首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
为发掘与小麦茎秆强度紧密关联标记位点的优异等位变异和携带优异等位变异的载体资源,本研究以126份小麦种质为材料,基于混合线性模型(mixed linear model,MLM)对2011-2012、2012-2013和2013-2014三个年度的茎秆强度进行标记位点关联分析,并对关联住点等位变异的表型效应进行分析。结果表明,wmc83(2B)、gwm539(2D)、barc358(5A)、barc59(5B)和barc134(6B)均与茎秆强度显著关联,且可在3个环境下同时检测到,表型解释率均大于8%;共发掘出11种优异等位变异,分别为wmc83-A110、wmc83-A147、wmc83-A151、gwm539-A120、barc358-A179/161、barc358-A185/161、barc358-A185/179、barc358-A190/161、barc59-A182、barc59-A191和barc134-A194,其中wmc83-A110的增效效应最大。供试材料的茎秆强度随优异等位变异聚合数目的增多而增大,其中黄淮南片麦区、黄淮北片麦区、长江中下游麦区和西南麦区的供试材料中携带2(40.3%)、1(27.8%)、1(35.3%)和4(50.0%)种优异等位变异的分布频率最高。内麦10号等9份材料聚合4种及以上的优异等位变异,且茎秆强度较高,可作为相应麦区小麦茎秆强度遗传改良的种质资源。  相似文献   

2.
研究大豆育成品种遗传多样性及群体结构对大豆遗传改良具有重要的指导意义.本文利用99个与大豆QTL性状相关的SSR标记,对黄淮海和南方产区的105份大豆育成品种进行遗传多样性和群体结构分析.结果表明:99个位点共检测出1142个等位标记,每个位点变异范围为5~24个,平均每个位点11.54个等位变异.按品种育成时期将群体...  相似文献   

3.
为挖掘与小麦产量性状的相关等位变异及给分子标记辅助育种提供参考,选取SSR与SNP标记对52个黄淮麦区品种(系)材料进行全基因组扫描,对株高、穗长、单株穗数、可育小穗数、穗粒数、千粒重等6个重要产量性状进行标记,并进行遗传多样性、群体遗传结构与全基因组关联定位等分析。结果表明,供试群体可被划分为4个亚群,5种环境间所测产量性状差异均达到0.05显著水平,且穗长和单株穂数的变异系数最大。利用Powermarker进行标记遗传多样性分析,共检测到899个等位变异,平均等位变异丰富度为3.625,遗传多样性指数平均值为0.586,多态性信息含量(PIC)平均值为0.510。利用Tassel的MLM(Q+K)模型关联得到与产量显著关联的分子标记共13个(6个SSRs和7个SNPs),这些与产量相关性状的优异等位变异可为发掘和利用小麦育种优良基因提供依据,并为今后的遗传育种工作提供参考。  相似文献   

4.
为了从分子水平探讨黑龙江省春小麦种质资源的遗传多样性,对黑龙江省34份不同年代主栽春小麦品种进行SSR标记分析,计算遗传相似系数(GS)和位点多态性信息含量(PIC),并利用SSR标记的数据结果对供试品种进行聚类分析.14对SSR引物共扩增出73个等位变异,平均每对引物扩增出5.2个等位变异.遗传相似系数的变化范围为0.32~0.88,总体平均值为0.64.位点多态性信息含量(PIC)变幅为0.16~0.87,平均0.56.聚类分析表明,SSR标记将34个品种相互区分开并分为五大类,分类结果与品种系谱比较吻合.据此认为,SSR标记揭示出黑龙江省主栽小麦品种具有较高的遗传多样性.  相似文献   

