首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.  相似文献   

2.
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.  相似文献   

3.
X-ray microdensitometry was applied to a set of Scots pinewood (i.e. low extractive content). Earlywood and latewood properties were determined as minimum and maximum densities of each tree ring and the potential influence of acetone-soluble extractives (i.e. non-structural and secondary constituents of wood) was estimated using tree-ring statistics. The occurrence of extractives in different portions of wood was determined using dendrochronological methods, by comparing the densities of unextracted and extracted wood. It was not only found that unextracted samples exhibited inflated earlywood and latewood density values, but the growth trends were also altered. Extractives flattened the inter-annual growth variability, both in earlywood and latewood, and influenced the estimation of intra-annual radial growth variations. Characterizing the varying amount of extractives is of inter-disciplinary importance. The results in this study describe their occurrence and show that the radial variations in extractives could be highly detailed by simply using densitometry-based dendrochronology.  相似文献   

4.
We investigated the interactive effects of elevated concentrations of carbon dioxide ([CO(2)]) and ozone ([O(3)]) on radial growth, wood chemistry and structure of five 5-year-old trembling aspen (Populus tremuloides Michx.) clones and the wood chemistry of paper birch (Betula papyrifera Marsh.). Material for the study was collected from the Aspen FACE (free-air CO(2) enrichment) experiment in Rhinelander, WI, where the saplings had been exposed to four treatments: control, elevated [CO(2)] (560 ppm), elevated [O(3)] (1.5 x ambient) and their combination for five growing seasons. Wood properties of both species were altered in response to exposure to the treatments. In aspen, elevated [CO(2)] decreased uronic acids (constituents of, e.g., hemicellulose) and tended to increase stem diameter. In response to elevated [O(3)] exposure, acid-soluble lignin concentration decreased and vessel lumen diameter tended to decrease. Elevated [O(3)] increased the concentration of acetone-soluble extractives in paper birch, but tended to decrease the concentration of these compounds in aspen. In paper birch, elevated [CO(2)] decreased and elevated [O(3)] increased starch concentration. The responses of wood properties to 5 years of fumigation differed from those previously reported after 3 years of fumigation.  相似文献   

5.
Heartwood extractives (nonstructural wood components) are believed to be formed from a combination of compounds present in the adjacent sapwood and materials imported from the phloem. The roles of local compounds and imported material in heartwood formation could have important implications for the wood quality of species having naturally durable wood. Stable isotope composition (delta(13)C) was analyzed to assess radial variation in sapwood extractives, and to estimate the relative importance of adjacent sapwood extractives and imported photosynthate in the formation of heartwood extractives. Cellulose and extractives from the outer 39 annual rings of six Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees were isolated and their delta(13)C composition determined. Although the extractives and the cellulose showed different absolute delta(13)C values, the patterns of change over time (as represented by the annual rings) were similar in most cases. Within an annual ring, carbon isotope ratios of extractives were correlated with the cellulose isotope ratio (R2 = 0.33 in sapwood, R2 = 0.34 in heartwood for aqueous acetone-soluble extractives; R2 = 0.41 in sapwood for hot-water-soluble extractives). These data suggest that some sapwood extractives are formed when the wood ring forms, and remain in place until they are converted to heartwood extractives many years later. Sapwood extractives appear to be important sources of materials for the biosynthesis of heartwood extractives in Douglas-fir.  相似文献   

6.
火炬松不同种源纸浆材材性的变异   总被引:1,自引:0,他引:1  
1983年火炬松31个种源引种栽培在浙江富阳中国林业科学研究院亚热带林业研究所实验林场,研究表明该批种源间10年生树木生长量和纸浆材材性因子如晚材率、管胞形态特征值(管胞长度、宽度、腔径、壁厚、长宽比、腔径比、壁腔比)、管胞S2层微纤丝角和木材基本密度存在着显著差异,木材主要化学成分中纤维素和木素含量种源间存在着显著差异,而戊聚糖和苯醇浸提物含量种源间差异不显著.这些材性特征除了木材化学性状因子外,均受中等以上程度遗传控制.木材纤维素、木素、戊聚糖和苯醇浸提物含量的广义遗传力分别为0.088、0.003、0.340和0.307,其余性状广义遗传力均大于0.50.引种地栽培环境对木材性状有显著影响.种源原产地纬度与树木生长量、管胞宽度、管胞直径和管胞微纤丝角呈负相关,与晚材率、木材密度呈正相关.31个种源树木胸高直径与管胞长宽比、管胞壁腔比、木材密度呈显著负相关,与管胞宽度、管胞直径、管胞腔径比呈正相关.  相似文献   

