首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bioaccumulation of phthalate acid esters (PAEs) from industrial products and their mutagenic action has been suggested to be a potential threat to human health. The effects of the most frequently identified PAE, Di-n-butyl phthalate (DBP), and its biodegradation, were examined by comparison of two small scale plots (SSP) of integrated vertical-flow constructed wetlands. The influent DBP concentration was 9.84 mg l−1 in the treatment plot and the control plot received no DBP. Soil enzymatic activities of dehydrogenase, catalase, protease, phosphatase, urease, cellulase, β-glucosidase, were measured in the two SSP after DBP application for 1 month and 2 months, and 1 month after the final application. Both treatment and control had significantly higher enzyme activity in the surface soil than in the subsurface soil (P<0.001) and greater enzyme activity in the down-flow chamber than in the up-flow chamber (P<0.05). In the constructed wetlands, DBP enhanced the activities of dehydrogenase, catalase, protease, phosphatase and inhibited the activities of urease, cellulase and β-glucosidase. However, urease, cellulase, β-glucosidase activities were restored 1 month following the final DBP addition. Degradation of DBP was greater in the surface soil and was reduced in sterile soil, indicating that this process may be mediated by aerobic microorgansims. DBP degradation fitted a first-order model, and the kinetic equation showed that the rate constant was 0.50 and 0.17 d−1, the half-life was 1.39 and 4.02 d, and the r2 was 0.99 and 0.98, in surface and subsurface soil, respectively. These results indicate that constructed wetlands are able to biodegrade organic PAEs such as DBP.  相似文献   

2.
Soil enzyme activities are useful indicators of soil quality as they are very sensitive to disturbance. Sample storage or pre-treatments could affect the results in these assays, which are normally determined in fresh samples, kept cold or frozen. The objectives of this study were to (i) evaluate the effect of air-drying or air-drying and rewetting on β-glucosidase, acid phosphatase and urease activities in soils from different locations, degradation status and sampling seasons, and (ii) assess if air-drying or air-drying and rewetting is an accurate sample storage and pre-treatment procedure for enzyme activities in soil quality evaluations under semiarid Mediterranean conditions. Our results showed that urease, phosphatase and β-glucosidase activities were hardly affected by air-drying of degraded and non-degraded soils from the two locations studied in all seasons. Short incubations (4, 8 and 12 d at 23 °C) of rewetted air-dried soil at 55% of water-holding capacity showed different patterns depending on the enzyme studied. Urease and β-glucosidase activities were relatively stable during incubation, with several significant (P<0.05) shifts up and down in some soils and samplings. However, acid phosphatase showed an increase in activity with incubation, of between 5% and 50% relative to air-dried samples. These increases followed no pattern and were unrelated to soil characteristics or sampling date. Hence, urease, phosphatase and β-glucosidase activities determined in air-dried soil samples seem to be representative of those obtained under field-moist conditions. In contrast, short incubations of rewetted soil samples can produce fluctuations in these enzyme activities, mainly of acid phosphatase, and estimations in these conditions are not so representative of field-moist soil values.  相似文献   

3.
淹水厌氧培养对水稻土中酶活性的影响   总被引:4,自引:0,他引:4  
WANG Xiao-Chang  LU Qin 《土壤圈》2006,16(4):532-539
An incubation experiment with soil water content treatments of 0.15 (W1), 0.20 (W2), and 0.40 (W3) g g^-1 soil was carried out for two months to investigate the activities of important enzymes involved in C, N, P, and S cycling in a paddy soil from the Taihu Lake region, China, under waterlogged and aerobic conditions. Compared with air-dried soil, waterlogging resulted in a significant decrease (P ≤ 0.05) of fluorescein diacetate (FDA) and /3-D-glucosidase activities, and this effect was enhanced with increasing waterlogging time. Waterlogging also significantly inhibited (P ≤ 0.05) arylsulfatase as well as alkaline and acid phosphatase activities, but did not decrease the activities with the increase in waterlogging time. Short-term waterlogging did not affect urease activity, but prolonged waterlogging decreased it markedly. In contrast, the aerobic incubation (W1 and W2 treatments) significantly increased (P ≤ 0.05) FDA, alkaline phosphatase, and /3-D-glucosidase activities. With aerobic treatments the activities of FDA and alkaline phosphatase increased with incubation time, whereas /3-D-glucosidase activity decreased. A significant difference (P ≤ 0.05) was usually observed between the W1 and W2 treatments for the activities of FDA as well as alkaline and acid phosphatase; however,/3-D-glucosidase and urease were usually not significant (P ≤ 0.05). No activity differences were observed between waterlogging and aerobic incubation for arylsulfatase and urease.  相似文献   

