首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
This study examined the effects of metabolic transformation of the common dietary flavonoid, quercetin, on its ability to protect low-density lipoprotein (LDL) from neutrophil-mediated modification. Quercetin was shown to be effective in protecting LDL against neutrophil-mediated modification at physiological concentrations (1 microM) and appears to act by inhibiting myeloperoxidase (MPO)-catalyzed oxidation (IC(50) = 1.0 microM). Quercetin was also shown to protect against radical-induced [2,2'-azobis(2-methylpropionamidine)dihydrochloride] oxidation (IC(50) = 1.5 microM). Studies of structure-activity relationships showed that methylation at the 3'-position or glucuronidation at the 3-position did not significantly affect inhibition by quercetin of the MPO activity, but conjugations at both positions significantly reduce its activity. Our results suggest that the common dietary flavonoid, quercetin, and some of its major in vivo metabolites are potential inhibitors of MPO at physiological concentrations. Dietary flavonoids that could modify MPO activity could protect lipoproteins from damage in chronic inflammatory states such as cardiovascular disease.  相似文献   

2.
Inhibitors of 15-lipoxygenase from orange peel   总被引:5,自引:0,他引:5  
A series of polymethoxylated flavonoids has been isolated from orange peel, and their inhibitory activity toward soybean 15-lipoxygenase was determined. The strongest inhibition was shown by 3,5,6,7,3',4'-hexamethoxyflavone (IC(50) = 49 +/- 5 microM). Sinensetin, nobiletin, tangeretin, tetramethylscutellarein, and 3,5, 6,7,8,3',4'-heptamethoxyflavone were somewhat less active, with IC(50) values of 70-86 microM, comparable to the positive control quercetin (IC(50) = 68 +/- 5 microM). Demethylation apparently results in less active compounds, with 5-O-demethylsinensetin having an IC(50) value of 144 +/- 10 microM. Some other orange peel constituents were isolated and tested as well, hesperidin (IC(50) = 180 +/- 10 microM) and ferulic acid (111 +/- 2 microM), showing moderate activity. The polymethoxylated flavonoids were virtually inactive as scavengers of the diphenylpicrylhydrazyl radical. Hesperidin was only slightly active (24.2 +/- 0.7% scavenged at a concentration of 2 mM), and ferulic acid showed good activity (IC(50) = 86.4 +/- 0.7 microM). From this, it appears that orange peel constituents may counteract enzymatic lipid peroxidation processes catalyzed by 15-lipoxygenase in vitro. The radical scavenging activity of orange peel extracts is only modest.  相似文献   

3.
Pterostilbene, a natural methoxylated analogue of resveratrol, was evaluated for antioxidative potential. The peroxyl-radical scavenging activity of pterostilbene was the same as that of resveratrol, having total reactive antioxidant potentials of 237 +/- 58 and 253 +/- 53 microM, respectively. Both compounds were found to be more effective than Trolox as free radical scavengers. Using a plant system, pterostilbene also was shown to be as effective as resveratrol in inhibiting electrolyte leakage caused by herbicide-induced oxidative damage, and both compounds had the same activity as alpha-tocopherol. Pterostilbene showed moderate inhibition (IC50 = 19.8 microM) of cyclooxygenase (COX)-1, and was weakly active (IC50 = 83.9 microM) against COX-2, whereas resveratrol strongly inhibited both isoforms of the enzyme with IC50 values of approximately 1 microM. Using a mouse mammary organ culture model, carcinogen-induced preneoplastic lesions were, similarly to resveratrol, significantly inhibited by pterostilbene (ED50 = 4.8 microM), suggesting antioxidant activity plays an important role in this process.  相似文献   