5.
四川主栽小麦品种遗传多样性的SSR标记研究   总被引:26,自引:7,他引:26  
采用微卫星分子标记 (SSR)对四川省近 5 0年以来年推广面积达 6 6 70 0 hm2 (10 0万亩 )以上的 4 0个主栽小麦品种的遗传多样性进行了研究。结果发现 ,在小麦全基因组 4 2条染色体臂上的 4 6个 SSR位点上 30个 SSR位点 (6 5 .2 2 % )具有多态性。这 4 6个位点共检测到 110个等位变异 ,每个 SSR位点能检测到 1~ 8个 ,平均为 2 .4个。聚类分析表明 ,SSR标记能将 4 0个品种相互区分开。品种间遗传相似系数 (GS)变幅为 0 .4 5 1~ 0 .76 7,平均 GS值为0 .6 0 1。据此认为 ,SSR标记揭示出四川主栽小麦品种具有较高的遗传多样性。各年代间 GS值变化趋势分析表明 ,2 0世纪 70年代后 ,四川小麦的遗传多样性呈明显的下降趋势  相似文献   

6.
为挖掘小麦产量相关性状的优异等位变异,利用筛选的106对多态性SSR标记扫描236份小麦种质资源组成的自然群体,并进行遗传多样性分析。结果表明,利用106对引物共检测到874个等位变异,每对引物平均为8.24个,变化范围为2~23个;主要等位变异频率的变化范围为0.177~0.987,平均为0.545;多态性信息指数(PIC)的变化范围0.026~0.895,平均0.550。采用混合线性模型对4个环境的株高、穗长、主穗粒数、单株穗数和千粒重进行关联分析后,共关联到20对SSR标记,有26个显著关联位点(P0.01),其表型解释率范围为6.25%~18.97%。其中,标记 Xgwm164(1A)在4个环境下均与株高显著关联;Xgwm55(6D)同时与株高和穗长两个性状显著关联; Xwmc415(5B)在2个环境下与单株穗数显著关联。通过对等位变异表型效应的解析筛选出各关联位点的优异等位变异,包括可以降低株高4.24cm的优异等位变异 Xgwm164-1A_(118)、可以增加穗长0.75cm的优异等位变异 Xgwm429-2B_(207)、可以增加单株穗数1.07个的优异等位变异 Xwmc415-5B_(154)、可以增加主穗粒数1.93粒的优异等位变异 Xgwm232-1D_(138)及可以增加千粒重0.92g的优异等位变异 Xgwm610-4A_(170)。  相似文献   

7.
为发掘控制小麦产量及品质相关性状的优异等位变异和携带优异等位变异的基因资源,本研究采用与小麦产量及品质相关性状显著关联的13个SSR标记,利用Breseghello提出的无效等位变异(null allele)方法对64份四川地方小麦品种构成的自然群体的等位变异进行遗传解析。共鉴定出38个控制产量相关性状、18个控制品质相关性状的等位变异。其中,7份四川地方小麦品种携带有较多的等位变异(50个)。优异等位变异分析显示,等位变异产生的表型效应值在方向和大小上均有所不同,在与产量性状关联的5个优异等位变异中,2个具有较大增效效应值(效应值3.00),其余3个则具有较大的减效效应值(效应值3.00);与品质性状关联的12个优异等位变异中,9个具有较大的增效效应值,3个具有较大的减效效应值。SSR标记Xgwm372的4个等位变异与产量和品质相关性状均显著关联。基于上述研究结果,这些与小麦产量与品质相关性状显著关联的SSR等位变异可为小麦育种杂交亲本的选择和分子辅助选择育种提供依据。  相似文献   

8.
小麦次生根数相关分子标记的挖掘   总被引:1,自引:0,他引:1  
为了给小麦根系性状的遗传改良提供参考依据,以196份小麦自然群体为材料,于2013年拔节期和2014年越冬前、拔节期统计其次生根数,利用185对SSR标记对其进行基因型分析,采用TASSLE软件的GLM和MLM模型进行标记与性状的关联分析。结果表明,两种模型共同关联到32个显著标记位点,分布于14条染色体上。其中Barc81(1BL)、Wmc617(4DS)和Gwm190(5DS)在不同环境下表现稳定,且前人未曾报道。进一步对稳定位点进行有利等位变异分析,共挖掘出3个有利等位变异,其中Barc81-A180增效效应最大,同时鉴定出烟农24、烟农2415及冀麦34等20份材料携带有利等位变异。  相似文献   