4.
Extreme droughts and heat waves due to climate change may have permanent consequences on soil quality and functioning in agroecosystems. During November 2010 to August 2011, the Southern High Plains (SHP) region of Texas, U.S., a large cotton producing area, received only 39.6 mm of precipitation (vs. the historical avg. of 373 mm) and experienced the hottest summer since record keeping began in 1911. Several enzyme activities (EAs) important in biogeochemical cycling were evaluated in two soils (a loam and a sandy loam at 0–10 cm) with a management history of monoculture (continuous cotton) or rotation (cotton and sorghum or millet). Samplings occurred under the most extreme drought and heat conditions (July 2011), after precipitation resulted in a reduction in a drought severity index (March 2012), and 12 months after the initial sampling (July 2012; loam only). Eight out of ten EAs, were significantly higher in July 2011 compared to March 2012 for some combinations of soil type and management history. Among these eight EAs, enzymes key to C (β-glucosidase, β-glucosaminidase) and P cycling (phosphodiesterase, acid and alkaline phosphatases) were significantly higher (19–79%) in July 2011 than in March 2012 for both management histories regardless of the soil type (P > 0.05). When comparing all sampling times, the activities of alkaline phosphatase, aspartase and urease (rotation only) showed this trend: July 2011 > March 2012 > July 2012. Activities of phosphodiesterase, acid phosphatase, α-galactosidase, β-glucosidase and β-glucosaminidase were higher in July 2011 than July 2012 in at least one of the two management histories. Total C was reduced significantly from July 2011 to March 2012 in the rotation for both soils. Only the activities of arylsulfatase (avg. 36%) and asparaginase showed an increase from July 2011 to March 2012 for both soil types, which may indicate they have a different origin/location than the other enzymes. EAs continued to be a fingerprint of the soil management history (i.e., higher EAs in the rotation than in monoculture) during the drought/heat wave. This study provided some of the first evidence of the adverse effects of a natural, extreme drought and heat wave on soil quality in agroecosystems as indicated by EAs involved in biogeochemical cycling.  相似文献   

5.
Copper-based fungicides have been applied in vineyard soils for a long time, which has resulted in increasing soil Cu concentration. However, information relating to non-target effects of these fungicides on microorganisms of these soils is scarce. The aim of this study was to determine the potential enzyme activities of vineyard soils in relation to Cu content and evaluate the potential risks of long-term application of Cu-based fungicides. For this purpose, a wide range of soil samples, having different total, exchangeable and bioavailable Cu contents, were collected from six regions of quality wines located in the NW Iberian Peninsula, and the activity of dehydrogenase, β-glucosidase, urease and phosphatase were measured. Overall, the results obtained indicate adverse effects of Cu on dehydrogenase, β-glucosidase and phosphatase activities and an inconsistent effect on urease activity. Threshold Cu concentrations at which changes in the enzyme activities became evident were 150-200 mg total Cu kg−1 and 60-80 mg bioavailable Cu kg−1.  相似文献   

6.
Zhang  Wenyuan  Liu  Shun  Zhang  Manyun  Li  Yinan  Sheng  Keyin  Xu  Zhihong 《Journal of Soils and Sediments》2019,19(7):2913-2926
Purpose

Rhizosphere and fertilization might affect soil microbial activities, biomass, and community. This study aimed to evaluate the impacts of Phyllostachys edulis (moso bamboo) rhizospheres on soil nutrient contents and microbial properties in a moso bamboo forest with different fertilizer applications and to link soil microbial activities with abiotic and biotic factors.

