, Proisotoma minuta and juveniles of Mesaphorura macrochaeta) was significantly lower in the GM treatment compared to some of the non-GM varieties. F. fimetaria was less abundant in presence of GM barley compared to the cultivated barley variety “Netto” at both CO2 levels, while the density of P. minuta was significantly reduced with the GM barley compared to variety “Netto” at aCO2 and the isogenic variety at eCO2. Maize litter acted as a food source for the community, as it was revealed by δ13C values in microarthropods. Microarthropod δ13C decreased over time, which indicates a diet change of the species towards carbon derived from barley, due to maize litter decomposition. The industrially produced CO2 gas also had a role as an isotopic marker, as the different δ13C values were reflected in the barley and in the collembolan species. GM barley did not affect δ13C and δ15N values of soil animals indicating that the overall trophic structure of the mesofauna community was not changed compared to the non-GM cultivated varieties. The mesocosm methodology integrating stable isotope analysis demonstrates the potential of the multi-species mesocosm as a tool to detect and track changes in the soil trophic interactions in response to environmental pressures, climate and novel agricultural crops.  相似文献   

11.
The effects of biochar (maize biochar – MBC, wood biochar – WBC) and unfermented or fermented hydrochar (HTC) on the euedaphic Collembola Protaphorura fimata and on spring wheat were investigated in greenhouse experiments. The impact of char type, amount of fermented HTC, and MBC-Collembola interactions were assessed. Generally, shoot and root biomass as well as abundance of P. fimata were not affected by the different chars. However, with increasing amounts of fermented HTC the abundance of P. fimata declined, whereas shoot biomass of wheat increased. Moreover, MBC altered root morphology and resulted in thicker roots with higher volume. The latter was not apparent when Collembola were present.  相似文献   

12.
Fungi are primary agents of organic matter decomposition in forests. Although invertebrate grazing affects fungal biomass and morphology, the species-specific consequences of these interactions are little understood. Using three collembola species (Folsomia candida, Protaphorura armata, Proisotoma minuta) we employed a multi-trophic approach to investigate the individual effects of invertebrate grazing on four species of saprotrophic basidiomycete fungi growing in two species (one fungus: one collembola) soil microcosms. We studied these effects at three trophic levels: the rate of wood decay brought about by the fungi was assessed; fungal growth was characterized across multiple time points using a range of image analysis parameters (radial extension, hyphal coverage, fractal dimension); and collembola abundance was determined at the end of the experiment. Collembola species had different impacts both within and across fungal species; F. candida had the greatest effect on fungal mycelia whereas P. armata often had little impact. Fungal species varied in their resilience to grazing; all collembola species modified Phanerochaete velutina and Hypholoma fasciculare morphology, that of Resinicium bicolor was only markedly affected by F. candida, and effects on Phallus impudicus were negligible. In the case of H. fasciculare, these grazing effects translated into effects on the rate of fungus-induced wood decay: F. candida and P. armata, but not P. minuta, reduced wood decay rate compared to ungrazed controls. Rate of wood decay was unaffected in the other three fungal species. Changes in collembola population size were generally consistent across fungal species, with each species achieving a greater abundance on P. velutina than on H. fasciculare and P. impudicus. The collembola species did, however, respond differently to R. bicolor, with F. candida being more successful than P. armata. Our study suggests that a wide range of impacts can occur during fungus–collembola interactions, and that caution should be exercised when treating saprotrophic fungi and mycophagous collembola as uniform functional components.  相似文献   

13.
《Pedobiologia》2014,57(3):171-179
Arbuscular mycorrhiza (AM) mycelia networks are important for nutrient allocation in many plants, but fungivorous soil invertebrates such as Collembola can modulate the symbiosis by grazing on the extra-radical mycelium (ERM). This study employs a dual biomarker approach with stable isotopes and fatty acids to disentangle trophic interactions of Collembola in a plant-fungal soil system with maize (Zea mays) and the AM fungus Glomus mosseae. To separate ERM and root mediated effects, root (RC) and hyphal compartments (HC) were used, and the latter was spiked with labeled 15N substrate. The euedaphic Collembola species Protaphorura fimata was introduced as the fungal and root grazer. Generally, the presence of Collembola in RC fostered biomass and phosphorous uptake in roots colonized with AM. Nitrogen transport from HC to RC was not altered, indicating that Collembola did not disrupt the ERM network via grazing. Collembola–fungus interactions fostered AM hyphal proliferation in HC, whereas in RC it induced a change from fungal senescence with build-up of storage reserves, to an active foraging phase. A distinct diet switch by Collembola between HC and RC indicated different ERM palatability meditated by the presence or absence of the host plant. Overall, Collembola grazing increased ERM nutrient sequestration, particularly phosphorus, and in turn plant performance. Collembola modified fungal phenology, favoring fungal colonization over reproductive phases. These trophic interactions were strongly determined by fungal life stage, with the establishment of a functional mycorrhiza as a crucial factor.  相似文献   