9.
基于SSR标记的花生品种遗传多样性分析   总被引:2,自引:0,他引:2  
本研究从212对SSR标记引物中筛选出48对引物对63份花生品种进行遗传多样性分析,共得到251个等位变异,变异范围为2~13个,平均每个标记位点有5.23个变异;48个SSR标记的多态性信息含量为0.252~0.873,平均为0.647;63份材料的遗传多样性指数为0.508~2.243,平均值为1.272;品种间的遗传相似系数在0.657~0.960之间,不同类型的花生品种间的遗传相似性较小,不同来源花生品种间的亲缘关系也较远;聚类分析结果表明,63个花生品种在遗传相似系数为0.74处分为4大类,聚类分析结果与传统的花生分类结果吻合。  相似文献   

10.
33个育成花生品种遗传多样性分析   总被引:1,自引:0,他引:1  
利用75对SSR标记引物对33个育成花生品种进行遗传多样性分析,结果表明,其中有10对标记引物扩增出多态性,共检测到33个多态等位点,每对引物分别检测出4~8个等位点变异,平均为6.0个,33个花生品种间的遗传相似系数在0.242~1.000之间,平均为0.621。聚类分析结果表明33个参试花生品种在遗传相似系数0.600处分为2个类群,亲本来源相近的品种优先聚在一起。  相似文献   

11.
为明确黄淮麦区TaGS2等位基因的分布状况及其与主要农艺性状的关系,对黄淮麦区2008年之前育成的种质材料、新育成的品种(系)及国外引进材料,用TaGS2-A1、TaGS2-B1和TaGS2-D1等功能标记鉴定对应的基因,并结合相关农艺性状发掘优势单倍型。结果表明,黄淮麦区2008年之前育成的种质材料和新育成品种(系)中TaGS2等位基因分布频率存在一定的差异;TaGS2-A1b、TaGS2-B1b和TaGS2-D1a是优势TaGS2等位基因,TaGS2-A1b在小麦抽穗期、株高和小穗数的改良上是优势单倍型,但在新育成的品种(系)中有下降的趋势,TaGS2-D1a能够显著增加小穗数、穗粒数和穗粒重,在各类材料中的比例都较高;TaGS2-B1b是提高千粒重的优势单倍型。因此,在黄淮麦区小麦穗部性状改良中TaGS2-B1b和TaGS2-D1a的作用显著,尤其是TaGS2-D1a,同时黄淮麦区种植小麦遗传多样性在减少,一些优势单倍型未受到重视,应对地方品种和一些国外引进材料加以利用。  相似文献   

12.
小麦抗麦红吸浆虫品种遗传多样性的表型和SSR标记分析   总被引:2,自引:0,他引:2  
为更深入地揭示小麦抗麦红吸浆虫品种(系)的遗传多样性,从而为进一步选育抗虫品种提供依据,在对田间虫圃1 562份小麦品种(系)损失率鉴定的基础上,取47份年度间鉴定抗性结果较为一致的材料,利用表型和SSR标记,进行遗传多样性分析。这些抗麦红吸浆虫品种农艺性状表现出较大的差异,表型聚类在遗传距离为0.68处将供试材料分为6个类群。19对SSR标记在47份不同抗性品种中检测到104个等位基因,能够将所有品种区分开来,每对引物可以检测到3~8个等位基因,平均5.47个。47个小麦品种间遗传距离为0.40~0.95,平均为0.71。SSR标记聚类分析在遗传距离为0.74处将供试材料分为6大类群。Mental测验结果表明,表型同基因型距离矩阵间存在显著正相关(r=0.76,P〈0.05)。抗虫品种晋麦65号单独聚为一类,同其余品种具有较远的亲缘关系,可作为新的抗源用于抗虫育种,并在吸浆虫发生地块推广种植。  相似文献   

