首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Teasing out how species respond to human-induced environmental changes has become a priority for addressing the challenges posed by the need to conserve biodiversity. Although land abandonment is widespread, the threat it can represent to biodiversity remains poorly understood. To address this issue, we used data from eight long-term studies in a region with widespread land abandonment that has been identified as a biodiversity hotspot, the north-west Mediterranean Basin. We conducted a multi-site analysis of how changes in species occurrence were affected by species’ attributes (habitat preference, habitat breadth, migration strategy and latitudinal distribution). The analysis revealed a nested pattern in the effect of species attributes. Woodland and shrubland species showed the strongest increase, whereas no change in overall occurrence patterns was detected in farmland species. Residents increased significantly, especially those with a northern distribution, whereas migrants decreased significantly, especially farmland species with a narrow habitat breadth. Changes in species occurrence were also related to initial landscape composition, with larger increases in initially woodland or mixed landscapes. Woodland species increased in all landscape types, shrubland species increased only in mixed landscapes, and farmland species decreased more, although not significantly, in farmland landscapes. Our results strongly support the hypothesis that large-scale habitat changes associated mainly with land abandonment are impacting bird community patterns in the Mediterranean region. Negative effects seem to be recorded mostly for migrants in farmland landscapes, suggesting that declines in these species are likely to be caused by a variety of mechanisms interacting with habitat change in the breeding region.  相似文献   

2.
Agricultural landscapes with spatial and temporal variations interact with each other to affect the existing biodiversity. Though rice fields provide important habitats for birds all over the world, studies so far have rarely explored the effects of landscape heterogeneity on bird species in rice paddy areas. This study investigated the effects of habitat cover and landscape variables on the species richness and the abundance of birds in rice paddy areas in Japan. Data on bird occurrence and the environment were collected at 32 grid squares (1 × 1 km) in the Tone River basin. The richness and the abundance of agricultural wetland species were particularly high in landscapes with large areas of rice fields in summer, when rice fields were irrigated, but in those with large areas of open water in winter, when rice fields were drained. It is important to maintain a combination of rice fields and open water to satisfy multiple habitat requirements by agricultural wetland species throughout the year. Grassland species were positively associated with a rich diversity of land cover including fallow fields and open water, indicating the importance of a simultaneous existence of multiple landscape elements. Forest cover in landscapes positively affected edge species and woodland species. Since forest cover had a relatively strong correlation with edge density, the responses of bird species to changes in forest cover and edge density need to be explored further. This study illustrates the importance of spatial and temporal landscape complementation for bird species in rice paddy areas.  相似文献   

3.
Human-modified tropical landscapes under semi-natural or agro-ecosystems often harbor biodiversity of significant conservation value. In the Western Ghats of India, these ecosystems also provide connectivity between protected areas and other remnant forests. We investigated the conservation value of these landscapes and agro-ecosystems using results from 35 studies covering 14 taxonomic groups. Large, conspicuous taxonomic groups and tree-covered land-use types have received much focus in this area of research in the Western Ghats. We computed a response ratio defined as the log ratio of species richness in human land use to species richness in forest control site from 17 studies. In a meta-analysis, we investigated variation of this ratio across studies with respect to three variables: taxonomic group, the land-use type sampled and the extent of forest cover within the study landscape. Higher forest cover within the landscape emerged as a major positive influence on biodiversity in human-modified landscapes for vertebrates and vegetation while no patterns emerged for invertebrates. Our results suggest that loss of remnant forest patches from these landscapes is likely to reduce biodiversity within agro-ecosystems and exacerbate overall biodiversity loss across the Western Ghats. Conservation of these remnant forest patches through protection and restoration of habitat and connectivity to larger forest patches needs to be prioritized. In the densely populated Western Ghats, this can only be achieved by building partnerships with local land owners and stakeholders through innovative land-use policy and incentive schemes for conservation.  相似文献   