7.
To investigate the relations between growth and the wood properties of Japanese larch (Larix kaempferi), six sample trees of varied ages and radial growth were felled and the ring width, ring density, percentage of latewood, and some other factors were determined. There were significant differences in ring density and percentage of latewood between sample trees with vigorous growth and those with poor growth. In corewood the ring density decreased with increasing ring width for all sample trees, whereas in outerwood this trend did not appear. Moreover, the latewood width increased with the increment of ring width only in outerwood, whereas there was almost no change in the corewood. The variation in patterns of ring width, ring density, and percentage of latewood in the radial direction and the relation with height was also studied.Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

8.
We investigated growth, leaf monoterpene emission, gas exchange, leaf structure and leaf chemical composition of 1-year-old Quercus ilex L. seedlings grown in ambient (350 microl l(-1)) and elevated (700 microl l(-1)) CO2 concentrations ([CO2]). Monoterpene emission and gas exchange were determined at constant temperature and irradiance (25 degrees C and 1000 micromol m(-2) s(-1) of photosynthetically active radiation) at an assay [CO2] of 350 or 700 microl l(-1). Measurements were made on intact shoots after the end of the growing season between mid-October and mid-February. On average, plants grown in elevated [CO2] had significantly increased foliage biomass (about 50%). Leaves in the elevated [CO2] treatment were significantly thicker and had significantly higher concentrations of cellulose and lignin and significantly lower concentrations of nitrogen and minerals than leaves in the ambient [CO2] treatment. Leaf dry matter density and leaf concentrations of starch, soluble sugars, lipids and hemi-cellulose were not significantly affected by growth in elevated [CO2]. Monoterpene emissions of seedlings were significantly increased by elevated [CO2] but were insensitive to short-term changes in assay [CO2]. On average, plants grown in elevated [CO2] had 1.8-fold higher monoterpene emissions irrespective of the assay [CO2]. Conversely, assay [CO2] rapidly affected photosynthetic rate, but there was no apparent long-term acclimation of photosynthesis to growth in elevated [CO2]. Regardless of growth [CO2], photosynthetic rates of all plants almost doubled when the assay [CO2] was switched from 350 to 700 microl l(-1). At the same assay [CO2], mean photosynthetic rates of seedlings in the two growth CO2 treatments were similar. The percentage of assimilated carbon lost as monoterpenes was not significantly altered by CO2 enrichment. Leaf emission rates were correlated with leaf thickness, leaf concentrations of cellulose, lignin and nitrogen, and total plant leaf area. In all plants, monoterpene emissions strongly declined during the winter independently of CO2 treatment. The results are discussed in the context of the acquisition and allocation of resources by Q. ilex seedlings and evaluated in terms of emission predictions.  相似文献   

9.
Summary Based on 15-year-old black spruce (Picea mariana) trees from 40 half-sib families sampled from 9 blocks of a family test in New Brunswick, this study examined intertree and intratree variation in various wood density and ring width characteristics. Of various variance components of the intertree variation, a remarkable variance component due to family was found in wood density characteristics (viz. average wood density, average earlywood density and latewood density of the tree), and these characteristics are thus under strong genetic control (h i 2 ranging from 0.60 to 0.86, and h f 2 from 0.56 to 0.68). It, to a lesser extent, applies to ring width characteristics at the tree level (viz. average ring width, and average earlywood width, latewood width and latewood percent of the tree) that show a lower heritability (h? from 0.18 to 0.28, and h f 2 from 0.22 to 0.36). Both block and block × family interaction contribute little to the total intertree variation encountered in 40 families from 9 blocks, while tree-to-tree variation within the family accounts for most (over 3/4) of the total intertree variation.Compared to the intertree variation (tree-to-tree variation within the family), the intratree variation in various wood characteristics studied is considerably larger in this species. It appears that most intraring wood density characteristics show a relatively smaller intertree variation but a relatively larger intratree variation as compared to ring width characteristics (except latewood width and latewood percent). Latewood width and latewood percent show the smallest intertree variation and the largest intratree variation. Between the two sources of the radial intratree variation, cambial age explains much more variation in most intraring wood density characteristics, while ring width accounts for more variation in earlywood width, latewood width and intraring density variation. This indicates that wood density of growth rings in this species is dependent more on cambial age than ring width (growth rate). Among various wood density and ring width characteristics studies, maximum (latewood) density shows the strongest response to calendar year. This characteristics is thus a useful dendroclimatic parameter in this species.I would like to thank Dr. E.K. Morgenstern and Mr. D. Simpson for their involvement in the planning of this study. Thanks are also due to G. Chauret, T. Keenam, R. Ploure, V. Steel and C. Reitlingshoefer for their technical assistance  相似文献   

