首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Field Crops Research》2005,91(2-3):161-170
Seedling-vigor is important for optimum stand establishment and increasing weed competitive ability in rice cropping systems. In the current study, three seedling-vigor-related traits, seed germination rate, seedling shoot length and dry matter weight, were investigated by the paper-roll tests with rice recombinant inbred lines derived from a cross between Lemont (japonica) and Teqing (indica). The phenotype data, together with a linkage map consisting of 198 marker loci, was used to conduct composite interval mapping by QTLMapper 1.0 to simultaneously map both main-effect and epistatic QTLs for seedling-vigor in rice. Totally, 13 putative main-effect QTLs and 19 pairs of epistatic loci with R2 ≥ 5% were identified. Almost all of these QTLs or interactions individually explained only around 5–10% of the phenotypic variation. The majority (68%) of these main-effect and epistatic loci were clustered in seven chromosome regions, each spanning 12–28 cM (centi-Morgan) and containing three or more detectable loci. When detectable for the multiple seedling-vigor-related traits, either the main-effect QTLs or the epistatic interactions sharing the same map location had their additive or epistatic effects in the same direction, which agreed well with the positive correlations among the traits. The results demonstrated that seedling-vigor in rice could be controlled by many loci, most of which had small effects, but, relatively, epistasis as a genetic factor was much more important than main-effects of QTLs. Along with the results reported previously, this study revealed the extensive genetic diversity for seedling-vigor in rice. In addition, the QTL qSV-7 on chromosome 7 was found to have the largest main-effects on multiple seedling-vigor-related traits and therefore could be used as a potential target to be genetically manipulated by marker-assisted selection in rice seedling-vigor breeding programs.  相似文献   

3.
水稻耐盐性数量性状位点的初步检测   总被引:40,自引:3,他引:37  
用RFLP分析技术和分蘖株系法对由耐盐性品种Pokkali和盐敏感品种Peta配制的BC1(Peta/Pokkali∥Peta)群体分别检测水稻苗期和成熟期耐盐性数量性状位点(QTLs)。表型鉴定在含(处理)或不含(对照)60 mol/m3 NaCl的营养液中进行,苗期观测盐害级别、苗Na+含量和鲜重/干重比值3项指标,成熟期测定10种农艺性状处理与对照的相对值。从水稻12条染色体上筛选出43个多态性标记,对上述指标分别作点分析,共检出15个连锁标记。连锁标记的分布特点显示,在研究所涉及的基因组范围内存在4个影响苗期耐盐性的QTL,其增效等位基因均来自耐盐品种Pokkali;影响成熟期耐盐性的QTL分布于7条染色体的1或2个连锁区间上,其有利基因来自双亲;RG678和RZ400B~RZ792附近的2个QTL在全生育期都能表达较强耐盐性。  相似文献   

4.
Photosynthetic efficiency, a key trait that determines yield potential in rice, is quantitatively regulated by multiple genes. Utilization of valuable genetic resources hidden in wild rice is an effective way to improve rice photosynthesis and yield potential. In this study, 152 backcross inbred lines derived from wild rice Oryza longistaminata were explored for QTL mapping of photosynthetic rate (Pn) and biomass (BM) in natural fields. Five novel QTLs for Pn and seven QTLs for BM or daily biomass (DBM) derived from O. longistaminata were identified. One of these QTLs, qPn8.1, could significantly improve Pn and was located in a 68-kb region containing only 11 candidate genes. Meanwhile, qBM1.1 and qDBM1.1 for BM and DBM on chromosome 1 were overlapped with qPn1.1 for Pn from 9311, and could affect both Pn and BM in natural fields. These QTLs identified in O. longistaminata may provide a novel alternative to explore new genes and resources for yield potentiality, highlighting the important role of wild rice in rice breeding programs.  相似文献   