Materials and methods

The experiment included three treatments: (1) application of 45% slag fertilizer (45%-SF); (2) application of special compound fertilizer for bamboos (SCF); and (3) the control without any fertilizer application (CK). Simultaneously, bulk soils and 0.5, 2.5, 4.5, and 6.5-year-old (y) bamboo rhizosphere soils were selected. Soil nutrient contents were analyzed. Microbial activities were evaluated based on the activities of soil enzymes including β-glucosidase, urease, protease, phosphatase, and catalase. The total microbial biomass and community were assessed with the phospholipid fatty acids (PLFAs) method.

Results and discussion

In the CK and SCF treatments, organic matter contents of rhizosphere soils were significantly higher than those of bulk soils. Soil β-glucosidase, urease, protease, phosphatase, and catalase activities in rhizosphere soils were higher than those of bulk soils, with the sole exception of β-glucosidase of 0.5 y rhizosphere soil in the 45%-SF treatment. Compared with the CK treatment, fertilizer applications tended to increase soil total PLFAs contents and changed soil microbial community. Moso bamboo rhizospheres did not significantly increase the total microbial biomass. In the SCF treatment, the Shannon index of bulk soil was significantly lower than those of rhizosphere soils.

Conclusions

Our results suggested that both rhizospheres and fertilizer applications could change the soil microbial community structures and that moso bamboo rhizosphere could increase microbial activity rather than biomass in the forest soils with different fertilizer applications.

  相似文献   

7.
《Geoderma》2005,124(1-2):193-202
In semiarid climate soils, the establishment of a plant cover is fundamental to avoid degradation and desertification processes. A better understanding of the ability of plants to promote soil microbial processes in these conditions is necessary for successful soil reclamation. Six different plant species were planted in a semiarid soil, in order to know which species are the most effective for the reclamation of semiarid areas. Six years after planting, the rhizosphere soils were studied by measuring chemical (pH, electrical conductivity, total organic carbon and other carbon fractions), physical (% of saggregates), microbiological (microbial biomass carbon and soil respiration), and biochemical (dehydrogenase, phosphatase, β-glucosidase and urease activities) parameters. In general, in all the soil–plant systems plant nutrients, organic matter and microbial activity increased compared to the control soil. For some species, such as Rhamnus lycioides, the increase in the total organic carbon content (TOC) in the rhizosphere zone was almost 200%. A positive correlation was found between TOC and water-soluble carbon (p<0.001); both parameters were negatively correlated with electrical conductivity. Microbial biomass carbon and soil respiration were highest in the rhizosphere of Stipa tenacissima (98% and 60%, respectively, of increase on soil control values) and Rosmarinus officinalis (94% and 51%, respectively, of increase on soil control values). These microbiological parameters were correlated with the percentage of stable aggregates (p<0.01). Enzyme activities were affected by the rhizosphere, their values depending on the shrub species.  相似文献   