10.
Effects of temperature on growth and wood anatomy were studied in young European beech (Fagus sylvatica L.) grown in 7-l pots for 2.5 years in field-phytotron chambers supplied with an ambient (approximately 400 micromol mol-1) or elevated (approximately 700 micromol mol-1) carbon dioxide concentration ([CO2]). Temperatures in the chambers ranged in increments of 2 degrees C from -4 degrees C to +4 degrees C relative to the long-term mean monthly (day and night) air temperature in Berlin-Dahlem. Soil was not fertilized and soil water and air humidity were kept constant. Data were evaluated by regression analysis. At final harvest, stem diameter was significantly greater at increased temperature (Delta1 degrees C: 2.4%), stems were taller (Delta1 degrees C: 8.5%) and stem mass tree-1 (Delta1 degrees C: 10.9%) and leaf area tree-1(Delta1 degrees C: 6.5%) were greater. Allocation pattern was slightly influenced by temperature: leaf mass ratio and leaf area ratio decreased with increasing temperature (Delta1 degrees C: 2.3% and 2.2% respectively), whereas stem mass/total mass increased (Delta1 degrees C: 2.1%). Elevated [CO2] enhanced height growth by 8.8% and decreased coarse root mass/total mass by 10.3% and root/shoot ratio by 11.7%. Additional carbon was mainly invested in aboveground growth. At final harvest a synergistic interaction between elevated [CO2] and temperature yielded trees that were 3.2% taller at -4 degrees C and 12.7% taller at +4 degrees C than trees in ambient [CO2]. After 2.5 seasons, cross-sectional area of the oldest stem part was approximately 32% greater in the +4 degrees C treatment than in the -4 degrees C treatment, and in the last year approximately 67% more leaf area/unit tree ring area was produced in the highest temperature regime compared with the lowest. Elevated [CO2] decreased mean vessel area of the 120 largest vessels per mm2 by 5.8%, causing a decrease in water conducting capacity. There was a positive interaction between temperature and elevated [CO2] for relative vessel area, which was approximately 38% higher at +4 degrees C than at -4 degrees C in elevated [CO2] compared with ambient [CO2]. Overall, temperature had a greater effect on growth than [CO2], but elevated [CO2] caused quantitative changes in wood anatomy.  相似文献   

11.
The relationships between bending properties, compressive strength, tracheid length, microfibril angle, and ring characteristics of 20-year-old Taiwania (Taiwania cryptomerioides Hay.) trees were examined. The trees came from different thinning and pruning treatments, but the practices showed no significant effect on the investigated properties. The results showed that based on comparison with the literature, plantation-grown immature Taiwania have noticeably lower average strength properties than mature trees of the same species. Wood density and bending and compressive strengths were not related to either tracheid length or microfibril angle in young Taiwania. There were positive relationships between bending strength and compressive strength. The wood density, ring width, earlywood width, earlywood density, and latewood percentage were the most important predictors of strength by simple linear regressions. The wood density and ring width/earlywood width may be considered as indicators for assessing the bending strength, while wood density and latewood percentage were the best predictors of compressive strength by multiple linear regressions.  相似文献   