5.
【目的】本研究旨在挖掘水稻粒型新基因、探索其分子机理,解析籽粒发育调控遗传网络奠定基础,并为通过分子标记聚合有利基因开展超级稻分子设计育种提供理论依据。【方法】以植株和籽粒形态差异较大的晚粳稻品种春江16B(CJ16B)和广亲和中籼稻背景恢复系C84为亲本构建含有188个家系的重组自交系为作图群体,利用158对在双亲中存在多态性差异的分子标记,构建了遗传连锁图谱,总遗传距离为1428.40cM,平均标记间距为9.04cM。在构建遗传图谱的基础上,完成RIL188个株系籽粒的粒长、粒宽、粒厚、长宽比和千粒重等5个性状考查并进行QTL定位。【结果】在海南陵水和浙江杭州两地共检测到籽粒相关主效QTL30个,包括籽粒QTL新座位18个,解释遗传变异3.51%~17.25%。其中粒长、粒宽、粒厚和长宽比QTL位点分别为9个、5个、5个和6个,千粒重QTL位点5个。经基因座位比对,发现有5个QTL区间与已克隆的调控籽粒形态相关基因座位相近,我们通过对双亲目标基因的测序并根据差异位点设计dCAPs分子标记进行验证。【结论】该RIL群体及其遗传图谱可用于水稻重要农艺性状主效QTL基因的定位和克隆,新定位的18个粒型QTL可以为水稻籽粒发育调控网络提供补充和资料积累。  相似文献   

6.
Herbicide-resistant Clearfield™ rice technology allows the use of ALS inhibitors to control weedy rice. Weedy rice plants have differential tolerance to imazethapyr, perhaps due to ALS polymorphisms. We aimed to assess ALS polymorphisms in weedy rice accessions from Arkansas, USA, with differential tolerance to imazethapyr in seedling growth bioassays. Six base changes were identified in the ALS of 14 weedy rice accessions. Three of these nucleotide changes resulted in amino acid substitutions — Pro93Thr, Glu630Asp, and Val669Met — in four accessions: Ark-4, Ark-9, Poi-1 and Poi-6. The GR50 values and inhibition of root and shoot growth (%) of these accessions differed. The Glu630Asp substitution occurs in the herbicide binding domain B and Val669Met occurs at the C-terminal tail where the co-factor binds. Variability in weedy rice ALS exists, but polymorphism patterns did not relate to tolerance levels. The observed mutations presented the possibility that sustained selection pressure will eventually lead to selection of a herbicide-tolerant individual that will be the progenitor of a resistant population. Concomitantly, pollen-mediated gene flow from Clearfield™ rice to weedy rice will lead to the evolution of ALS-resistant weedy rice populations.  相似文献   

7.
两种光、氮条件下玉米苗期根冠性状QTL定位   总被引:2,自引:0,他引:2  
以根、冠性状差异显著的亲本478和Wu312为基础材料,构建了含218个株系的F8重组自交系群体,利用该群体构建了包含184个SSR标记的遗传连锁图谱,图谱总长度为2 084.1 cM,平均图距为11.3 cM。在低光、高氮下和高光、低氮下对玉米苗期地上部干重、根干重、根冠比、最大根长进行了QTL定位分析,两种条件下共定位到21个与苗期根冠性状相关的QTL位点,低光、高氮条件下定位到11个QTL位点,高光、低氮条件下定位到10个QTL位点,分别位于第1、2、3、4、5、6、7、9染色体上。第6染色体上定位到7个位点,其中一个为控制低光、高氮下根干重的主效位点,贡献率为25.3%。在第1染色体上umc1335-bnlg1556区段同时检测到高光、低氮条件下地上部干重和根冠比的QTL位点,这些位点与地上部干物质的形成密切相关。  相似文献   