4.
One known and two novel antioxidant compounds have been isolated from bamboo (Phyllostachys edulis). The butanol-soluble extract of the bamboo leaves was found to have a significant antioxidant activity, as measured by scavenging the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and the superoxide anion radical (O(2)(-)) in the xanthine/xanthine oxidase assay system. Antioxidant activity-directed fractionation of the extract led to the isolation and characterization of three structural isomeric chlorogenic acid derivatives: 3-O-(3'-methylcaffeoyl)quinic acid (1), 5-O-caffeoyl-4-methylquinic acid (2), and 3-O-caffeoyl-1-methylquinic acid (3). Compounds 2 and 3 were isolated and characterized for the first time from the natural products. In the DPPH scavenging assay as well as in the iron-induced rat microsomal lipid peroxidation system, compounds 2 (IC(50) = 8.8 and 19.2 microM) and 3 (IC(50) = 6.9 and 14.6 microM) showed approximately 2-4 times higher antioxidant activity than did chlorogenic acid (IC(50) = 12.3 and 28.3 microM) and other related hydroxycinnamates such as caffeic acid (IC(50) =13.7 and 25.5 microM) and ferulic acid (IC(50) = 36.5 and 56.9 microM). Among the three compounds, compound 1 yielded the weakest antioxidant activity, and the DPPH scavenging and lipid peroxidation inhibitory activity (IC(50) = 16.0 and 29.8 microM) was lower than those of chlorogenic and caffeic acids. All three compounds exhibited both superoxide scavenging activities and inhibitory effects on xanthine oxidase. Their superoxide anion (O(2)(-)) scavenging activities (IC(50) = 1, 4.3 microM; 2, 2.8 microM; and 3, 1.2 microM) were markedly stronger than those of ascorbic acid (IC(50) = 56.0 microM), alpha-tocopherol (IC(50) > 100 microM), and other test compounds, although their inhibition effects on xanthine oxidase may contribute to the potent scavenging activity. alpha-Tocopherol exerted a significant inhibitory effect (65.5% of the control) on superoxide generation in 12-O-tetradecanoylphorbol-13-acetate-induced human promyelocytic leukemia HL-60 cells, and compound 3 showed moderate activity (36.0%). On the other hand, other compounds including 1, 2, chlorogenic acid, and other antioxidants were weakly active (24.8-10.1%) in the suppression of superoxide generation.  相似文献   

5.
Flavonol O- and xanthone C-glycosides were extracted from mango (Mangifera indica L. cv. "Tommy Atkins") peels and characterized by high-performance liquid chromatography-electrospray ionization mass spectrometry. Among the fourteen compounds analyzed, seven quercetin O-glycosides, one kaempferol O-glycoside, and four xanthone C-glycosides were found. On the basis of their fragmentation pattern, the latter were identified as mangiferin and isomangiferin and their respective galloyl derivatives. A flavonol hexoside with m/z 477 was tentatively identified as a rhamnetin glycoside, which to the best of our knowledge, has not yet been reported in mango peels. The results obtained in the present study confirm that peels originating from mango fruit processing are a promising source of phenolic compounds that might be recovered and used as natural antioxidants or functional food ingredients.  相似文献   

6.
Cyclopia genistoides, normally used for the preparation of an herbal tea, honeybush, is a good source of the bio-active compounds mangiferin and hesperidin and is in demand for the preparation of xanthone-enriched extracts. Near-infrared spectroscopy (NIRS) was used to develop calibration models to predict the mangiferin and hesperidin contents of the dried green plant material. NIRS measurements of plant material and pure compounds were performed in diffuse reflectance mode. The calibration sets for mangiferin and hesperidin contents ranged from 0.7 to 7.21 and 0.64-4.80 g/100 g, respectively. Using independent validation, it was shown that the NIRS calibration models for the prediction of mangiferin (SEP=0.46 g/100 g; R2=0.74; and RPD=1.96) and hesperidin (SEP=0.38 g/100 g; R2=0.72; and RDP=1.90) contents of the dried plant material are adequate for screening purposes, based on RPD values.  相似文献   

7.
Matricaria chamomilla L., known as "chamomile", has been used as an herbal tea or supplementary food all over the world. We investigated the effects of chamomile hot water extract and its major components on the prevention of hyperglycemia and the protection or improvement of diabetic complications in diabetes mellitus. Hot water extract, esculetin (3) and quercetin (7) have been found to show moderate inhibition of sucrase with IC50 values of 0.9 mg/mL and 72 and 71 microM, respectively. In a sucrose-loading test, the administration of esculetin (50 mg/kg body weight) fully suppressed hyperglycemia after 15 and 30 min, but the extract (500 mg/kg body weight) and quercetin (50 mg/kg body weight) were less effective. On the other hand, a long-term feed test (21 days) using a streptozotocin-induced rat diabetes model revealed that the same doses of extract and quercetin showed significant suppression of blood glucose levels. It was also found that these samples increased the liver glycogen levels. Moreover, chamomile extract showed potent inhibition against aldose reductase (ALR2), with an IC50 value of 16.9 microg/mL, and its components, umbelliferone (1), esculetin (3), luteolin (6), and quercetin (7), could significantly inhibit the accumulation of sorbitol in human erythrocytes. These results clearly suggested that daily consumption of chamomile tea with meals could contribute to the prevention of the progress of hyperglycemia and diabetic complications.  相似文献   