12.
This study focused on the distribution of wood components along a cross section of a spruce stem. Thin samples of earlywood and latewood were analysed by special micro-scale analytical techniques. Heartwood contained significantly more lignin and less cellulose than sapwood. The total content of hemicelluloses was the same along the radial direction, but the distribution of sugar units differed. The amounts of arabinoglucuronoxylan and pectins were larger in the heartwood. The transition zone between heartwood and sapwood had a specific composition, with less lignin and lipophilic extractives than heartwood and sapwood. For earlywood and latewood, significant differences were found in the distribution of sugar units in hemicelluloses. Latewood contained clearly more galactoglucomannan than earlywood, and conversely less pectins. The lipophilic extractives were also less concentrated in the latewood.Abbreviations EW or E earlywood - LW or L latewood - HW heartwood - SW sapwood - TZ transition zone wood - A.R. annual ring - AcBr Acetyl bromide - Ara arabinose - Xyl xylose - Gal galactose - Glc glucose - Man mannose - Rha rhamnose - GlcA glucuronic acid - MGlcA 4-O-methyl-glucuronic acid - GalA galacturonic acid - o.d. oven dry  相似文献   

13.
Pinus radiata D. Don trees from six clones, grown at initial spacings of 2500 stems ha−1 and 833 stems ha−1 were destructively harvested. For these trees wood properties were measured on radial slices sampled at a height of 1.4 m above the ground. Relative to wide spacing, close initial stand spacing significantly reduced microfibril angle (MFA) and ring width and significantly increased dynamic modulus of elasticity (MOE), fibre length, latewood percentage and cell wall thickness. Density and fibre width were not significantly different between spacing treatments. Examination of the influence of genetic population on wood properties indicated that genotype significantly influenced MFA, MOE and ring width. The key wood properties MFA, MOE and fibre length were regressed against tree diameter, height and stem slenderness. All three wood properties were most strongly correlated with stem slenderness. Multiple regression models developed for MFA, MOE and ring width accounted for respectively 62%, 81% and 58% of the variation in these variables. The following changes occurred in sampled properties with increasing ring number: MFA and ring width declined markedly; MOE and fibre length increased markedly; latewood percentage and cell wall thickness increased slightly; and density and fibre width did not show any radial trend.  相似文献   

14.
  • ? Each annual ring in pines consists of earlywood and latewood with considerable difference in density and width. To get a better determination of the genetic regulation of total wood density in Scots pine (Pinus sylvestris L.), density and width of those ring sections were measured in annual ring numbers 12 to 21 of Scots pines in a full-sib progeny test. Tree height and stem diameter were also measured.
  • ? Heritabilities for the annual ring sections increased with age for earlywood density from 0.08 to approximately 0.25; latewood density showed similar reductions. Heritability over all 10 annual rings was 0.25 for earlywood density, 0.22 for latewood density, 0.29 for height and 0.10 for stem diameter. Genetic correlations between earlywood and latewood density and growth traits were negative, while they were strongly positive between densities of adjacent annual rings (0.70–1.0).
  • ? Despite the higher heritability of earlywood density, the strong positive genetic correlation between those traits indicates little benefit from focusing solely on earlywood density when selecting for wood density. Analysing earlywood and latewood separately does not benefit from including the width of the corresponding ring section as a covariate. Juvenile wood may possibly turn into mature wood 15–20 y from the pith.
  •   相似文献   

    15.
    This paper investigates the possible contribution of Short Rotation Cultures (SRC) to carbon sequestration in both current and elevated atmospheric CO2 concentrations ([CO2]). A dense poplar plantation (1 x 1 m) was exposed to a [CO2] of 550 ppm in Central Italy using the free-air CO2 enrichment (FACE) technique. Three species of Populus were examined, namely P. alba L., P. nigra L. and P. x euramericana Dode (Guinier). Aboveground woody biomass of trees exposed to elevated [CO2] for three growing seasons increased by 15 to 27%, depending on species. As a result, light-use efficiency increased. Aboveground biomass allocation was unaffected, and belowground biomass also increased under elevated [CO2] conditions, by 22 to 38%. Populus nigra, with total biomass equal to 62.02 and 72.03 Mg ha-1 in ambient and elevated [CO2], respectively, was the most productive species, although its productivity was stimulated least by atmospheric CO2 enrichment. There was greater depletion of inorganic nitrogen from the soil after three growing seasons in elevated [CO2], but no effect of [CO2] on stem wood density, which differed significantly only among species.  相似文献   