8.
The effects of adding a crushed cotton gin compost (CCGC) and poultry manure (PM) on the biological properties of a Typic Xerofluvent soil contaminated with Ni were studied in the laboratory. Urease, BBA-protease, alkaline phosphatase, β-glucosidase and arylsulfatase activities were measured in soils containing seven concentrations (100, 250, 500, 1000, 2500, 5000 and 8000 mg kg−1 soil) of Ni after four incubation times (1 day, 7 days, 15 days and 45 days). The resulting inhibition was compared with that of the enzymatic activities in the same soil containing similar concentrations of the Ni but amended with crushed cotton gin compost and poultry manure. The 50% ecological dose (ED50) values were calculated by the two kinetic models used by Speir et al. [T.W. Speir, H.A. Kettles, A. Parshotam, P.L. Searle, L.N.C. Vlaar, A simple kinetic approach to derive the ecological dose value, ED50, for the assessment of Cr(VI) toxicity to soil biological properties, Soil Biol. Biochem. 27 (1995) 801–810] and by the sigmoidal dose–response model used by Haanstra et al. [L. Haanstra, P. Doelman, J.H. Oude Voshaar, The use of sigmoidal dose response curves in soil ecotoxicological research, Plant Soil 84 (1985) 293–297]. The urease, BBA-protease, β-glucosidase, alkaline phosphatase and arylsulfatase activities were higher in the organic amended soils (76%, >99.7%, >95.7%, >27.6% and >87.2%, respectively) than in the control soil. Also, the enzymatic activities were higher in CCGC-amended soils than in the PM-amended soils (51%, 20%, 11.2%, and 11.3% increase for urease, BBA-protease, β-glucosidase and alkaline phosphatase, respectively). For all soil enzymatic activities and at the end of the period of incubation, the ED50 values were lowest in control soil, followed by PM and CGCC-amended soils. This may have been due to the adsorption capacity of Ni being higher in the humic acid (CGCC) than in the fulvic acid-amended soil (PM).  相似文献   

9.
作物种植会对农田生态系统产生一定的影响。大田试验条件下,在黑龙江省853农场岗地白浆土上连续6年种植玉米、大豆、小麦、水稻,研究了土壤理化性质以及土壤中与碳、氮、磷、硫元素转化相关的9种水解酶活性和动力学特性的响应;同时研究了不同作物种植对土壤脲酶、磷酸单酯酶、磷酸二酯酶、芳基硫酸酯酶及β-葡糖苷酶动力学特性的影响。结果表明,大豆连作土壤的有效氮、总碳、总氮、总磷和总硫含量都稍高;大豆处理土壤pH值略低,但其它三种作物种植下的土壤均呈微酸性,差异不显著。土壤水解酶动力学参数对种植作物的反应与表观活性的反应不一致。玉米连作土壤蛋白酶和磷酸单酯酶活性高于其它处理;小麦处理的磷酸二酯酶和芳基硫酸酯酶活性最高,水稻连作土壤蛋白酶、磷酸二酯酶和磷酸三酯酶活性最低。连年种植小麦处理的土壤脲酶、磷酸二酯酶以及芳基硫酸酯酶Vmax显著高于其它处理,小麦连作土壤β-葡萄糖苷酶、脲酶、磷酸二酯酶和芳基硫酸酯酶的Vmax/Km值显著高于其它处理,可以看出在此处理下土壤酶具有较强的催化潜势。  相似文献   

10.
In arid and semi-arid ecosystems that are frequently classified as water limited, it is unclear how spatial and temporal variability of vegetation and climate could affect microbially-mediated soil processes. Our objective was to determine how aboveground spatial heterogeneity creates characteristic soil conditions that modulate microbial growth and activity in a semi-arid Patagonian steppe. In particular, we explored how micro-environmental and biogeochemical soil characteristics generated by the native vegetation could control soil β-glucosidase activity. Both life-form (shrubs, grasses, mosses and bare soil) and season exerted strong controls on all measured abiotic (soil temperature and gravimetric soil water content, inorganic nitrogen, pH and total C and N) and biotic (microbial biomass C and β-glucosidase activity) soil characteristics. Partial correlation between β-glucosidase activity and extracellular organic C (EOC) was high across seasons (r = 0.5; P < 0.001) while soil water content did not correlate with soil enzymatic activity (r = 0.09; P > 0.05). We postulate that labile soil carbon rather than water availability functions as a principal limitation of microbial activity in this semi-arid ecosystem, and the distribution of this carbon is, in large part, determined by the patchy distribution of vegetation.  相似文献   