8.
Acacia confusa is traditionally used as a medicinal plant in Taiwan. In this study, phytochemicals and antioxidant activities of extracts from flowers of A. confusa were investigated for the first time. In addition, a rapid screening method, online RP-HPLC-DPPH system, for individual antioxidants in complex matrices was developed. Accordingly, six antioxidants including gallic acid ( 1), myricetin 3-rhamnoside ( 2), quercetin 3-rhamnoside ( 3), kaempferol 3-rhamnoside ( 4), europetin 3-rhamnoside ( 5), and rhamnetin 3-rhamnoside ( 6) were detected using the developed screening method. Of these, compounds 2, 3, and 5 were found to be major bioactive phytochemicals, and their contents were determined as 11.3, 6.7, and 8.7 mg/g of crude extract, respectively. By comparison with quercetin, a well-known antioxidant, these compounds had the order of compound 2 > compound 5 > quercetin > compound 3 for DPPH radical-scavenging activity. Their IC 50 values were 3.0, 3.2, 4.5, and 7.4 microM, respectively. Moreover, the same order was observed for superoxide radical-scavenging activity, and their IC50 values were 2.6, 2.7, 4.3, and 5.3 microM, respectively. However, for lipid peroxidation, quercetin, an aglycon, showed the best inhibitory activity. The IC50 values of quercetin, compound 2, compound 5, and compound 3 were 46.7, 88.5, 90.7, and 124.6 microM, respectively. These results indicated that a rhamnoside at the C3 position of flavonoids had a negative effect on radical-scavenging activity and antilipid peroxidation. In contrast, the number of hydroxyl groups on the B-ring exhibited a positive relationship with their inhibitory activities.  相似文献   

9.
One known, (2R)-(12Z,15Z)-2-hydroxy-4-oxoheneicosa-12,15-dien+ ++-1-yl acetate (1), and two novel compounds, persenone A (2) and B (3), have been isolated from avocado fruit (Persea americana P. Mill), as inhibitors of superoxide (O(2)(-)) and nitric oxide (NO) generation in cell culture systems. They showed marked inhibitory activities toward NO generation induced by lipopolysaccharide in combination with interferon-gamma in mouse macrophage RAW 264.7 cells. Their inhibitory potencies of NO generation (1, IC(50) = 3.6; 2, IC(50) = 1.2; and 3, IC(50) = 3.5 microM) were comparable to or higher than that of a natural NO generation inhibitor, docosahexaenoic acid (DHA; IC(50) = 4.3 microM). Furthermore, compounds 1-3 and DHA markedly suppressed tumor promoter 12-O-tetradecanoylphorbol-13-acetate-induced O(2)(-) generation in differentiated human promyelocytic HL-60 cells (1, IC(50) = 33.7; 2, IC(50) = 1.4; 3, IC(50) = 1.8; and DHA, IC(50) = 10.3 microM). It is notable that they were found to be suppressors of both NO- and O(2)(-)-generating biochemical pathways but not to be radical scavengers. The results indicate that these compounds are unique antioxidants, preferentially suppressing radical generation, and thus may be promising as effective chemopreventive agent candidates in inflammation-associated carcinogenesis.  相似文献   