4.
Landscape-level thresholds of habitat cover for woodland-dependent birds   总被引:3,自引:0,他引:3  
Theory suggests that a disproportionate loss of species occurs when total habitat cover decreases to 10-30% of the landscape. To date, little empirical evidence has been collected to test for such thresholds in habitat cover, especially at the landscape scale. Here, we present empirical data on the species richness of woodland-dependent birds collected systematically from 24 landscapes (each 100 km2) that sample a gradient in habitat cover from <2% to 60%. To compare the relative effects of habitat cover and habitat configuration, landscapes with similar amounts of habitat but contrasting configuration (i.e., aggregated versus dispersed) were surveyed and the richness of woodland-dependent birds collated for each landscape. The relationship between species richness, habitat cover and habitat configuration was examined using analysis of co-variance (ANCOVA), multiple linear regression and univariate non-linear modelling. There was a significant effect of habitat cover (co-variate) in the ANCOVA, but the main treatment effect of configuration was not significant. However, comparison of non-linear models indicated that the shape of the response curve of species loss with decreasing habitat cover differed between aggregated and dispersed landscapes. Species richness was significantly related to habitat cover in all analyses, explaining between 55% and 60% of the variance in regression models. Mean patch shape complexity and the extent of habitat aggregation were also significant explanatory variables, but explained less than 10% of the variance in richness of woodland birds. Biogeographic variables (range in elevation and geographic location) explained up to 14% of the variance in species richness. There was strong evidence for a threshold response in species richness: non-linear models (broken-stick, exponential, inverse) exhibiting a sharp decline in species richness in landscapes with less than 10% habitat cover provided a better fit to the observed data than linear models. To our knowledge, this is the first empirical demonstration of landscape-level thresholds in species richness. We emphasise that thresholds in species richness denote multiple species’ extinction events, the end point of the process of species decline. For viable populations, habitat cover must be maintained well above the threshold level. Finally, thresholds of assemblage measures, such as species richness, potentially mask compositional changes in the avifauna community and may also conceal the loss of species with greater sensitivity to landscape change.  相似文献   

5.
Despite the loss of 83% of native forests in the Philippines, little is known on the effects of this massive habitat loss and degradation on its forest biotas. This is a cause for concern because of the threat posed to the country’s large number of endemic taxa. To investigate the impacts of anthropogenic disturbance, forest birds and butterflies were surveyed in closed and open canopy forests, as well as suburban, rural and urban areas within the Subic Bay Watershed Reserve and Olongapo City in western Luzon. Measures of forest species richness and population densities for both taxa were similar in the two forest types, but showed different patterns in the other habitats. Indirect gradient analysis showed that forest bird species were positively correlated with vegetation variables (i.e., canopy cover, tree density, height to inversion and ground cover), while forest butterflies were not strongly correlated to any of the measured habitat variables. Community composition of birds in forests was distinct from those in modified habitats, while butterfly communities were more similar. A simulation showed that canopy cover of 60% or higher was required by 24 of the 26 bird species that were sensitive to canopy loss. Endemicity and nesting strata were the significant predictors of vulnerability to habitat disturbance for birds, while endemicity and larval hostplant specificity were significant for butterflies. Both taxa were negatively affected by anthropogenic disturbance but may respond to different components in the habitat (i.e., structure and resources), and thus cannot be used as surrogates of each other. Conservation of forests with contiguous canopy cover should be prioritized, and more ecological research is needed to improve the knowledge on the effects of disturbance on Philippine biodiversity.  相似文献   

6.
Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree monocultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree monocultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas.  相似文献   

7.
为揭示土地利用变化对区域生境质量时空演变的影响,促进土地资源的合理利用和生态规划体系的建立健全,以江西省南昌市为例,基于1995年、2005年和2015年的土地利用数据,应用CA-Markov和MCE模型并结合InVEST模型,评价和预测了土地利用演变角度下的生境演化特征。结果表明:(1)1995—2015年,草地、耕地及水域是南昌市的主要土地利用类别,占比超过90%; 建设用地急剧扩张,20 a间涨幅高达96.44%,耕地和林地是流转为建设用地的重要地类。(2)研究区整体景观生境质量显著下降,大量高等级生境景观向低等级生境景观转化; 城市附近和各个流域的生境退化比较显著; 生境稀缺性高的用地类型大多是耕地和林地。(3)2015—2025年期间,区内景观格局和生境质量继续保持1995—2015年的演变趋势,建设用地等生境适宜度较低的地类高速扩张,进而侵扰林地、水域和草地等生境质量优质地区,致使威胁源规模和影响范畴急剧扩大,景观破碎度水平升高,稳定性降低,这将引起研究区生境质量的持续下降。1995—2025年研究区生境质量明显退化,城镇化扩张与生态用地缩减是其主要原因。  相似文献   