11.
Pre-plant fumigation of agricultural soils with a combination of methyl bromide (MeBr) and chloropicrin (CP) to control nematodes, soil-borne pathogens and weeds has been a common practice in strawberry (Fragaria X ananassa Duchesne) production since the 1960s. MeBr will be phased out by 2005, but little is known about the impacts of alternative fumigants on soil microbial processes. We investigated the response of microbial biomass and enzyme activities in soils fumigated over two years with MeBr+CP and the alternatives propargyl bromide (PrBr), InLine, Midas and CP. Results were compared to control soils, which were not fumigated for the last 4-5 years for Watsonville and Oxnard, respectively, but had a 10 year history of MeBr+CP fumigation (history soils). Soil samples (0-15 cm) were taken from two sites in the coastal areas of California, USA, in Watsonville and Oxnard, at peak strawberry production after two years of repeated application. In addition to the soil enzymes, the activities of purified reference enzymes of β-glucosidase, acid phosphatase and arylsulfatase were assayed before and after fumigation with MeBr+CP and alternative biocides. At the Oxnard site, microbial respiration significantly decreased in soils fumigated with MeBr+CP (P=0.036), while microbial biomass C and N showed no response to fumigation at both sites. These results may indicate that fumigation promotes the growth of resistant species or that soil microorganisms had recovered at the time of sampling. Repeated soil fumigation with MeBr+CP significantly decreased the activities of β-glucosidase and acid phosphatase at the Watsonville site, and dehydrogenase activity at the Oxnard site. Although, enzyme activities in soils fumigated with PrBr, InLine, Midas and CP were lower compared to the control soil, effects were, in general, not significant. Fumigation with MeBr+CP and alternatives reduced the activities of purified reference enzymes by 13, 76 and 28% for acid phosphatase, β-glucosidase and arylsulfatase, respectively. Mean enzyme protein concentrations in fumigated agricultural soils were 2.93, 0.105, and 2.95 mg protein kg−1 soil for acid phosphatase, β-glucosidase and arylsulfatase, respectively, all lower than in control soils. Organic matter turnover and nutrient cycling, and thus, the long-term productivity of agricultural soils seem unaffected in soils repeatedly fumigated with PrBr, InLine, Midas and CP.  相似文献   

12.
《Applied soil ecology》2007,35(1):35-45
Enzyme activities play key roles in the biochemical functioning of soils, including soil organic matter formation and degradation, nutrient cycling, and decomposition of xenobiotics. Knowledge of enzyme activities can be used to describe changes in soil quality due to land use management and for understanding soil ecosystem functioning. In this study, we report the activities of the glycosidases (β-glucosidase, α-galactosidase, and β-glucosaminidase), acid phosphatase, and arylsulfatase, involved in C (C and N for β-glucosaminidase), P, and S cycling, respectively, as affected by soil order and land use within a watershed in north-central Puerto Rico (Caribbean). Representative surface soil (0–15 cm) samples were taken from 84.6% of the total land area (45,067 ha) of the watershed using a completely randomized design. The activity of α-galactosidase was greater in soils classified as Oxisols than in soils classified as Ultisols and Inceptisols, and it was not affected by land use. The activity of β-glucosidase was greater in Oxisols compared to the Inceptisols and Ultisols, and it showed this response according to land use: pasture > forest > agriculture. The activity of β-glucosaminidase was higher in Oxisols than the other soil orders, and it was higher under pasture compared to forest and agriculture. Acid phosphatase and arylsulfatase activities were greater in Oxisols and Ultisols than in Inceptisols, and they decreased in this order due to land use: forest = pasture > agriculture. As a group, β-glucosaminidase, β-glucosidase, and acid phosphatase activities separated the sites under forest and pasture from those under agriculture in a three-dimensional plot. Thus, enzyme activities in Inceptisols under agriculture could be increased to levels comparable to other soil orders with conservative practices similar to those under pasture and secondary forest growth. Our findings demonstrate that within this watershed, acid and low fertility soils such as Oxisols and Ultisols have in general higher enzyme activities than less weathered tropical soils of the order Inceptisols, probably due to their higher organic matter content and finer texture; and that the activities of these enzymes respond to management with agricultural practices decreasing key soil biochemical reactions of soil functioning.  相似文献   