10.
Flavonoids are ubiquitous components in vegetables, fruits, tea, and wine. Therefore, they are often consumed in large quantities in our daily diet. Several flavonoids have been shown to have potential as antidiabetic agents. In the present study, we focused on inhibition of glycogen phosphorylase (GP) by flavonoids. 6-Hydroxyluteolin, hypolaetin, and quercetagetin were identified as good inhibitors of dephosphorylated GP (GPb), with IC 50 values of 11.6, 15.7, and 9.7 microM, respectively. Furthermore, a structure-activity relationship study revealed that the presence of the 3' and 4' OH groups in the B-ring and double bonds between C2 and C3 in flavones and flavonols are important factors for enzyme recognition and binding. Quercetagetin inhibited GPb in a noncompetitive manner, with a K i value of 3.5 microM. Multiple inhibition studies by Dixon plots suggested that quercetagetin binds to the allosteric site. In primary cultured rat hepatocytes, quercetagetin and quercetin suppressed glucagon-stimulated glycogenolysis, with IC 50 values of 66.2 and 68.7 microM, respectively. These results suggested that as a group of novel GP inhibitors, flavonoids have potential to contribute to the protection or improvement of control of diabetes type II.  相似文献   

11.
The antioxidant activity of three major polyamine conjugates, N,N'-dicoumaroyl-putrescine (DCP), N-p-coumaroyl-N'-feruloylputrescine (CFP), and N,N'-diferuloyl-putrescine (DFP) isolated from corn bran, and their related hydroxycinnamic acids, p-coumaric acid and ferulic acid, were evaluated by three antioxidant in vitro assay systems, including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and superoxide and hydroxyl radicals generated by enzymatic and nonenzymatic reactions. Additionally, five phenolic compounds were evaluated for melanogenesis inhibitory activity using mushroom tyrosinase and B16 melanoma cells. Most of the phenolic compounds significantly scavenged DPPH, superoxide, and hydroxyl radicals in a dose-dependent manner. Particularly, DFP showed potent DPPH (IC50 = 38.46 microM) and superoxide (IC50 = 291.62 microM) radical scavenging activities, while DCP exhibited the strongest hydroxyl radical scavenging activity (IC50 = 120.55 microM). CFP also exerted moderate DPPH, superoxide, and hydroxyl radical scavenging activities. Meanwhile, DCP (IC50 = 181.73 microM) showed potent tyrosinase inhibitory activity toward l-tyrosine as the substrate, whereas DFP (IC50 = 733.64 microM) significantly inhibited melanin synthesis in B16 melanoma cells. These current results indicate that these three polyamine conjugates from corn bran may be useful potential sources of natural antioxidants and skin-whitening agents.  相似文献   

12.
Chrysophyllum cainito L. (Sapotaceae), known commonly as star apple or caimito, is a tropical tree that bears edible fruits. The fruits are grown commercially in certain tropical and subtropical areas, such as southern Florida. In this study, the fresh fruits were extracted with methanol and partitioned with hexane and ethyl acetate sequentially. The ethyl acetate soluble fraction displayed high antioxidant activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay (IC50 = 22 microg/mL). Activity-guided fractionation of the ethyl acetate soluble fraction was performed to identify the antioxidant constituents. Nine known polyphenolic antioxidants, (+)-catechin (1), (-)-epicatechin (2), (+)-gallocatechin (3), (-)-epigallocatechin (4), quercetin (5), quercitrin (6), isoquercitrin (7), myricitrin (8), and gallic acid, have been identified from the fruits. Of these nine antioxidants, 2 is present in the highest concentration in star apple fruits (7.3 mg/kg fresh weight), and 5 showed the highest antioxidant activity (IC50 = 40 microM) in the DPPH assay.  相似文献   

13.
Dietary phenolic antioxidants have been shown to prevent LDL modifications mediated by several physiologic oxidants including peroxynitrite. However, more recent data demonstrated that CO(2) affected the fate of peroxynitrite in biological fluids and significantly reduced peroxynitrite scavenging by polyphenols, raising doubts concerning their antioxidant activity. We found that the oxidation of LDL lipids mediated by peroxynitrite decreased in the presence of bicarbonate, while Trp oxidation and 3-nitroTyr formation increased, suggesting a redirection of peroxynitrite reactivity toward the protein moiety. We therefore evaluated the protective activity of some phenolic antioxidants (quercetin, oleuropein, resveratrol, (+)-catechin, (-)-epicatechin, tyrosol, alpha- and gamma-tocopherol, ascorbate) on peroxynitrite-mediated oxidation of LDL aromatic residues. Some of these phenols protected LDL Trp from oxidation better than ascorbate or alpha-tocopherol, although protection at 100 microM did not exceed 30-40%. However, the same phenolic antioxidants were more active in inhibiting 3-nitroTyr formation and those with a catechin structure provided significant protection (IC(50%) 40-50 microM). Red wine, a polyphenol-rich beverage, showed a protective effect comparable to that of the most active phenolic antioxidants. Direct EPR studies showed that bicarbonate significantly increased the peroxynitrite-dependent formation of O-semiquinone radicals in red wine, supporting the hypothesis that polyphenols are efficient scavengers of radicals formed by peroxynitrite/CO(2). Ascorbate was a poor inhibitor of peroxynitrite/CO(2)-induced LDL tyrosine nitration, but the simultaneous addition to the most active polyphenols halved their IC(50%). In conclusion, although cooperation with other antioxidants can further decrease the IC(50%) of polyphenolics, as demonstrated for ascorbate, their antioxidant activity appears to occur at concentrations at least 1 order of magnitude higher than their bioavailability.  相似文献   