8.
Mitigating the effects of habitat loss requires estimating the minimum amount of habitat necessary for the persistence of wildlife populations in a changing landscape. Assessing minimum habitat amounts, however, relies on identifying ecological thresholds in species’ responses to landscape change. Using two repeated state-wide atlases, our objective was to investigate the responses of 25 forest birds to a range of forest cover and fragmentation. Repeat atlases allow for the analysis of four population dynamics including: (1) colonization, (2) persistence, (3) extinction, and (4) absence. Our objective was to test the hypothesis that forest birds demonstrated thresholds in these four basic dynamics to varying amounts of forest cover and fragmentation.We found thresholds to be a common, though not pervasive, characteristic of how forest birds respond to forest cover and pattern. We found that the probability of persistence was positively correlated with forest cover and 22 species demonstrated threshold responses. In addition, 15 of 25 birds demonstrated discrete thresholds in extinction dynamics. The existence of a colonization threshold has received significantly less attention in ecology. We also found that 17 out of 25 species demonstrated thresholds in their colonization response to a greater amount of forest cover. The effects of forest fragmentation, independent of forest amount, were less clear. We found support for incorporating the effects of fragmentation, but this fragmentation effect was found both below and above threshold points. We conclude that incorporating ecological thresholds in environmental planning should be species-specific and focus on populations on the verge of rapid ecological change.  相似文献   

9.
Agricultural landscapes are the dominating landscape types in many parts of the world. Land-use intensification and spatial homogeneity are major threats to biodiversity in these landscapes. Thus cost-effective strategies for species conservation in large-scale agricultural landscapes are required. Spatial optimisation methods can be applied to identify the most effective allocation of a given budget for conservation. However, the optimisation of spatial land-use patterns in real landscapes on a large spatial scale is often limited by computational power. In this paper, we present a simplifying methodology for analysing cost-effectiveness of management actions on a regional scale. A spatially explicit optimisation approach is employed to identify optimum agricultural land-use patterns with respect to an ecological-economic goal function. Based on the optimisation results for small scale landscape samples we derive a target- and site-specific cost-benefit function that can be applied to predict ecological improvement as a function of costs and local conditions on a large spatial scale. Thus, it is possible to identify areas where management actions for ecological improvement are most efficient with respect to a certain conservation goal. The fitted function is validated independently. In a case study, we analyse cost-effectiveness of management actions to enhance habitat suitability for three different target species. The approach is flexible and could be applied to a variety of other landscape planning problems dealing with the effective allocation of management measures.  相似文献   

10.
The loss, fragmentation and degradation of native vegetation are major causes of loss of biodiversity globally. Extinction debt is the term used to describe the ongoing loss of species from fragmented landscapes long after the original loss and fragmentation of habitat. However, losses may also result from habitat changes that are unrelated to fragmentation, which reduce breeding success and recruitment. Many woodland birds have declined in fragmented landscapes in Australia, probably due to loss of small, isolated populations, though the ecological processes are poorly understood. We record the progressive regional loss of two ground-foraging, woodland birds, the Brown Treecreeper Climacteris picumnus and Hooded Robin Melanodryas cucullata, in northern New South Wales, over 30 years. This has happened despite most habitat loss occurring over 100 years ago, suggesting the payment of an extinction debt. Our observations suggest that several ecological processes, caused by habitat loss, fragmentation or degradation, and operating over different time scales, have led to both species’ declines. Female Brown Treecreepers disperse poorly among vegetation remnants, leaving only males in isolated populations, which then go extinct. In contrast, Hooded Robins suffer high nest predation in fragmented landscapes, producing too few recruits to replace adult mortality. Foraging by both species may also be affected by regrowth of ground vegetation and shrubs. We found little support for a major role played by drought, climate change or aggressive Noisy Miners Manorina melanocephala. We propose that both extinction debt in the classical sense and ongoing habitat change frequently contribute to species’ decline in modified landscapes. Management to arrest and reverse such declines needs to consider these multiple causes of decline. For instance, reconnecting isolated populations may be inadequate alone, and activities such as appropriate grazing, fires and the addition of woody debris may also be required.  相似文献   