13.
Most studies on the interactions between aboveground vegetation and belowground soil diversity have been carried out in microcosms or manipulated field plots. In the current study, we investigated the relationship between forest vegetation diversity and soil functional diversity (calculated from the activity of soil enzymes) in naturally developed plant communities of native mixed-oak forests without imposing any disturbances to already existing plant–soil relationships. In order to do so, five different vegetation types, i.e., herbaceous plants, climbing plants, trees, shrubs, and ferns, were considered. Correlations between plant diversity, soil physicochemical properties, and soil enzyme activities were determined. Soil physicochemical parameters appeared strongly correlated with both enzyme activities (e.g., pH was positively correlated with amidase and arylsulphatase, and negatively with acid phosphatase; OM content was positively correlated with β-glucosidase, acid and alkaline phosphatase and urease, and negatively with amidase; total N was positively correlated with β-glucosidase, and acid and alkaline phosphatase, and negatively with amidase) and soil functional diversity. For ferns, strong correlations between enzyme activities and plant diversity indexes were found (i.e., dehydrogenase was positively correlated with species richness and Shannon's diversity; acid and alkaline phosphatase were negatively correlated with Shannon's diversity; acid phosphatase was also negatively correlated with species richness). Most interestingly, herbaceous plants and ferns showed a strong positive correlation between Shannon's plant diversity and soil functional diversity. Furthermore, herbaceous plants showed a strong positive correlation between species richness and soil functional diversity. Although these correlations between plant diversity and soil functional diversity might possibly be due to the fact that higher values of plant richness and diversity result in a greater habitat heterogeneity in the soil, current knowledge on the topic is mixed and very incomplete and, then, one must be extremely cautious when interpreting such correlations.  相似文献   

14.
Plant secondary compounds, including terpenes, potentially play an important role in controlling the decomposition process in boreal forest soil. However, the role of terpenes is not well understood, and their direct influence on enzyme activity is not well-known. The aim of this study was to examine the possible effects of common monoterpenes and higher terpenes on the activity of enzymes crucial in C, N, P, S cycling, i.e. β-glucosidase, chitinase, protease, acid phosphatase and arylsulfatase. Monoterpenes (α-pinene, carene, myrcene), diterpenes (abietic acid and colophony), and triterpene (β-sitosterol) were used. Studies were done in two environments, in vitro (studies without soil) and in vivo (studies with soil). Soil experiments were conducted using humus layers of two different birch stands, the first N-poor with high organic matter content and the second N-rich with a lower organic matter content. In general, all the terpenes studied showed inhibitory potential against enzymes in in vitro studies. In the soil incubation studies, both of the measured enzymes, chitinase and β-glucosidase, showed some decrease in activity when exposed to different terpenes. Our study suggests that terpenes modify the enzyme machinery in boreal forest soil.  相似文献   

15.
Changes in land use frequently modify the capacity of ecosystems to provide services. The purpose of this study was to investigate the effects of a specific land-use change, i.e. from meadows to pine plantations under temperate climate, on soil enzyme activities. To this aim, the variation of five key soil enzyme activities (dehydrogenase, β-glucosidase, arylsulphatase, acid phosphatase and urease) was evaluated in different sites located in the Urdaibai Reserve of the Biosphere (northern Spain). Lower values of dehydrogenase [effect size, computed as 100 × (1 − mean value from pine plantations/mean value from meadows), was 82.9%], β-glucosidase (52.9%) and urease (52.5%) activity were observed in soils from pine plantations versus meadows. Acid phosphatase and arylsulphatase activity showed a pattern of variation that was not dependent on land-use. The largest variation in enzyme activity values was due to changes at the small scale, not between the studied sites, an encouraging finding for the suitability of enzyme activities as bioindicators of the impact of land-use changes on soil functioning. Our results suggest that nutrient cycling (as reflected by the values of soil enzyme activities) might have been modified as a consequence of replacing meadows by pine plantations.  相似文献   

