首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The contents of secondary plant substances in solvent extracts of various byproducts (barks, kernels, peels, and old and young leaves) in a range of Brazilian mango cultivars were identified and quantitated. The results show that the profiles of secondary plant substances such as xanthone C-glycosides, gallotannins, and benzophenones in different byproducts vary greatly but are fairly consistent across cultivars. The free radical scavenging activity of the solvent extracts was evaluated using a high-performance liquid chromatography-based hypoxanthine/xanthine oxidase assay and revealed dose-dependent antioxidant capacity in all extracts. Four (mangiferin, penta- O-galloyl-glucoside gallic acid, and methyl gallate) of the major phenolic compounds detected were also evaluated in additional in vitro bioassay systems such as oxygen radical absorbance capacity, 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing ability of plasma. Mangiferin in particular, detected at high concentrations in young leaves (Coite = 172 g/kg), in bark (Momika = 107 g/kg), and in old leaves (Itamaraka = 94 g/kg), shows an exceptionally strong antioxidant capacity.  相似文献   

2.
A liquid chromatographic (LC) method for the simultaneous determinations of benzoic acid, sorbic acid, and methyl, ethyl, propyl, and butyl parabens (methyl, ethyl, propyl, and butyl-p-hydroxybenzoates) in meat and nonmeat products was developed. Benzoic acid, sorbic acid, and parabens were extracted from meat and nonmeat products with 70% ethanol. After filtration, extracts were analyzed by reverse phase liquid chromatography. Homogeneously ground samples of fresh sausage and hamburger were fortified with benzoic acid, sorbic acid, and each paraben at 5 different concentrations. Average recovery (after discarding outliers) for each preservative at all 5 levels was greater than 95% with a coefficient of variation less than 5%.  相似文献   

3.
Flavonol O- and xanthone C-glycosides were extracted from mango (Mangifera indica L. cv. "Tommy Atkins") peels and characterized by high-performance liquid chromatography-electrospray ionization mass spectrometry. Among the fourteen compounds analyzed, seven quercetin O-glycosides, one kaempferol O-glycoside, and four xanthone C-glycosides were found. On the basis of their fragmentation pattern, the latter were identified as mangiferin and isomangiferin and their respective galloyl derivatives. A flavonol hexoside with m/z 477 was tentatively identified as a rhamnetin glycoside, which to the best of our knowledge, has not yet been reported in mango peels. The results obtained in the present study confirm that peels originating from mango fruit processing are a promising source of phenolic compounds that might be recovered and used as natural antioxidants or functional food ingredients.  相似文献   

4.
The antioxidant activity of 3-dehydroshikimic acid (DHS), an intermediate in the biosynthesis of aromatic amino acids, was evaluated in three assay systems: bulk oil (lard), liposomes, and a 10% corn oil-in-water emulsion. Upon initiation of peroxidation in the liposome or emulsion systems, DHS exhibited weak antioxidant activity. In contrast, DHS displayed strong antioxidant activity in lard, suppressing peroxidation with activity comparable to that of tert-butylhydroquinone, propyl gallate, and gallic acid and superior to that of alpha-tocopherol. Two major DHS oxidation products, gallic acid and protocatechuic acid, were identified by gas chromatography/mass spectral analysis of lard extracts; both compounds are effective antioxidants in the bulk oil system. In the liposome system, DHS remained intact throughout the assay period. A small amount of gallic acid was observed in extracts of the emulsion; however, protocatechuic acid was not detected. A mechanism to explain the different activities of DHS in the three lipid systems is proposed.  相似文献   

5.
Analysis of two commercial extracts of Andrographis paniculata using high-performance liquid chromatography (HPLC) with photodiode array absorbance detection showed the presence of several unexpected compounds, which were isolated and identified as methyl, ethyl, and propyl esters of p-hydroxybenzoic acid by using high-resolution mass spectrometry and nuclear magnetic resonance. Quantitative analysis using HPLC revealed the presence of 0.22% p-hydroxybenzoic acid methyl ester (methlyparaben) in one commercial extract, and both 0.11% p-hydroxybenzoic acid ethyl ester (ethylparaben) and 0.20% p-hydroxybenzoic acid propyl ester (propylparaben) in a second commercial extract of A. paniculata. Analyses of additional commercial products of A. paniculata in tablet form purchased from Chicago pharmacies also showed the presence of methyl- and ethylparabens. To determine whether these compounds were natural chemical constituents of the plant, pharmacopoeial reference A. paniculata plant powder as well as samples of authenticated A. paniculata plant materials collected from Indonesia, Hong Kong, and mainland China were obtained and analyzed by HPLC-tandem mass spectrometry (LC-MS-MS). LC-MS-MS analyses confirmed the presence of trace concentrations (<0.0008% w/w) of p-hydroxybenzoic acid methyl ester but no p-hydroxybenzoic acid ethyl or propyl esters in these plant samples. The limits of detection of the LC-MS-MS assay for these compounds were 5 pg on-column and 5 ppb in the plant material. The levels of these p-hydroxybenzoic acid esters measured in the commercial products of A. paniculata suggest that they were introduced inadvertently during processing or as artificial additives.  相似文献   