    16.
    The purpose of this study was to explore the ring characteristics of Japanese cedar (Cryptomeria japonica) tree growth with thinning and unthinning regimes. The trees grown with thinning regimes increased in average ring width (RW), earlywood width, latewood width, ring density (RD), earlywood density, latewood density, maximum ring density, and latewood percentage (LWP) for the entire period of 16 years after thinning, as compared to those grown with unthinning regimes. The RW and RD components showed different reactions lasting several years after thinning. Overall, thinning caused immediate production (first year) of higher RD, lasting for several years; however, wider RW was delayed up to several years after treatment. There was a weak relationship between RW (growth rate) and wood density; and there were significant positive relationships between the RD and LWP. The results suggest that the compression wood produced after thinning.  相似文献   

    17.
    徐有明 《木材工业》1992,6(3):44-48
    本文就中条山油松株内幼龄材与成熟材材性差异的比较研究,讨论对幼龄期划分的依据。根据木材解剖特征、物理力学性质的径向变异规律,确定其幼龄期为14年。随着树干高度的增加,油松木材幼龄期逐渐缩短、株内幼龄材范围及所占断面上的比例变小。株内幼龄材与成熟材材性差异显著。幼龄材管胞长度短、直径小,胞壁薄,微纤丝角度大,生长轮较宽,晚材率低,浸提物含量高,基本密度较大。幼龄材的力学强度远远小于成熟材。  相似文献   

    18.
    Selected wood and cell characteristics were examined in incrementcores from two 46-year-old pines that had been fertilized withammonium sulphate 37, 38 and 39 years after planting. Fertilizationincreased the ring-width and greatly reduced the latewood percentand the bulk density of both early and late wood; the effectswere greatest shortly after the last application of fertilizer,but remained apparent for at least five further years. Thoughboth trees produced more early wood cells only one of the twoproduced more latewood. The average tracheid diameter was not changed, though its rangewithin the annual ring was increased. There were decreases intracheid wall-thickness and length, and in wall volume per tracheid.These changes were greatest in latewood, so that the differencebetween early and latewood was reduced, while the characteristicsof the earlywood were exaggerated. Resin canal radial (but nottangential) diameter and cross-sectional area increased, thoughnumber of canals per unit area of ring was unchanged. Correlations with temperature, insolation and rainfall in March-Juneand July-October suggest that (1) wood properties are influencedby the weather of both the current and the previous growingseasons; (2) the climatic optima for the fertilized and unfertilizedtrees are different and consequently (3) the weather influencesthe effect of fertilization on wood properties.  相似文献   

    19.
    以微密度分析对19个种源杉木的木材密度径向变异模式进行了研究.不同种源间和种源内株间,年轮平均密度的径向变异曲线都存在一定的变异,但此变异主要表现在种源内株间.年轮平均密度的幼龄-成熟相关性从第3年起就极显著.由微密度分析得出的一系列密度和年轮宽特征值间的相关分析表明,在年龄影响下的变异过程中,年轮内密度变异曲线随年轮宽的变动导致晚材率变动的效应较为显著,年轮平均密度主要受晚材率影响;年轮平均密度与年轮宽呈特别显著的负相关.而在种源影响下的变异过程中分析,上述效应不明显,而不同种源间密度变异曲线的上下移动影响显著;年轮平均密度主要受早材平均密度影响;年轮平均密度与年轮宽的负相关远不如在年龄影响下的变异过程中显著.  相似文献   

    20.
    对两个地区不同种植密度的湿地松、火炬松进行了微密度分析,研究了种植密度对木材密度径向变异模式的影响。主要结果是:种植密度对湿地松和火炬松各密度特征值径向变异模式的影响,主要表现在变异曲线平均水平高低的变动,而对变异曲线形状的影响并不显著。种植密度对湿地松和火炬松各年轮宽特征值径向变异模式的影响,主要表现在年轮宽度RW和早材宽度EW变异曲线平均水平高低的变动和RW、EW与晚材宽度LW变异曲线形状的变动。种植密度对年轮密度RD的影响从年轮内宽度和年轮密度变异曲线平均水平高低两个方面起作用,出现较复杂的情况,并非所有情况下都是单调的正相关。  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号