8.
Identification of genetic factors controlling traits associated with seed germination under drought stress conditions, leads to identification and development of drought tolerant varieties. Present study by using a population of F2:, derived from a cross between a drought tolerant variety, Gharib (indica) and a drought sensitive variety, Sepidroud (indica), is to identify and compare QTLs associated with germination traits under drought stress and non-stress conditions. Through QTL analysis, using composite interval mapping, regarding traits such as germination rate (GR), germination percentage (GP), radicle length (RL), plumule length (PL), coleorhiza length (COL) and coleoptile length (CL), totally 13 QTLs were detected under pole drought stress (-8 MPa poly ethylene glycol 6000) and 9 QTLs under non-stress conditions. Of the QTLs identified under non-stress conditions, QTLs associated with COL (qCOL-5) and GR (qGR-1) explained 21.28% and 19.73% of the total phenotypic variations, respectively Under drought stress conditions, QTLs associated with COL (qCOL-3) and PL (qPL-5) explained 18.34% and 18.22% of the total phenotypic variations, respectively. A few drought-tolerance-related QTLs identified in previous studies are near the QTLs detected in this study, and several QTLs in this study are novel alleles. The major QTLs like qGR-1, qGP-4, qRL-12 and qCL-4 identified in both conditions for traits GR, GP, RL and CL, respectively, should be considered as the important and stable trait-controlling QTLs in rice seed germination. Those major or minor QTLs could be used to significantly improve drought tolerance by marker-assisted selection in rice.  相似文献   

9.

Background

Fe toxicity occurs in lowland rice production due to excess ferrous iron (Fe2+) formation in reduced soils. To contribute to the breeding for tolerance to Fe toxicity in rice, we determined quantitative trait loci (QTL) by screening two different bi-parental mapping populations under iron pulse stresses (1,000 mg L−1 = 17.9 mM Fe2+ for 5 days) in hydroponic solution, followed by experiments with selected lines to determine whether QTLs were associated with iron exclusion (i.e. root based mechanisms), or iron inclusion (i.e. shoot-based mechanisms).

Results

In an IR29/Pokkali F8 recombinant inbred population, 7 QTLs were detected for leaf bronzing score on chromosome 1, 2, 4, 7 and 12, respectively, individually explaining 9.2-18.7% of the phenotypic variation. Two tolerant recombinant inbred lines carrying putative QTLs were selected for further experiments. Based on Fe uptake into the shoot, the dominant tolerance mechanism of the tolerant line FL510 was determined to be exclusion with its root architecture being conducive to air transport and thus the ability to oxidize Fe2+ in rhizosphere. In line FL483, the iron tolerance was related mainly to shoot-based mechanisms (tolerant inclusion mechanism). In a Nipponbare/Kasalath/Nipponbare backcross inbred population, 3 QTLs were mapped on chromosomes 1, 3 and 8, respectively. These QTLs explained 11.6-18.6% of the total phenotypic variation. The effect of QTLs on chromosome 1 and 3 were confirmed by using chromosome segment substitution lines (SL), carrying Kasalath introgressions in the genetic background on Nipponbare. The Fe uptake in shoots of substitution lines suggests that the effect of the QTL on chromosome 1 was associated with shoot tolerance while the QTL on chromosome 3 was associated with iron exclusion.

Conclusion

Tolerance of certain genotypes were classified into shoot- and root- based mechanisms. Comparing our findings with previously reported QTLs for iron toxicity tolerance, we identified co-localization for some QTLs in both pluse and chronic stresses, especially on chromosome 1.  相似文献   

10.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   

11.
《Field Crops Research》2006,95(2-3):420-425
Excess zinc harms the growth of rice plants and zinc toxicity can easily occur in acid soils. The aim of the study was to map quantitative trait loci (QTLs) in rice for tolerance to zinc toxicity, using a recombinant inbred (RI) population derived from the cross of a japonica variety (Asominori: relatively tolerant to Zn2+ toxicity) with an indica variety (IR24, relatively susceptible), through 289 RFLP markers. The index scores of damage (representing Zn2+ toxicity tolerance), after irrigating rice seedlings with a 1000-ppm Zn2+ solution for 20 successive days, were examined for each RI line and its parental varieties. Continuous distributions and transgressive segregations of the index scores were observed in the RI population, suggesting that Zn2+ toxicity tolerance was a quantitatively inherited trait. Three QTLs for Zn2+ toxicity tolerance were detected on chromosomes 1, 3 and 10 and explained 21.9, 8.9 and 7.6%, respectively, of the total phenotypic variation. The results and the tightly linked molecular markers that flank the QTLs, detected in this study, will be useful in improving Zn2+ tolerance in rice. In addition, the genomic positions between QTLs for Zn2+ toxicity tolerance and the QTLs for other metal (Fe2+, Mn2+, Al3+) toxicity tolerances, from previous studies, are discussed.  相似文献   