11.
Most studies of faunal habitat fragmentation are based on a human perspective of the landscape in which landscape elements are classified as habitat and non-habitat. Moreover, many landscape models that define “habitat patches” assume that the same set of patches will be suitable for all taxa or a broad range of taxa. McIntyre and Hobbs [Conservation Biology 13 (1999) 1282] recently proposed a model in which landscapes can be classified according to the amount of habitat remaining and in which the remaining habitat can correspond to a continuum or gradient of modification. The perception of a landscape as being intact, variegated, fragmented or relictual [sensu Conservation Biology 13 (1999)] will depend on the capacity of individual species to utilise modified habitat. We suggest that although the continuum concept of habitat use is reasonably well established for plants, faunal studies have often ignored the notion of a gradient of habitat use and have classified landscape areas simplistically and inappropriately as either habitat or non-habitat. Data on birds in southeastern Australia are used to illustrate how the binary view of habitat can be incorrect. Birds were sampled in landscapes that ranged from intact to relictual as defined from an anthropocentric perspective. Our data: (1) illustrated a wide range of bird responses to habitat modification including many that might have been overlooked using a simple binomial approach to habitat classification, and (2) highlighted the fact that the way in which humans perceive landscapes may not correspond to how some elements of the biota perceive the same landscape. Viewing landscapes as a species-specific gradient of states of remaining habitat and condition has important implications for undertaking studies of human impacts on biodiversity and also integrating conservation considerations in production environments. It also challenges the effectiveness of “quick fixes” such as species-based biodiversity surrogates schemes and the uncritical use of generic landscape indices to save “habitat” because the assumption that all species will conform to the same landscape pattern will not hold.  相似文献   

12.
Tropical savannas are an important reservoir of global biodiversity. Australia’s extensive savannas, although still largely intact, are experiencing substantial declines in terrestrial biodiversity due to a variety of interrelated effects of altered fire regimes, grazing and increases in invasive species. These disturbance processes are spatially variable, combine to increase landscape to local-scale landscape heterogeneity, but rarely result in well-defined patch boundaries. We quantified the importance of this heterogeneity for native reptile and small mammal species in a tropical savanna landscape of Queensland, Australia. We used high resolution remote sensing imagery (IKONOS) to map habitat pattern at a 4 m spatial resolution and at variable extents. We found that landscapes dominated by grass or bare ground had low reptile and small mammal diversity, while landscapes with a heterogeneous mix of grass, bare ground and trees had high species diversity and relative abundance of most species. Landscape heterogeneity may increase reptile and small mammal species richness by: (i) increasing the variety and abundance of foraging resources such as seeds and invertebrates; (ii) providing cover from predators and high summer temperatures; and (iii) increasing functional connectivity and dispersal success. The importance of these resources and processes varies among individual species and at different spatial scales, reiterating the need to consider habitat requirements of multiple species in landscape management and conservation planning.  相似文献   

13.
Conservation actions frequently need to be scheduled because both funding and implementation capacity are limited. Two approaches to scheduling are possible. Maximizing gain (MaxGain) which attempts to maximize representation with protected areas, or minimizing loss (MinLoss) which attempts to minimize total loss both inside and outside protected areas. Conservation planners also choose between setting priorities based solely on biodiversity pattern and considering surrogates for biodiversity processes such as connectivity. We address both biodiversity processes and habitat loss in a scheduling framework by comparing four different prioritization strategies defined by MaxGain and MinLoss applied to biodiversity patterns and processes to solve the dynamic area selection problem with variable area cost. We compared each strategy by estimating predicted species’ occurrences within a landscape after 20 years of incremental reservation and loss of habitat. By incorporating species-specific responses to fragmentation, we found that you could improve the performance of conservation strategies. MinLoss was the best approach for conserving both biodiversity pattern and process. However, due to the spatial autocorrelation of habitat loss, reserves selected with this approach tended to become more isolated through time; losing up to 40% of occurrences of edge-sensitive species. Additionally, because of the positive correlation between threats and land cost, reserve networks designed with this approach contained smaller and fewer reserves compared with networks designed with a MaxGain approach. We suggest a possible way to account for the negative effect of fragmentation by considering both local and neighbourhood vulnerability to habitat loss.  相似文献   