13.
喻俊杰  金艳  张勇  徐辰武 《麦类作物学报》2015,35(10):1372-1377
为了从分子水平上明确江苏省小麦品种资源的遗传多样性水平,选用138对微卫星分子标记(SSR)对江苏省近40年来的90份主栽小麦品种的遗传多样性进行研究。结果表明,在90份主栽品种中,138个SSR位点共检测到542个等位变异,平均每个位点有3.93个等位变异,变化范围2~11;多态性信息含量(PIC值)变化范围为0.032 6~0.824 5,平均为0.415 1;基因组的平均等位变异及PIC值均为BAD;对90个品种按照所应用的麦区可分为淮北麦区品种(45个)和淮南麦区品种(45个),淮北麦区品种平均PIC值为0.428 7,淮南麦区品种平均PIC值为0.356 6,淮南麦区品种基因多样性和PIC值显著低于淮北麦区,并且不同时期淮北和淮南麦区品种的遗传多样性也存在不同的变化趋势。  相似文献   

14.
为挖掘控制芝麻产量相关性状的基因位点,本研究利用多态性较高的72个SSR标记,对来自国内外96 份芝麻品种资源进行遗传多样性和群体遗传结构分析,在此基础上采用TASSEL3.0软件的MLM (MixedLinear Model)方法对株高、株蒴数、每蒴粒数、蒴长、蒴宽、千粒重、始蒴部位、空稍尖8个产量相关性状进行SSR标记的关联分析。结果表明:72个标记共检测出446个等位变异,变异范围为2~14个,平均6.2个;引物的多态性信息含量(PIC)变异范围为0.2421~0.8210,平均为0.5407;基因多样性指数的变异范围在0.5504~0.9897,平均值为 0.7477。群体遗传结构分析将供试材料分为3个亚群。关联分析结果显示,51个标记位点与株高、蒴长、每蒴粒数、始蒴部位、空稍尖显著关联,各标记对表型变异的解释率在13.29% ~32.08%。有5个位点在多个环境或均值 下被重复检测到,是较为稳定等位变异,如与株高相关联的位点Hs1775-A2、SIM201-A1;与每蒴粒数、始蒴部位和株蒴数分别关联的标记位点Hs1514-A1、SIM004-A3和SIM002-A1。  相似文献   

15.
春小麦旗叶长度、宽度及叶绿素含量QTL分析   总被引:1,自引:0,他引:1  
为了提高高产和理想株型小麦的选育效率,以普通小麦(Triticum aestivum L.)宁春4号和宁春27号杂交得到的128个F9代重组自交系(RILs)为试验材料,利用从1 001个SSR标记中筛选出的307个在亲本之间存在多态性的标记对该群体进行遗传分析和QTL检测.构建了覆盖小麦21对染色体的包含291个SSR标记的遗传连锁图谱,遗传距离总计2 576.09 cM,标记间平均遗传距离为8.85 cM.以复合区间作图法(ICIM)分别对旗叶长度、宽度和叶绿素含量进行加性QTL检测,分别检测到6、8和4个QTL.多数QTL只在单一生态环境下检测到,说明这些性状受一定环境因素的影响.  相似文献   

16.
小麦育种亲本材料SSR标记遗传多样性及其亲缘关系分析   总被引:3,自引:0,他引:3  
为了解不同生态区小麦品种间的遗传多样性,以190份分布于黄淮冬麦区、长江中下游冬麦区及西南冬麦区3大麦区的小麦品种为试验材料,利用均匀分布于小麦21条染色体的80对SSR标记对其进行遗传多样性研究,并进行品种间亲缘关系的分析。本文共检测出352个等位类型,每个标记平均4.4个;各位点的多态性信息含量的变幅分别为0.021 2~0.853 2,平均为0.533 4。结果表明:3大麦区品种间遗传差异较为明显,其中长江中下游冬麦区与西南冬麦区遗传差异相对较小,而黄淮冬麦区西部丘陵川地副区与胶东丘陵副区存在较大差异。各麦区间及副区间都存在不同程度的品种交叉现象,其中黄淮冬麦区华北平原副区与淮北平原副区间的种质资源交换较为频繁。遗传聚类结果与品种间亲缘关系相对一致,与品种系谱来源及地域分布也较为吻合,即同一麦区或者具有共同系谱来源的小麦品种可较好地聚为一类。本文研究结果为小麦亲本选配提供了有用的遗传信息和重要参考依据。  相似文献   