14.
15.
The essential oil obtained from the bark of Cinnamomum zeylanicum Blume (Lauraceae) and three of its main components, eugenol, (E)-cinnamaldehyde, and linalool (representing 82.5% of the total composition), were tested in two in vitro models of peroxynitrite-induced nitration and lipid peroxidation. The essential oil and eugenol showed very powerful activities, decreasing 3-nitrotyrosine formation with IC50 values of 18.4 microg/mL and 46.7 microM, respectively (reference compound, ascorbic acid, 71.3 microg/mL and 405.0 microM) and also inhibiting the peroxynitrite-induced lipid peroxidation showing an IC50 of 2.0 microg/mL and 13.1 microM, respectively, against 59.0 microg/mL (235.5 microM) of the reference compound Trolox. On the contrary, (E)-cinnamaldehyde and linalool were completely inactive.  相似文献   

16.
Environmental contaminants such as dioxins enter the body mainly through diet and cause various toxicities through transformation of the aryl hydrocarbon receptor (AhR). We previously reported that certain natural flavonoids at the dietary level suppress the AhR transformation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this study, we identified lutein and chlorophyll a and b from green tea leaves as the novel antagonists for AhR. These active compounds suppressed AhR transformation dose-dependently with the 50% inhibitory concentration (IC(50)) values against 0.1 nM TCDD-induced AhR transformation at 3.2, 5.0, and 5.9 microM, respectively. (-)-Epigallocatechin gallate, which is the most abundant flavonoid in green tea leaves, also showed stronger suppressive effects than did other major tea components, with the IC(50) value of 1.7 microM. Thus, these pigments of green tea leaves have the potential to protect from dioxin toxicity through the suppression of AhR transformation.  相似文献   

17.
The methanolic root extract of Glycine max (L.) Merr. was chromatographed, which yielded 10 flavonoids, including three isoflavones 1-3, five pterocarpans 4-8, one flavonol 9, and one anthocyanidin 10. All isolated compounds were examined for LDL-antioxidant activities using four different assay systems on the basis of Cu2+-mediated oxidation. Among them, seven compounds showed potent LDL-antioxidant activities in the thiobarbituric acid reactive substances (TBARS) assay, the lag time of conjugated diene formation, relative electrophoretic mobility (REM), and fragmentation of apoB-100 on copper-mediated LDL oxidation. Three pterocarpans 4, 6, and 7, never reported as LDL-antioxidant, showed potent activities with IC50 values of 19.8, 0.9, 45.0 microM, respectively, in comparison with probucol (IC50 = 5.6 microM) as positive control. Interestingly, coumestrol 6 (IC50 = 0.9 microM) showed 20 times more activity in the TBARS assay than genistein (IC50 = 30.1 microM) and daidzein (IC50 = 21.6 microM), representative antioxidants in soybean. Moreover, coumestrol 6 had an extended lag time of 190 min at 3.0 microM in measuring conjugated diene formation, while both genistein (120 min) and daidzein (93 min) lag times were extended to less than 120 min at the same concentration.  相似文献   