12.
Genetic Control of Germination Ability under Cold Stress in Rice   总被引:2,自引:0,他引:2  
An F9 recombinant inbred lines (RIL) population, derived from a cross between IR28 (Oryza sativa L. spp. indica) and Daguandao (O. sativa L. spp. japonica), was used to construct a molecular linkage map and to identify germination ability including the traits of imbibition rate, germination rate, germination index, root length, shoot length and seed vigor at 14°C for 23 d. A composite interval mapping approach was applied to conduct genetic analysis for germination ability. The frequency distributions of the germination ability traits under the cold stress in the RIL population showed continuous segregation, suggesting they were quantitative traits controlled by several genes. A total of seven QTLs were identified on chromosomes 4, 6 and 9, including two for imbibition rate (qIR-6, qIR-9), one for germination rate (qGR-4), two for germination index (qGI-4-1, qGI-4-2) and two for root length (qRL-4-1, qRL-4-2). There were no detected QTLs controlling shoot length and seed vigor. The phenotypic variance explained by a single QTL ranged from 9.1% to 37.0%, and two major QTLs, qIR-6 and qGI-4-2, accounted for over 30% of the phenotypic variance. The expressions of QTLs were developmentally regulated and growth stage-specific. Most of the QTLs observed here were located in the regions similar to the QTLs for rice cold tolerance reported previously, indicating that these QTLs were reliable. However, qRL-4-2 is not reported before.  相似文献   

13.
This study characterized Pokkali-derived quantitative trait loci (QTLs) for seedling stage salinity tolerance in preparation for use in marker-assisted breeding. An analysis of 100 SSR markers on 140 IR29/Pokkali recombinant inbred lines (RILs) confirmed the location of the Saltol QTL on chromosome 1 and identified additional QTLs associated with tolerance. Analysis of a series of backcross lines and near-isogenic lines (NILs) developed to better characterize the effect of the Saltol locus revealed that Saltol mainly acted to control shoot Na+/K+ homeostasis. Multiple QTLs were required to acquire a high level of tolerance. Unexpectedly, multiple Pokkali alleles at Saltol were detected within the RIL population and between backcross lines, and representative lines were compared with seven Pokkali accessions to better characterize this allelic variation. Thus, while the Saltol locus presents a complex scenario, it provides an opportunity for marker-assisted backcrossing to improve salt tolerance of popular varieties followed by targeting multiple loci through QTL pyramiding for areas with higher salt stress.  相似文献   

14.
《Field Crops Research》2002,76(1):25-43
Root morphological characteristics are known to be important in the drought resistance of some rice (Oryza sativa L.) varieties. The identification of quantitative trait loci (QTLs) associated with root morphology and other drought resistance-related traits should help breeders produce more drought resistant varieties. Stability in the expression of root growth QTL across rooting environments is critical for their use in breeding programs. A greenhouse experiment in which a mapping population of 140 recombinant inbred lines and the parental varieties Bala and Azucena were grown in glass-sided soil chambers and evaluated for root growth and water uptake was conducted. In each of 2 years, two treatments were used; an early water-deficit (WD0) in which seeds were sown into wet soil but received no more water, and a late water-deficit (WD49) in which the plants were watered for 49 days and then received no water for a week. The major differences between treatments and years in dry matter partitioning and root growth traits are reported elsewhere. Here, the identification of QTLs for root growth traits by composite interval mapping is described. At LOD>3.2, there were six QTLs for the weight of roots below 90 cm and maximum root length, 11 for root to shoot ratio, 12 for the number of roots past 100 cm, and 14 for root thickness. A total of 24 regions were identified as containing QTLs (these regions often contained several QTLs identified for different root traits). Some were revealed only in individual experiments and/or for individual traits, while others were common to different traits or experiments. Seven QTLs, on chromosomes 1, 2, 4, 7, 9 (two QTLs) and 11, where considered particularly noteworthy. The complex results are discussed in the context of previously reported QTLs for root growth in other populations, the interaction between QTL with the environment and the value of QTLs for breeding.  相似文献   