14.
In soil a high number of species co-exist without extensive niche differentiation, which was assigned as ‘the enigma of soil animal species diversity’. In particular, the detritivores are regarded as food generalists. We have investigated nitrogen stable isotope ratios (15N/14N) of a major decomposer group, the Collembola, to evaluate trophic relationship and determine feeding guilds. Additionally, the δ15N values of potential food sources such as mosses, lichens and other plant derived material (bark, nuts, leaves) were analysed. The natural variation in nitrogen isotopes was assessed in 20 Collembola taxa from three deciduous forest stands. The δ15N signature formed a continuum from phycophages/herbivores to primary and secondary decomposers, reflecting a gradual shift from more detrital to more microbial diets. The δ15N gradient spanned over 9 δ units, which implies a wide range in food sources used. Assuming a shift in 15N of about 3 ‰ per trophic level, the results indicate a range of three trophic levels. These variations in 15N/14N ratios suggest that trophic niches of Collembola species differ and this likely contributes to Collembola species diversity.  相似文献   

15.
Soil invertebrates are important in nutrient cycling in soils, but the degree to which mesofauna such as Collembola are responsible for the direct movement of carbon (C) from the litter layer into soil has not yet been ascertained. We used naturally occurring stable C isotopic differences between a C4 soil and alder leaves (C3) to examine the effect of the collembolan Folsomia candida on C translocation into soil in laboratory microcosms. Collembolan numbers greatly increased in the presence of alder, but despite large collembolan populations there were no changes in decomposition rate (measured as litter mass loss, cumulative respired CO2 and alder C:N ratios). Small changes in the δ13C values of bulk soil organic matter were detected, but could not be assigned to collembolan activity. However, mean δ13C values of soil microbial phospholipid fatty acids (PLFAs) were significantly lower in the presence of alder and Collembola together, demonstrating that collembolan activities resulted in greater availability of litter-derived C to the soil microbial community. Additionally, the presence of Collembola resulted in the translocation of alder-derived compounds (chlorophyll and its breakdown product pheophytin) into soil, demonstrating that Collembola modify soil organic matter at the molecular level. These results are consistent with deposition of collembolan faeces in underlying soil and demonstrate that despite their small size, Collembola contribute directly to C transport in the litter-soil environment.  相似文献   

16.
17.
Long‐term dynamics of amino acids (AAs), from a bare fallow soil experiment (established in 1928 at INRA‐Versailles, France), were examined in unamended control (Con) plots and plots treated with ammonium sulphate (Amsul), ammonium nitrate (Amnit), sodium nitrate (Nanit) or with animal manure (Man). Topsoil (0–25 cm) from 1929, 1963 and 1997 was analysed for C, N and 15N content and distribution of 18 amino acids recovered after acid hydrolysis with 6 m HCl. With time, soil N, C and AA content were reduced in Con, Amsul, Amnit and Nanit, but increased in Man. However, the absolute N loss was 3–11 times larger in Man than Nanit, Amsul, Amnit and Con, due to the much higher N annual inputs applied to Man. From 1929 to 1997 in Con, Amsul, Amnit and Nanit the whole soil and non‐hydrolysable‐N pool δ15N increased associated with the loss of N (indicative of Rayleigh 15N/14N fractionation). No δ15N change from 1929 to 1997 was found in the hydrolysable AA‐N (HAN) pool. Fertilizer N inputs aided stabilization of soil AA‐N, as AA half‐life in the mineral N fertilizer treatments increased from 34 years in 1963 to 50 years in 1997. The δ15N values of alanine and leucine reflected both source input and 15N/14N fractionation effects in soils. The δ15N increase of ornithine (~6‰) was similar to the whole soil. The δ15N change of phenylalanine in Con (decrease of 7‰) was related to its proportional loss since 1929, whereas for Amsul, Amnit, Nanit and Man it was associated with isotope effects caused by the fertilizer inputs. However, the soil δ15N value of most individual amino acids (IAAs) did not significantly change over nearly 70 years, even with mineral or organic N inputs. We conclude for these bare fallow systems that: (i) δ15N changes in the whole soil and non‐hydrolysable AA pool were solely driven by microbial processes and not by the nature of fertilizer inputs, and (ii) without plant inputs, the δ15N of the HAN pool and (most) IAAs may reflect the influence of plant–soil interactions from the previous (arable cropping) rather than present (fallow) land use on these soil δ15N values.  相似文献   