6.
The activity of alpha-tocopherol, Trolox, propyl gallate, gallic acid, methyl carnosoate, and carnosic acid was studied in two oil-in-water (o/w) emulsions, in two water-in-oil (w/o) emulsions, and in bulk oil with and without added emulsifiers. All antioxidants had either moderate or higher activity in bulk oil than in the emulsions. In most emulsions, the most polar antioxidants, propyl gallate and gallic acid, exhibited either prooxidant activity or no antioxidant activity. Methyl carnosoate was the most active antioxidant in w/o emulsions but was less active than Trolox in o/w emulsions. alpha-Tocopherol was less active in bulk oil than in emulsions, but its activity in bulk oil was markedly enhanced by the addition of o/w emulsifiers. Partitioning of antioxidants, hydrogen bonding, interphase transport, surface accessibility, and interaction of emulsifier with antioxidants are considered to be important parameters that determine antioxidant activity in lipid-containing systems.  相似文献   

7.
An aqueous decoction of mango (Mangifera indica L.) stem bark (MSB) has been developed in Cuba on an industrial scale to be used as a nutritional supplement, cosmetic, and phytomedicine, with antioxidant, anti-inflammatory, analgesic, and immunomodulatory properties. The concentration of major and trace elements was determined for 16 varieties of MSB belonging to two cultivars and grown in Cuba in the same soil (red ferralytic). Plants were classified into two groups, according to the tree age (12 and 26 year olds) and were analyzed for As, Ca, Cd, Cu, Fe, Hg, K, Mg, Pb, Se, and Zn content by means of ICP-AES technique. Experimental data were processed by ANOVA and principal component analysis in terms of elements, variety, and plant age, to choose the most adequate varieties for industrial purposes.  相似文献   

8.
9.
Present research has delineated the biosorption potential of three different nonliving biomasses namely eucalyptus bark saw dust, mango bark saw dust, and pineapple fruit peel with respect to Zn (II) ion removal from liquid phase through batch experiments. The efficacy of Zn (II) ion biosorption onto surface of biosorbents was judged and correlated with biosorbent particle size, surface chemistry, and surface texture. Maximum metal ion uptake capacity, percentage removal, and minimum equilibrium concentration as 1.688 mg/g, 84.4%, and 1.56 mg/l, respectively, was obtained using eucalyptus bark saw dust mediated biosorption followed by mango bark saw dust as 1.028 mg/g, 51.4%, and 4.867 mg/l and pineapple fruit peel as 0.45 mg/g, 22.9%, and 7.71 mg/l, respectively, at a particle size of 0.5 mm. Additionally, present investigation also proved that biosorption efficiency and metal ion interaction with adsorbent surface also depends upon presence of functional groups involved in metal ion adsorption and surface porosity.  相似文献   

10.
以魔芋葡甘聚糖为原料,分别采用苯甲酸、醋酸和没食子酸对魔芋葡甘聚糖进行酯化改性,研究了改性pH值、温度及改性处理时间对改性产物吸附空气中SO2和抑菌效果的影响,优化了改性工艺参数,得到了有较好使用效果的天然的有机大分子空气净化材料.研究结果表明:当采用苯甲酸为魔芋葡甘聚糖酯化改性剂时,改性产物对空气中的SO2吸附效果和抑菌作用效果优于使用醋酸和没食子酸的改性产物.其改性处理温度50℃,反应时间2 h,pH值3,改性反应产物对空气中SO2的吸附率可达98.7%,抑菌率可达到86.3%.  相似文献   

11.
NMR-based metabolic analysis of foods has been widely applied in food science. In this study, we performed discrimination of five different mango cultivars, Awin, Carabao, Keitt, Kent, and Nam Dok Mai, using metabolic analysis with band-selective excitation NMR spectra. A combination of unsupervised principal component analysis (PCA) with low-field region (1)H NMR spectra obtained by band-selective excitation provided a good discriminant model of the five mango cultivars. Using F(2)-selective 2D NMR spectra, we also identified various minor components in the mango juice. Signal assignment of the minor components facilitated the interpretation of the loading plot, and it was found that arginine, histidine, phenylalanine, glutamine, shikimic acid, and trigonelline were important for classification of the five mango cultivars.  相似文献   