16.
In recent decades, perennial rhizomatous grasses have been introduced in the Po Valley (Northern Italy), not only to produce bioenergy, but also to face the loss of soil organic carbon due to intensive crop management. Given the dual purpose of perennial energy crops, this work was intended to evaluate changes induced by the introduction of these crops on soil microbial community structure and on soil functionality. We compared a 9 year-old land conversion to two perennial energy crops, giant Miscanthus (Miscanthus sinensis × giganteus) and giant reed (Arundo donax L.), with two 40-year old annual arable systems, continuous wheat and maize/wheat rotation. The structure of the bacterial community was studied by the fingerprinting method of denaturing gradient gel electrophoresis (PCR-DGGE) amplifying 16S rRNA fragments, while the functional aspects of soil were investigated through the determination of three soil enzyme activities involved in soil carbon, nitrogen, and phosphorous cycles (β-glucosidase, urease, and alkaline phosphatase, respectively). Introduction of perennial energy crops positively stimulated the three soil enzymes, especially in the shallow soil layer (0–0.15 m), where accumulation of carbon and nitrogen was stronger. Enzyme activities were also positively correlated with organic carbon, apart from β-glucosidase. A significant but weaker correlation was also observed between enzyme activities and total nitrogen. The DGGE profiles revealed the relationship between crop types and soil microbial communities. Community richness was higher in perennial than in annual crops, but no effect of soil depth was observed. In opposition, Shannon index of diversity was not influenced by crop type, but only by soil depth with a 32% increase in the shallow layer. We conclude that the introduction of perennial energy crops in a South European soil increases both soil biochemical activity and microbial diversity, related to the ability of these crops to stabilize organic matter in soil. It is thereby evidenced that perennial rhizomatous grasses for energy uses could represent a sustainable choice for the recovery of soils depleted by intensive agricultural management.  相似文献   

17.
A short-term mesocosm experiment was conducted to ascertain the impact of tebuconazole on soil microbial communities. Tebuconazole was applied to soil samples with no previous pesticide history at three rates: 5, 50 and 500 mg kg−1 DW soil. Soil sampling was carried out after 0, 7, 30, 60 and 90 days of incubation to determine tebuconazole concentration and microbial properties with potential as bioindicators of soil health [i.e., basal respiration, substrate-induced respiration, microbial biomass C, enzyme activities (urease, arylsulfatase, β-glucosidase, alkaline phosphatase, dehydrogenase), nitrification rate, and functional community profiling]. Tebuconazole degradation was accurately described by a bi-exponential model (degradation half-lives varied from 9 to 263 days depending on the concentration tested). Basal respiration, substrate-induced respiration, microbial biomass C and enzyme activities were inhibited by tebuconazole. Nitrification rate was also inhibited but only during the first 30 days. Different functional community profiles were observed depending on the tebuconazole concentration used. It was concluded that tebuconazole application decreases soil microbial biomass and activity.  相似文献   