15.
Cadmium(Cd) is one of heavy metals harmful to human health. As rice is the main staple food in Asia and Cd is easily contaminated in rice, the molecular regulation of Cd accumulation should be explored. In this study, a recombinant inbred population derived from Xiang 743/Katy was grown in Cd-polluted fields and used to map the quantitative trait loci(QTLs) for Cd accumulation in rice grains. We identified seven QTLs distributed on chromosomes 2, 3, 6, 7, 8 and 10. These QTLs displayed phenotypic variances of 58.50% and 40.59% in 2014 and 2015, respectively. Two QTLs, qCd-2 and qCd-7, were identified in both the two years. qCd-2 was detected on the interval of RM250–RM207 on chromosome 2, with an LOD of 2.51 and a phenotypic contribution of 13.75% in 2014, and an LOD of 3.35 and a phenotypic contribution of 14.16% in 2015. qCd-7 co-localized with the cloned qCdT7 on chromosome 7 and may represent the correct candidate. The other five QTLs were detected only in one year. To further confirm the effects of qCd-2, a residual heterozygous line designated as RHL945, with a heterozygous interval of RM263–RM207 on chromosome 2, was selected from the recombinant inbred population and used to develop an F2 population consisting of 155 individual plants. By incorporating further simple sequence repeat markers into the segmental linkage map of the target region, qCd-2 was delimited in the interval of RM5404–RM3774, with an LOD value of 4.38 and a phenotypic contribution of 15.52%. These results reflected the genetic regulation of grain Cd in rice and paved the way for the future cloning of qCd-2.  相似文献   

16.
【目的】本研究旨在对前期在水稻第1染色体长臂521.8 kb的区间内定位到的q TGW1.1b进行精细定位。【方法】从qTGW1.1和qTGW1.2所在区间分别呈杂合的2个BC2F9单株配组衍生的F4群体中,筛选到Wn28826-RM1231区间内杂合片段呈梯系排列的3个单株,构建了3套F5:6近等基因系。2017年种植于浙江杭州,考查千粒重、粒长和粒宽。利用SAS软件的GLM程序进行双因素方差分析,对qTGW1.1b的效应进行了验证。在此基础上,筛选出杂合片段更小且呈交迭排列的6个剩余杂合体,发展了6套F8:9近等基因系,2018年种植于海南陵水。对每套近等基因系中双亲基因型株系的表型差异进行双因素方差分析。【结果】qTGW1.1b在2个试验中对粒长和千粒重均呈极显著差异,效应方向一致且大小稳定。密阳46等位基因能分别增加粒长0.027 mm和提高千粒重0.17 g,贡献率分别达到27.12%和19.09%。【结论】鉴于qTGW1.1b在前后试验中对粒长影响最为显著,而对粒宽作用不显著,故将qTGW1.1b重新命名为qGL1.1。通过比较各套近等基因系的分离区间的基因组位置,最终将qGL1.1定位于Wn29077和Wn29154之间约76.8 kb的区间内。  相似文献   