12.
13.
The acaricidal activities of materials derived from the root bark of Paeonia suffruticosa against adults of Dermatophagoides farinae and Dermatophagoides pteronyssinus were examined using direct contact and fumigation bioassays and compared with those of benzyl benzoate, dibutyl phthalate, and N,N-diethyl-m-toluamide (deet), widely used acaricides. The active constituents of Paeonia root bark were identified as paeonol and benzoic acid by spectroscopic analyses. On the basis of 24-h LD50 values, the acaricidal activities of paeonol (7.82 microg/cm3) and benzoic acid (6.58 microg/cm3) against adult D. farinae were comparable to that of benzyl benzoate (7.72 microg/cm3) but higher than those of deet (36.34 microg/cm3) and dibutyl phthalate (33.92 microg/cm3). Against adult D. pteronyssinus, the acaricidal activities of paeonol (7.08 microg/cm3) and benzyl benzoate (7.22 microg/cm3) were comparable to that of benzyl benzoate (7.14 microg/cm3). Deet and dibutyl phthalate were less effective. In fumigation tests with both mite species, paeonol and benzoic acid were much more effective in closed containers than open ones, indicating that the effect of these compounds was largely a result of action in the vapor phase. Neither benzyl benzoate, deet, nor dibutyl phthalate exhibited fumigant toxicity. Paeonia root bark-derived materials, particularly paeonol and benzoic acid, merit further study as potential acaricides or lead compounds for the control of D. farinae and D. pteronyssinus.  相似文献   

14.
The structures of the condensed tannins isolated from leaf, fruit, and stem bark of Delonix regia (Bojer ex Hook.) Raf. have been investigated with (13)C nuclear magnetic resonance ((13)C NMR) and high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) coupled with thiolysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses. The results showed that these condensed tannins from D. regia possessed structural heterogeneity in monomer units and degree of polymerization. Propelargonidin (PP) and procyanidin (PC) were found in the leaf, fruit, and stem bark of D. regia, while prodelphinidin (PD) was found only in the leaves. The polymer chain lengths of condensed tannins from leaf and fruit organs were detected to be trimers to hexadecamers but from trimers to tridecamers for stem bark. B-type linkages were present in all these compounds. Condensed tannins from different parts of D. regia can be explored as tyrosinase inhibitors and food antioxidants because of their potent antityrosinase and antioxidant activities. The inhibitor concentration leading to 50% enzyme activity (IC(50)) was estimated to be 38 ± 1, 73 ± 2, and 54 ± 1.5 μg/mL for the condensed tannins of leaf, fruit, and stem bark. Condensed tannins extracted from stem bark exhibited the highest antioxidant activity; the DPPH scavenging activity (IC(50)) and the FRAP values were 90 ± 2 μg/mL and 5.42 ± 0.09 mmol AAE/g, respectively.  相似文献   

15.
Milled wood lignin samples from Loblolly pine stem wood, forest residue, and bark were isolated and characterized by quantitative (13)C and (31)P nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC) for molecular weight determination. Results from (13)C NMR show the stem wood and forest residue samples have similar functional group contents. However, the bark has fewer methoxyl groups, β-O-4 structures, dibenzodioxocin, and side chains than the other two lignins. The bark lignin has the highest amounts of p-hydroxyphenyl (h) and C-5 condensed lignin, stem wood has the lowest, and the residue lies between. (31)P NMR analysis indicates that bark lignin contains more C-5 substituted phenolics and fewer aliphatic hydroxyl groups than the lignin isolated from stem wood or residue. The molecular weight distribution analysis indicates the bark lignin has higher weight-average molecular weight (M(w)) and polydispersity index than the lignin recovered from stem wood or residue.  相似文献   

16.
This study examined partitioning of alpha-, beta-, and gamma-tocopherol and six polar antioxidants (Trolox, ferulic acid, caffeic acid, propyl gallate, gallic acid, and catechin) in mayonnaise. Partitioning of antioxidants between different phases was determined after separation of mayonnaise by either (a) centrifugation + ultracentrifugation or (b) centrifugation + dialysis. Antioxidants partitioned in accordance with their chemical structure and polarity: Tocopherols were concentrated in the oil phase (93-96%), while the proportion of polar antioxidants in the oil phase ranged from 0% (gallic acid and catechin) to 83% (Trolox). Accordingly, proportions of 6% (Trolox) to 80% (gallic acid and catechin) were found in the aqueous phase. Similar trends were observed after dialysis. After ultracentrifugation, large proportions of polar antioxidants were found in the "emulsion phase" and the "precipitate" (7-34% and 2-7%, respectively). This indicated entrapment of antioxidants at the oil-water interface in mayonnaise. The results signify that antioxidants partitioning into different phases of real food emulsions may vary widely.  相似文献   

