首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Significance of microbial biomass and non-exchangeable ammonium with respect to the nitrogen transformations in loess soils of Niedersachsen during the growing season of winter wheat. I. Change of pool sizes Nitrogen transformations in loess soils have been examined by laboratory and field experiments. After straw application (· 8 t · ha?1), N in microbial biomass (Nmic) increased by about 20 mg · kg?1 soil (· 90 kg N · ha?1 · 30 cm?1) after 9 days of incubation (20 °C). Another laboratory experiment yielded an increase of about 400 mg of NH4+-N · kg?1 fixed by minerals within 1 h after addition of 1 M NH4+-acetate. Defixation of the recently fixed NH4+ after addition of 1 M KCl amounted to only 60 mg · kg?1 within 50 days. In a field experiment with winter wheat 1991, an increase in Nmic of about 80 kg N · ha?1 · 30 cm?1 was observed from March to June. After July, growth of the microbes was limited by decreased soluble carbon concentrations in the rhizosphere. Different levels of mineral N-fertilizer (0, 177 and 213 kg N · ha?1) did not affect significantly the microbial biomass. The same field experiment yielded a decrease of non-exchangeable ammonium on the “zero”-fertilized plot in spring by 200 kg N · ha?1 · 30 cm?1. The pool of fixed ammonium increased significantly after harvest. After conventional mineral N-fertilizer application (213 kg N · ha?1). NH4+-defixation was only about 120 kg N · ha?1 · 30 cm?1 until July.  相似文献   

2.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

3.
Field estimation of the microbial biomass of soils derived from natural and anthropogenic parent materials Whereas the estimation and evaluation of physical and chemical soil properties is possible with the use of widely accepted methods, there is still no procedure with respect to microbiological parameters. Therefore, our objective was to develop a field procedure for estimating the integral parameter ”︁microbial biomass”. For this purpose, microbial biomass data (Cmic in dry matter) of soils developed in natural parent materials from 116 sites in Germany and abroad were analyzed. Additionally, Cmic in 33 German soils developed in anthropogenic parent materials was determined. In the soils under consideration, Cmic varied between 100 and 4000 kg ha—1 in the upper 30 cm. For soils of natural substrates statistical relations between Cmic and the humus and clay content as well as pH were derived. From these parameters which are combined as the diagnostic characteristics of humus a simple procedure for estimating Cmic of arable soils was developed. For soils developed in anthropogenic parent materials, however, an estimation procedure was developed that uses the nature of the parent material and the degree of soil development. To evaluate the estimated amount of Cmic, a frame consisting of 6 classes is proposed: < 200 kg ha—1 (= very low), 200—400 kg ha—1 (= low), 400—800 kg ha—1 (= moderate), 800—1600 kg ha—1 (= medium), 1600—3200 kg ha—1 (= high), and > 3200 kg ha—1 (= very high).  相似文献   

4.
Influence of soil characteristics, agricultural use and soil temperature on the N-mobilization of cultivated soils A new N-mobilization model, which considers also the short term and seasonal N-supplying capacity of soil is presented. At a fixed time the potential mobilizable N (N-MOB) is a sum of difficultly mobilizable N (N-MOBs) originating from the pool of difficultly mobilizable N (Ns) and the easily mobilizable N (N-MOB1) originating from the pool of easily mobilizable N (N1). It is possible to characterize soil according to their M1, N-MOBs and v (N-MOBs per day) values. Usefulness of these parameters in N-nutrition and ground water burden from N has been discussed. Basic parameters of this model have been experimentally determined independently with the help of two different experiments i. e. laboratory incubation and column lysimeter using surface soil samples. The easily mobilizable N pool (N1) values were found in the range of 142 to 814 kg N ha?1 which corresponded to 1.2 to 7.4 % of organic N content of these soils. The difficultly mobilizable N per day (i. e. v = N-MOBs per day) in an incubation experiment (35°C) were found in the range of 1.5 to 24kg N ha?1. However, in the column lysimeter experiment, in contrast, these values at 10°C ranged between 0.05 to 0.9 kg N ha?1. These values correspond to N-MOBs values in the range of 11–182 kg N·ha?1 for a period of 200 days which approximate to a vegetation period. For practical purposes, the N1 and v values could be calculated by just measuring 3–4 points after 14 days of incubation at 35°C. The results show that N-MOBs values strongly correlated compared to N1 values to total N, organic carbon and clay content and non significantly to pH and silt content. The results of an laboratory incubation experiment carried out to assess the effect of temperature on N-mobilization show that even at 0°C there was N-mobilization. The results revealed that in the temperature range of 0–8°C (a range of soil temp. usually observed in winter months) and in the range of 25–40°C (range of summer months temp. for surface arable soil), a small change in the soil temperature would result in enormous increase in the quantity of mobilized N. The highest mobilized N quantity was found above 60°C.  相似文献   