14.
Changes in land use/land cover have important consequences on the management of natural resources including soil and water quality, global climatic systems and biodiversity. This study analysed the spatial and temporal pattern of land use/land cover change in the Camili forest planning unit that includes the Camili Biosphere Reserve Area within the Caucasian hotspot, in the northeast corner of Turkey. To assess the patterns during a 33‐year period, the necessary data were obtained from forest stand maps and evaluated with Geographic Information Systems and FRAGSTATS. Results showed that the total forested areas increased from 19 946·5 ha (78·6% of the study area) in 1972 to 20 797·3 ha (81·9 per cent) in 2005 with a slight net increase of 851 ha. Softwood cover types (411·8 ha) completely transitioned to other cover types over 33‐year period. In terms of spatial configuration, the total number of forest fragments increased from 172 to 608, and mean size of forest patch (MPS) decreased from 147·7 ha to 41·8 ha during the period. Nearly 84 per cent of the patches in 1972 and 93 per cent of them in 2005 generally seem to concentrate into 0–100 ha patch size class, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. There were apparent trends in the temporal structure of forest landscape, some of which may issue from mismanagement of the area, social conflict, and illegal utilization of forest resources due to ineffective forest protection measurements. The study revealed that it is important to understand both spatial and temporal changes of land use/land cover and their effects on landscape pattern to disclose the implications for land use planning and management. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A critical handicap to tropical biodiversity conservation efforts in agroecosystems is the unknowns regarding the influence of landscape-scale factors on the persistence of species. To address these uncertainties, we explored two essential landscape-scale questions, within India’s biologically-rich Western Ghats, examining two nearby human-dominated landscapes that dramatically differed in their pattern of land cover. First, how does the proximity of intact forest patches affect bird community composition within agricultural landscapes? Second, can simple remote sensing-derived measures (brightness, wetness, and NDVI) be used to estimate native bird species composition within those landscapes? In both landscapes, as distance to intact forest decreased, the similarity in bird community composition between agricultural areas and intact forest increased. This suggests that the retention of tropical forest bird communities within human-dominated landscapes critically depends on the maintenance of nearby intact forest. In an answer to the second question, the remote sensing measures correlated with forest-affiliated avian species richness in only one of the two landscapes, reflecting an ecological difference between the two in the response of forest bird species to local agricultural conditions. In the landscape where a correlation was found, there was high variation in vegetative structure, which strongly impacted both the remote sensing measures and forest bird species richness. In the other landscape, forest species richness strongly correlated with changes in tree species composition in the agriculture, a factor that could not be detected by the remote sensing metrics. In order to successfully conserve biodiversity in tropical agricultural landscapes, our findings show that it is essential to conserve intact forest within those landscapes and to understand the effect of local agricultural practices on species.  相似文献   

16.
Road development is a primary mechanism of fragmentation in the northern Great Lakes Region, removing original land cover, creating edge habitat, altering landscape structure and function, and increasing access for humans. We examined road density, landscape structure, and edge habitat created by roads for eight land cover types at two ecological extents within a 78,752 km2 landscape. Road density ranged from 0.16 to 2.07 km/km2 within land type associations. Between 5 and 60% of a land cover type was affected by roads, depending on the assumed depth-of-edge influence (DEI). Roads increased number of patches and patch density, and decreased mean patch size and largest patch index. Changes in patch size coefficient of variation and measures of patch shape complexity depended on ecological level (i.e. scale) and land cover class. Limited additional change in landscape metrics occurred as road DEI was increased from 20 to 300 m. Land cover type occurred in buffers at the same percentages as in the landscape as a whole. At finer extents, areas with greatest road densities did not always parallel those with greatest changes in landscape structure. Interactions of scale and variation in the distribution of roads across the region emphasize the importance of examining landscape metrics and road impacts within specific cover types and at appropriate, or multiple, scales. Although this region is densely forested, the fragmentation effects of roads are pervasive, significantly altering landscape structure within multiple forest cover classes and at differing ecological extents.  相似文献   