18.
The antioxidant activity of some esters of ferulic acid with the linear fatty alcohols C7, C8 (branched and linear), C9, C11, C12, C13, C15, C16, and C18 has been studied in homogeneous and heterogeneous phases. Whereas in homogeneous phase all of the alkyl ferulates possessed similar radical-scavenging abilities, in rat liver microsomes they showed striking differences, the more effective being C12 (7) (IC50 = 11.03 M), linear C8 (3) (IC50 = 12.40 microM), C13 (8) (IC50 = 18.60 microM), and C9 (5) (IC50 = 19.74 microM), followed by C7 (2), C15 (9), C11 (6), branched C8 (4), C16 (10), and C18 (11) (ferulic acid was the less active, IC50 = 243.84 microM). All of the molecules showed similar partition coefficients in an octanol-buffer system. Three-dimensional studies (NMR in solution, modeling in vacuo) indicate that this behavior might be due to a different anchorage of the molecules with the ester side chain to the microsomal phospholipid bilayer and to a consequent different orientation/positioning of the scavenging phenoxy group outside the membrane surface against the flux of oxy radicals.  相似文献   

19.
Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro   总被引:10,自引:0,他引:10  
Fifty-four polyphenols isolated from tea leaves were evaluated for their inhibitory activities against pancreatic lipase, the key enzyme of lipid absorption in the gut. (-)-Epigallocatechin 3-O-gallate (EGCG), which is one of major polyphenols in green tea, showed lipase inhibition with an IC50 of 0.349 microM. Moreover, flavan-3-ol digallate esters, such as (-)-epigallocatechin-3,5-digallate, showed higher activities of inhibition on lipase with an IC50 of 0.098 microM. On the other hand, nonesterified flavan-3-ols, such as (+)-catechin, (-)-epicatechin, (+)-gallocatechin, and (-)-epigallocatechin, showed zero and/or the lowest activities against pancreatic lipase (IC50 > 20 microM). These data suggested that the presence of galloyl moieties within the structure was required for enhancement of pancreatic lipase inhibition. It is well-known that flavan-3-ols are polymerized by polyphenol oxidase and/or heating in a manufacturing process of oolong tea. Oolonghomobisflavans A and B and oolongtheanin 3'-O-gallate, which are typical in oolong tea leaves, showed strong inhibitory activities with IC50 values of 0.048, 0.108, and 0.068 microM, respectively, even higher than that of EGCG. The oolong tea polymerized polyphenols (OTPP) were prepared for the assay from oolong tea extract, from which the preparation effectively subtracted the zero and/or less-active monomeric flavan-3-ols by preparative high-performance liquid chromatography. The weight-average molecular weight (Mw) and number-average molecular-weight (Mn) values of OTPP were 2017 and 903, respectively, by using gel permeation choromatography. OTPP showed a 5-fold stronger inhibition against pancreatic lipase (IC50 = 0.28 microg/mL) by comparison with that of the tannase-treated OTPP (IC50 = 1.38 microg/mL). These data suggested that the presence of galloyl moieties within their chemical structures and/or the polymerization of flavan-3-ols were required for enhancement of pancreatic lipase inhibition.  相似文献   

20.
A number of natural phenolic compounds display antioxidant and cell protective effects in cell culture models, yet in some studies show prooxidant and cytotoxic effects. Pancreatic beta-cells have been reported to exhibit particular sensitivity to oxidative stress, a factor that may contribute to the impaired beta-cell function characteristic of diabetes. The aim of this study was to examine the potential of natural phenolics to protect cultured pancreatic beta-cells (betaTC1 and HIT) from H(2)O(2) oxidative stress. Exposure of cells to H(2)O(2) led to significant proliferation inhibition. Contrary to what one should expect, simultaneous exposure to H(2)O(2) and the phenolics, quercetin (10-100 microM), catechin (50-500 microM), or ascorbic acid (100-1000 microM), led to amplification of proliferation inhibition. At higher concentrations, these compounds inhibited proliferation, even in the absence of added H(2)O(2). This prooxidant effect is attributable to the generation of H(2)O(2) through interaction of the added phenolic compounds with as yet undefined componenets of the culture media. On the other hand, inclusion of metmyoglobin (30 microM) in the culture medium significantly reduced the prooxidant impact of the phenolics. Under these conditions, quercetin and catechin significantly protected the cells against oxidative stress when these components were present during the stress period. Furthermore, significant cell protection was observed upon preincubation of cells with chrysin, quercetin, catechin, or caffeic acid (50 microM, each) prior to application of oxidative stress. It is concluded that provided artifactual prooxidant effects are avoided, preincubation of beta-cells with relatively hydrophobic natural phenolics can confer protection against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号