18.
Long-term field experiments are expected to provide important information regarding soil properties affected by conservation management practices. Several studies have shown that soil enzyme activities are sensitive in discriminating among soil management effects. In this study we evaluated the long-term effect of direct drilling (DD) under a crop rotation system (cereals–sunflower–legumes), on the stratification of soil organic matter content and on biochemical properties in a dryland in southwest Spain. The results were compared to those obtained under conventional tillage (CT). Soil biochemical status was evaluated by measuring the enzymatic activities (dehydrogenase, β-glucosidase, alkaline phosphatase and arylsulphatase) during the flowering period of a pea crop. Soil samples were collected in May 2007 at three depths (0–5, 5–10 and 10–20 cm).Total organic carbon (TOC) contents and values of soil enzyme activities were higher in soils subjected to DD than to CT, specifically at 0–5 cm depth. Although a slight decrease of TOC and enzymatic activities with increasing soil depth was observed, no significant differences were found among different depths of the same treatment. This could be related to the high clay content of the soil, a Vertisol. Enzyme activities values showed high correlation coefficients (from r = 0.799 to r = 0.870, p < 0.01) with TOC. Values of activity of the different enzymes were also correlated (p < 0.01).Values of stratification ratios did not show significant differences between tillage practices. The high clay content of the soil is responsible for this lack of differences because of the protection by clay mineral of TOC and soil enzymes activities.Long-term soil conservation management by direct drilling in a dryland farming system improved the quality of a clay soil, especially at the surface, by enhancing its organic matter content and its biological status.  相似文献   

19.
Longer and more severe drought periods are expected in the near future for Mediterranean ecosystems. Soil enzymes play an essential role in the nutrient mineralization and their activity is an exceptional sensor in predicting the capacity of nutrient supply to plants. We conducted an experiment of water availability manipulation in evergreen oak mountain stands with the aim to study the effects of enhanced drought on the activity of five soil enzymes. The drought treatment consisted of runoff exclusion by a ditch along the entire top edge of the upper part of treatment plots and partial rain exclusion by suspending PVC strips and funnels. The reduction of 10% of soil moisture produced by runoff exclusion decreased urease activity by 10-67%, protease activity by 15-66% and β-glucosidase activity by 10-80%, depending on annual period and soil depth. The reduction of 21% of soil moisture produced by runoff and rainfall exclusion together reduced urease activity by 42-60%, protease activity by 35-45%, β-glucosidase activity by 35-83% and acid phosphatase activity by 31-40%. No significant effects were observed on alkaline phosphatase activity. The activities of the enzymes involved in the nitrogen cycle, protease and urease, were the most affected by drought. In all cases, the activities of these enzymes strongly decreased with soil depth and they were greater in spring than in autumn. These results show the link between drought and a slower nutrient turn-over, which decreases the nutrient supply to plants.  相似文献   

20.
To understand the ecological significance of arbuscular mycorrhizal (AM) associations in semi-arid and arid lands, the temporal and spatial dynamics of AM fungi and glomalin were surveyed in Mu Us sandland, northwest China. Soil samples in the rhizosphere of Artemisia ordosica Krasch. were collected in May, July and October 2007, respectively. Arbuscular, hyphal and total root infection and spore density of AM fungi peaked in summer. The mean contents of total Bradford-reactive soil proteins (T-BRSPs, TG) and easily extractable Bradford-reactive soil proteins (EE-BRSPs, EEG) reached maximal values in spring. Spore density and two BRSPs fractions were the highest in the 0-10 cm soil layer, but the ratios of two BRSPs fractions to soil organic carbon (SOC) were the highest in the 30-50 cm soil layer. Hyphal infection was negatively correlated with soil enzymatic activity (soil urease and acid phosphatase) (P < 0.05). Arbuscular infection was negatively correlated with soil acid phosphatase (P < 0.01). Spore density was positively correlated with edaphic factors (soil available N, Olsen P, and SOC) and soil enzymatic activity (soil acid and alkaline phosphatase) (P < 0.01). Two BRSPs fractions were positively correlated with edaphic factors (soil available N and SOC) and soil enzymatic activity (soil urease, acid and alkaline phosphatase) (P < 0.01). TG was positively correlated with soil Olsen P (P < 0.05). We concluded that the dynamics of AM fungi and glomalin have highly temporal and depth patterns, and influenced by nutrient availability and enzymatic activity in Mu Us sandland, and suggest that glomalin are useful indicators for evaluating soil quality and function of desert ecosystem on the basis of its relationship to AM fungal community, soil nutrient dynamics and carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号