5.
In 1991, field experiments on loess (with winter wheat) and sandy soils (with summer barley) were conducted to study N dynamics in the microbial biomass and non-exchangeable NH inf4 sup+ . The measurements showed a mass change in microbial N, with a maximum increase of 100 kg N ha-1 30 cm-1 from March to July in the loess soil, and a change for only 1 month (May) in the sandy soil. Plots treated with conventional levels of N fertilizer (213 kg N ha-1 on a loess soil to winter wheat and 130 kg ha-1 on the sandy soil to summer barley), reduced levels of N (83% and 62% of the conventional N application), or no N showed no consistent fertilizer N effect on microbial biomass N. From March to July, non-exchangeable NH inf4 sup+ in loess soils under winter wheat decreased by 110 kg N ha-1 30 cm-1 in conventionally fertilized plots and by 200 kg N ha-1 30 cm-1 in a plot with no N fertilizer. After harvest, the pool of non-exchangeable NH inf4 sup+ increased due to increasing mineral N concentrations in the soil.  相似文献   

6.
秸秆还田与配施化肥是未来农业持续发展的方向。为明确秸秆还田条件下获得较高产量和最佳经济效益的氮肥用量, 研究设计了秸秆全量(6 t·hm-2)还田条件下N0、N1、N2、N3 和N4 5 个氮肥用量的田间试验(肥料N 用量分别为0、120 kg·hm-2、180 kg·hm-2、240 kg·hm-2、300 kg·hm-2)。两年试验结果表明: 秸秆还田条件下水稻产量随着氮肥用量的增加呈先增加后降低的趋势, 2007 年、2008 年水稻最高产量分别为8 543 kg·hm-2、7 772 kg·hm-2, 施氮处理比无氮处理(N0)分别增产9.6%~19.4%、13.0%~17.8%; 当氮肥用量达300 kg·hm-2 时, 边际产量、氮肥农学利用率、结实率、千粒重、新增纯收益率以及边际成本报酬率均显著低于其余处理(N0~N3), 其中2008 年上述各指标值分别为-4.5 kg·kg-1、3.0 kg·kg-1(N)、69.9%、25.1 g、0.91%、1.03 元·元-1。由水稻产量、经济效益与氮肥用量拟合方程求得最大经济收益时的氮肥用量为218~223kg·hm-2, 水稻产量和经济收益分别为7 686~8 295 kg·hm-2 和7 413~8 607 元·hm-2。因此, 秸秆还田条件下合理配施氮肥, 不仅可以获得最佳经济收益, 还可以获得较高水稻产量和氮肥利用率。  相似文献   