17.
Mercury (Hg) is one of the most toxic heavy metals to living organisms and its conspicuous effect is the inhibition of root growth.However,little is known about the molecular genetic basis for root growth under excess Hg2+ stress.To map quantitative trait loci (QTLs) in rice for Hg2+ tolerance,a population of 120 recombinant inbred lines derived from a cross between two japonica cultivars Yuefu and IRAT109 was grown in 0.5 mmol/L CaCl2 solution.Relative root length (RRL),percentage of the seminal root length in +HgCl2 to-HgCl2,was used for assessing Hg2+ tolerance.In a dose-response experiment,Yuefu had a higher RRL than IRAT109 and showed the most significant difference at the Hg2+ concentration of 1.5 μmol/L.Three putative QTLs for RRL were detected on chromosomes 1,2 and 5,and totally explained about 35.7% of the phenotypic variance in Hg2+ tolerance.The identified QTLs for RRL might be useful for improving Hg2+ tolerance of rice by molecular marker-assisted selection.  相似文献   

18.
Salinity-alkalinity is incipient abiotic stress that impairs plant growth and development. Rice (Oryza sativa) is a major food crop greatly affected by soil salinity and alkalinity, requiring tolerant varieties in the saline-alkali prone areas. Understanding the molecular and physiological mechanisms of saline-alkali tolerance paves the base for improving saline-alkali tolerance in rice and leads to progress in breeding. This review illustrated the physiological consequences, and molecular mechanisms especially signaling and function of regulating genes for saline-alkali tolerance in rice plants. We also discussed QTLs regarding saline-alkali tolerance accordingly and ways of deployment for improvement. More efforts are needed to identify and utilize the identified QTLs for saline-alkali tolerance in rice.  相似文献   

19.
《Field Crops Research》2006,98(1):68-75
Direct seeding instead of transplanting for rice (Oryza sativa L.) has increasingly been used in northern and eastern China because of labor and cost saving. However, poor germinability is still one of the major problems faced in the adoption of direct seeding under low temperature (low temperature germinability: LTG) and anoxia (anoxia germinability: AG) condition. To gain an understanding of the genetic control of seed germinability under these unfavourable conditions, two rice lines, USSR5 (japonica type) and N22 (indica type) and F2 individuals derived from the cross USSR5 × N22 were tested for LTG and AG. USSR5 and N22 differ significantly for both LTG and AG. The LTG of the F2 individuals ranged from 0 to 100% after a 10 days incubation. AG ranged from 0.0 to 4.0 cm shoot length. Based on segregation in the F2 population, a linkage map was constructed using 121 SSR markers. The map covered 1821.5 cM, with a mean inter-marker distance of 16.7 cM. Eleven putative QTLs for LTG were detected, one on each of chromosomes 3–5, 7, 9–11, and four on chromosome 5. The USSR5 alleles in all these QTLs acted to increase LTG. Two QTLs for AG were located on chromosomes 5 and 11, respectively, at both of which the USSR5 alleles acted to increase AG. We propose that USSR5 could make a major contribution to improving LTG and AG in rice breeding programs.  相似文献   

20.
《Plant Production Science》2013,16(4):255-261
Abstract

To elucidate the effect of drainage of paddy fields on root lodging tolerance in direct-sown rice, we measured the pushing resistance (R), diameter of hill at the base (Dm), shoot dry weight (Ws) and root dry weight (Wr), in rice varieties grown using several irrigation management schemes that differed in the frequency and length of field drainage during the growing season. Soil hardness was also monitored to investigate the relationship between the variance of soil physical properties caused by different irrigation treatments and root lodging tolerance. Pushing resistance moment (Rh), i.e., product of pushing resistance (R) and height of pushed part of hill (h), showed higher values in rice grown in fields drained more frequently or for longer periods. A similar pattern was found in rice grown in field plots where root penetration to the subsoil layers was prevented by laying an unwoven cloth between the topsoil and subsoil layers. Higher values for pushing resistance efficiency based on root dry weight (Kr : Rh/Wr/Dm) were also found in plots subjected to more frequent or prolonged drainage, irrespective of rice variety. Soil hardness was progressively increased by each field drainage during the growing season, and showed a highly significant relationship with Kr. The above results suggest that field drainage increases the root lodging tolerance in direct-sown rice through improvement of anchoring ability caused by increased soil hardness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号