17.
DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging reactions of protocatechuic and gallic acids, and their methyl esters, have been investigated by NMR. In acetone, methyl protocatechuate was gradually converted to a Diels-Alder adduct of two molecules of the intermediate quinone in the reaction with DPPH radical, whereas methyl gallate rapidly gave a symmetrical dimer via a putative quinone precursor. Both dimers are rather unstable and their structures have been deduced by in situ NMR measurements of the reaction mixtures. Gallic acid also gave a corresponding symmetrical dimer in the same reaction as methyl gallate, although protocatechuquinone produced from protocatechuic acid did not yield a Diels-Alder adduct, unlike its methyl ester. Interestingly, these dimer formations were not observed in methanol solution.  相似文献   

18.
Gallic acid (3,4,5-trihydroxybenzoic acid) is a naturally abundant plant phenolic compound. Our previous studies have shown that some phenolic acids such as gallic acid inhibit cell growth and induce apoptosis in 3T3-L1 pre-adipocytes. However, the molecular mechanism of gallic acid in the induction of cell apoptosis is still unclear. In this study, we investigated the effect of gallic acid on the apoptotic pathway in 3T3-L1 pre-adipocytes. Western blot data revealed that gallic acid stimulated an increase in the protein expression of Fas, FasL, and p53. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was changed by gallic acid treatment. Gallic acid released mitochondrial cytochrome c into the cytosol and subsequently induced the activation of caspase-9 and caspase-3, which were followed by the cleavage of poly(ADP-ribose) polymerase. Pretreatment with a general caspase-9 inhibitor (Z-LEHD-FMK) and caspase-3 inhibitor (Z-DEVD-FMK) prevented gallic acid from inhibiting cell viability in 3T3-L1 pre-adipocytes. The data also indicated that treatment with gallic acid inhibited histone deacetylase activity in 3T3-L1 pre-adipocytes. These results demonstrate that gallic acid induces apoptosis in 3T3-L1 pre-adipocytes through the Fas and mitochondrial pathway. The induction of cell apoptosis by gallic acid may prove to be a pivotal mechanism for decreased pre-adipocyte proliferation.  相似文献   

19.
The antioxidant capacity of butylated hydroxytoluene (BHT; 2,6-di-tert-butyl-p-cresol), propyl gallate (3,4,5-trihydroxybenzoic acid n-propyl ester), resveratrol (trans-3,4',5-trihydroxystilbene), and vitamins C (l-ascorbic acid) and E [(+)-alpha-tocopherol] was studied in chemical and biological systems. The chemical assays evaluated the capacity of these antioxidants to sequester 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS.) and 1,1 diphenyl-2-picrylhydrazyl (DPPH.). A new colorimetric method to determine hydroxyl radical scavenging is also described. The biological tests use the eucaryotic cells of Saccharomyces cerevisiae treated with the antioxidants in the presence of the stressing agents apomorphine, hydrogen peroxide, and paraquat dichloride (methylviologen; 1,1'-dimethyl-4,4'-bipyridinium dichloride). The results in chemical systems showed that all of the antioxidants were able to significantly inhibit the oxidation of beta-carotene by hydroxyl free radicals. The assays in yeast showed that the antioxidant activity of the tested compounds depended on the stressing agent used and the mechanism of action of the antioxidant.  相似文献   

20.
Root exudates of the common buckwheat, especially phenolic compounds, were studied. Their contents, both in the soil during the growing season and in agar medium during germination, were determined by HPLC and GC-MS. The allelopathic activity of the soil from a buckwheat stand was evaluated, as well. Palmitic acid, squalene, epicatechin, vitexin, a gallic acid derivative, and a quercetin derivative were the main compounds of the agar medium. In the soil, palmitic acid methyl ester, vanillic acid, rutin, a gallic acid derivative, and a 4-hydroxyacetophenone derivative were identified. The effects of vitexin, squalene, epicatechin, 4-hydroxyacetophenone, and vanillic and gallic acids were tested on eight plant species. Inhibitive effects were observed in the cases of 4-hydroxyacetophenone and vanillic and gallic acids. Comparisons of the identified compounds and inhibitive effects of soil extracts indicated that palmitic acid and the gallic acid derivative probably have an important function in the allelopathic root response of buckwheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号