17.
18个黄淮海地区推广冬小麦品种的遗传多样性分析   总被引:8,自引:0,他引:8  
为给小麦育种中种质资源的合理使用提供信息参考,利用78对核心SSR引物对参试的18个小麦品种进行了基因组扫描,并通过ntsys 2.11软件对其4个农艺性状、5个品质指标和SSR标记进行了聚类分析。78对引物在18个品种中扩增出268条多态性带,每个引物2~9条,平均3.44条。18个品种可分为2大类群,第Ⅰ类包括13个品种,第Ⅱ类包括5个品种。第II类的农艺和品质指标都比第Ⅰ类高,其中面团稳定时间与第Ⅱ类差异明显,平均为13.2min。聚类结果和品种之间的亲缘关系相吻合。18个品种的遗传相似系数范围为0.55~0.86,平均为0.67。参试小麦品种存在一定的异质性,但差异较小,遗传基础狭窄。  相似文献   

18.
在面临Ug99及其强毒力变异菌株可能侵入我国的高风险下,为筛选和储备新的小麦抗病品种或种质,并了解东北春麦区小麦生产、后备品种对秆锈病的抗性,于2015年用小麦秆锈菌生理小种21C3CTHTM、34C3RTGQM及混合小种对190份国外小麦材料和100份黑龙江省小麦材料进行田间成株期秆锈病抗性鉴定。结果表明,190份国外小麦材料中有169份对所有供试菌种表现出抗性,其中表现免疫的有119份,表现高抗的有50份;100份黑龙江小麦材料中有71份对所有供试菌种表现出抗性,其中表现免疫的有45份,表现高抗的有23份,表现高抗-中抗的有3份。国外小麦材料和黑龙江小麦材料对我国小麦秆锈菌的抗性较高,但仍有部分国外小麦材料和部分黑龙江小麦材料对我国小麦秆锈菌表现出高度感病,这种现象应得到重视。  相似文献   

19.
为了鉴定甘肃省新育成小麦品种(系)面粉色泽相关基因的分布情况,利用STS标记鉴定了103份新育成小麦品种(系)的1BL/1RS易位系及与黄色素含量和多酚氧化酶活性相关的等位变异类型。结果发现,供试材料中,有37份材料为1BL/1RS易位系,占35.92%;42份为非1BL/1RS易位系,占40.78%;其余均为片段易位或其他易位系。在黄色素含量分子检测中, Psy-A1位点有3个等位变异, Psy-A1a所占比例最大,频率达91.26%, Psy-A1b Psy-A1c 分别占7.77%和0.97%; Psy-B1 位点的3个等位变异中, Psy-B1a Psy-B1b Psy-B1c 频率分别为62.13%、28.16%和18.45%; Psy-D1 位点有 Psy-D1a Psy-D1g 两个等位变异,其中 Psy-D1a 分布频率为97.09%。在PPO活性等位基因中,与低PPO活性相关的基因 Ppo-A1b Ppo-B1a 分别占34.95%、77.67%;与高PPO活性相关的基因 Ppo-A1a PPO-B1b PPO-D1b 分别占54.36%、 19.46%、40.77%。黄色素含量和PPO活性相关的基因组成以中间类型居多。甘肃省新育成小麦品种(系)中,1BL/1RS易位系材料频率有所下降,黄色素含量及PPO活性相关等位基因均有一定分布,在未来小麦育种工作中仍需加强面粉色泽的选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号