18.
Stable isotope analysis has been used as a powerful tool in food web studies in terrestrial ecosystems. In addition the occurrence and abundance of fatty acids may serve as indicator for feeding strategies of soil animals. Here we combine both approaches and investigate the fatty acid composition, δ13C values of bulk tissues and individual fatty acids in soil organisms. The fungi Chaetomium globosum and Cladosporium cladosporioides were isotopically labelled by fructose derived from either C3 or C4 plants, and the fungal-feeding nematode Aphelenchoides sp. was reared on C. globosum. Fungi and nematodes were used as diet for the Collembolan Protaphorura fimata. The sugar source was fractionated differently by fungal lipid metabolism in a species-specific manner that points to a sensitivity of physiological processing to the non-random distribution of 13C/12C isotopes in the molecule. As a general trend stearic acid (18:0) was depleted in 13C compared to the precursor palmitic acid (16:0), whereas its desaturation to oleic acid (18:1 ω9) favoured the 13C-rich substrate.Fatty acid profiles of P. fimata varied due to food source, indicating incorporation of dietary fatty acids into Collembolan tissue. Individuals feeding on fungi had lower amounts in C20 fatty acids, with monoenoic C20 forms not present. This pattern likely separates primary consumers (fungivores) from predators (nematode feeders). The isotopic discrimination in 13C for bulk Collembola ranged between −2.6 and 1.4‰ and was dependent on fungal species and C3/C4 system, suggesting differences at metabolic branch points and/or isotope discrimination of enzymes. Comparison of δ13C values in individual fatty acids between consumer and diet generally showed depletion (i.e. de novo synthesis) or no changes (i.e. dietary routing), but the fractionation was not uniform and affected by the type of ingested food. Fatty acid carbon isotopes were more variable than those of bulk tissues, likely due to both the distrimination by enzymes and the different lipid origin (i.e. neutral or polar fraction).  相似文献   

19.
The δ13C and δ15N values of sugarcane plant tissues, decomposing harvest residues, soil and the casts and body tissues of the earthwormPontoscolex corethrurus were determined. Little variation in δ13C values was found between plant parts. The δ13C values of the decomposing harvest residues declined and became more variable after 148 days of exposure in the field. In the decomposing residues, δ13C values of the neutral detergent fibre fraction were similar to those of the whole tissues while those of the proximate lignin were more negative. The δ15N values of the residues also declined over time after a short initial delay.P. corethrurus populations are more intimately associated with the roots of sugarcane than with the bulk soil. Tissue δ13C values suggest that the earthworm diet is similar to or more enriched in13C than sugarcane tissues and is substantially more enriched than the soil C. Earthworm tissues have similar levels of15N enrichment to both the soil and plant tissues. These data are consistent with the hypothesis that this earthworm derives much of its assimilated C relatively directly from organic matter associated with the roots and decomposing harvest residues.  相似文献   

20.
Several studies reported variable effects of earthworms on microarthropod density and variety. The present study tests the attraction of seven collembolan species belonging to four families, to the excreta of two earthworm species belonging to two families and two ecological categories, Aporrectodea giardi and Hormogaster elisae. Our objectives were (1) to better understand the impact of earthworms on the composition and density of Collembola communities, and (2) to dissect mechanisms involved in the attraction. Experiments were performed in Petri dishes containing two half-disks of filter paper, one with earthworm excreta, i.e. casts or a mix of mucus and urine, and the other with natural soil aggregates or water, respectively. Collembola were introduced half-way between the two half-disks and their number was counted on each half-disk and compared over 140 min. The content of ammonium in casts and mucus-urine of both earthworm species was analyzed to determine whether it altered the responses of Collembola faced with different types of earthworm excreta. The behaviour of Collembola varied strongly among the seven collembolan species, and with type of excreta and earthworm species. Six collembolan species were attracted to the mucus and urine of at least one earthworm species. The mucus-urine mixture of A. giardi, with low ammonium content, was generally more attractive than that of H. elisae, which was even repulsive in some cases, probably because of high levels of ammonium. The attraction to casts of the two earthworm species was less frequent and more variable. Folsomia candida was neither attracted to the casts nor to the mucus and urine of any earthworm species. Therefore, (1) earthworm species with different ecology, and different nitrogen excretion pathway impact differently the behaviour of collembolan species belonging to the same family or arising from the same habitat, and (2) variations in the sensitivity to ammonium among collembolan species partially explain the variable response of Collembola to earthworm excreta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号