17.
The Florida panther (Puma concolor coryi) is an endangered, wide-ranging predator whose habitat needs conflict with a rapidly growing human population. Our goal was to identify specific regions of the south Florida landscape that are of high conservation value to support a self-sustaining panther population. We used compositional and Euclidean distance analyses to determine relative importance of various land cover types as panther habitat and to investigate the role of forest patch size in habitat selection. A model of landscape components important to Florida panther habitat conservation was created. The model was used in combination with radio telemetry records, home range overlaps, land use/land cover data, and satellite imagery to delineate Primary and Secondary zones that would comprise a landscape mosaic of cover types sufficient to support a self-sustaining population. The Primary Zone generally supports the present population and is of highest conservation value, while the Secondary Zone is of lesser value but could accommodate expansion of the population given sufficient habitat restoration. Least-cost path models identified important landscape linkages, and model results were used to delineate a Dispersal Zone to accommodate future panther dispersal outside of south Florida. We determined that the three habitat zones could support 80-94 panthers, a population likely to persist and remain stable for 100 years, but that would be subject to continued genetic problems. The Primary, Dispersal and Secondary zones comprise essential components of a landscape-scale conservation plan for the protection of a viable Florida panther population in south Florida. Assessments of potential impacts of developments should strive to achieve no net loss of landscape function or carrying capacity for panthers within the Primary Zone or throughout the present range of the Florida panther.  相似文献   

18.
We examined the influence of habitat characteristics at the microhabitat, macrohabitat, and landscape spatial scales on small mammals occurring in 12 forest patches within four agricultural landscapes of Prince Edward Island (Canada). Landscape features were important determinants of small mammal variables at all levels, but especially at the community level, whereas microhabitat characteristics tended to influence small mammals at the population level. Macrohabitat characteristics had only minor effects on small mammals occurring in our study sites. Species richness was most strongly influenced by patch area, reaching a threshold at forest patches of roughly 8-10 ha. The proportions of both forest and hedgerow cover within 400 m from the study site were also significant determinants of small mammals species diversity, possibly reflecting their ability to perceive suitable habitats, forage in areas outside the forest patches, and/or disperse in agricultural landscapes. At least one small mammal species (Napaeozapus insignis) benefitted from the presence of agricultural fields at distances up to 1000 m. Tamias striatus benefitted from the presence of hedgerow cover within 400 m from forest patches, possibly allowing them to move between forest patches. Clearly, the maintenance of forest patches of 8-10 ha and of forest cover within 400 m from them is fundamental for the conservation of small mammals inhabiting agricultural landscapes on the Island. Conservation strategies should also consider the establishment of more effective regulations to prevent and/or reduce hedgerow removal on Prince Edward Island.  相似文献   

19.
Climate change and habitat fragmentation are considered key pressures on biodiversity. In this paper we explore the potential synergetic effects between these factors. We argue that processes at two levels of spatial scale interact: the metapopulation level and the species range level. Current concepts of spatially dynamic metapopulations and species ranges are consistent, and integration improves our understanding of the interaction of landscape level and geographical range level processes. In landscape zones in which the degree of habitat fragmentation allows persistence, the shifting of ranges is inhibited, but not blocked. In areas where the spatial cohesion of the habitat is below the critical level of metapopulation persistence, the expansion of ranges will be blocked. An increased frequency of large-scale disturbances caused by extreme weather events will cause increasing gaps and an overall contraction of the distribution range, particularly in areas with relatively low levels of spatial cohesion. Taking into account the effects of climate change on metapopulations, habitat distribution and land use changes, future biodiversity research and conservation strategies are facing the challenge to re-orient their focus and scope by integrating spatially and conceptually more dynamic aspects at the landscape level.  相似文献   

20.
Human land use has modified the structure and function of terrestrial landscapes throughout much of the world, with cropping and livestock grazing the major drivers of landscape change. In many tropical, sub-tropical, temperate and Mediterranean regions, regrowth forests regenerate naturally on abandoned agricultural land if human disturbance declines. With the exception of some tropical forest literature, the broader ecological and conservation literature has largely ignored the potential of regrowth forests to facilitate passive landscape restoration and the recovery of fauna communities in fragmented agricultural landscapes. This paper addresses this deficiency by reviewing the available global evidence of fauna recovery in regrowth forest from 68 papers, identifying the main gaps in current knowledge, and providing directions for further research. The majority of reviewed studies focus on regrowth in tropical regions, which often contain large areas of mature forest. Species’ utilisation of regrowth forest is highly variable and is particularly influenced by land-use history, an important determinant of the structural and compositional characteristics of regrowth forests. While site-scale (<1 ha) forest structure and floristic diversity were frequently studied, only 11 studies considered the spatial configuration and context of habitat patches and just two studies explicitly considered landscape structure. Based on this review, six key research questions are posed to direct future research on this important issue. We conclude that a broader perspective of the role of regrowth forest in the landscape is required if we are to realise the potential benefits of regrowth forest for passive landscape restoration and fauna conservation and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号