7.
The application of density fractionation is an established technique, but studies on short‐term dynamics of labile soil fractions are scarce. Objectives were (1) to quantify the long‐term and short‐term dynamics of soil C and N in light fraction (LFOC, LFON, ρ ≤ 2.0 g cm–3) and microbial biomass C (Cmic) in a sandy Cambisol as affected by 28 y of different fertilization and (2) to determine the incorporation of C4‐C into these labile fractions during one growing season of amaranth. The treatments were: straw incorporation plus application of mineral fertilizer (MSI) and application of farmyard manure (FYM) each at high (MSIH, FYMH, 140–150 kg N ha–1 y–1) and low (MSIL, FYML, 50–60 kg N ha–1 y–1) rates at four field replicates. For all three sampling dates in 2008 (March, May, and September), stocks of LFOC, LFON and Cmic decreased in the order FYMH > FYML > MSIH, MSIL. However, statistical significance varied markedly among the sampling dates, e.g., with LFOC being significantly different (p ≤ 0.05) in the order given above (sampling date in March), significantly different depending on the fertilizer type (May), or nonsignificant (September). The high proportion of LFOC on the stocks of soil organic C (45% to 55%) indicated the low capacity of soil‐organic‐matter stabilization on mineral surfaces in the sandy Cambisol. The incorporation of C4‐C in the LFOC during one growing season of amaranth was small in all four treatments with C4‐LFOC ranging from 2.1% to 3.0% of total LFOC in March 2009, and apparent turnover times of C3‐derived LFOC ranged from 21 to 32 y for the sandy soils studied. Overall, our study indicates that stocks of LFOC and LFON in a sandy arable soil are temporarily too variable to obtain robust significant treatment effects of fertilizer type and rate at common agricultural practices within a season, despite the use of bulked six individual cores per plot, a common number of field replicates of four, and a length of treatments (28 y) in the order of the turnover time (21–32 y) of C3‐derived LFOC.  相似文献   

8.
ABSTRACT

Nutrient uptake and grain and straw yield of Egyptian winter wheat (Triticum aestivum L. Merr.) were evaluated for two site-years after the seed inoculation with two biofertilizer products, Phosphorien, containing the phosphorus (P)-solubilizing bacteria Bacillus megatherium, and Nitrobien, containing a combination of nitrogen (N)-fixing bacteria Azotobacter chroococcum and Azospirillum liposerum. Ammonium nitrate and polymer-coated urea fertilizers were applied to plots alone and together with the biofertilizers at rates of either 83 kg N ha?1 or 186 kg N ha?1 for comparison. The highest grain yield (5.76–6.74 Mg ha?1) and straw yield (11.49–13.32 Mg ha?1) occurred at the highest fertilizer rates with N fertilizer. There was a slight additional increase in grain and straw yields when a biofertilizer was applied along with N fertilizer. A slightly higher grain and straw yield was measured with the polymer-coated urea treatment than with the ammonium nitrate treatment. The biofertilizer materials were not as effective as N fertilizers in producing grain (4.02–4.09 Mg ha?1) or straw (7.71–8.11 Mg ha?1) for either year, although the Nitrobien + Phosphorien combination increased these parameters over the N-fertilizer control. The effect of the Nitrobien biofertilizer in increasing grain yields was equivalent to a urea application rate of about 13 kg N ha?1. Biofertilizer inoculations increased iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) concentrations in wheat tissue (at boot stage), but these higher levels did not influence grain or straw yield.  相似文献   

9.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

10.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

11.
The significance of wheat straw decomposition with regard to the C- and N-cycle of a cultivated loess soil In 1984/85, a microplot experiment with 15N-enriched fertilizer was carried out on a field of the Calenberg loess area near Hannover (surface area of the plots: 1 ± 2 m; experimental soil: stagnigleyic cambisol from loess). On the one hand, the extent of immobilization as well as remobilization of native soil- and fertilizer-N associated with straw incorporation (± 8 t/ha) was quantified. On the other hand, the turnover as well as the alteration of C- and N-masses in the decomposing straw material was studied. About 70% of the initial dry organic matter of straw was mineralized within one year. An enrichment of fertilizer-N as well as native soil-N in the residues of up to 20 kg/ha was observed as compared to the initial N-mass. On a microplot cropped with winter-wheat, microbial N-immobilization of about 30–40 kg/ha (native soil-N and fertilizer-N) occured in the soil after straw incorporation. The immobilization extended to march 1985. Subsequent, associated with a C/N-ratio in the straw of 43, N-remineralization as well as -extramineralization was observed with 40 kg/ha at maximum in december 1985.  相似文献   

12.
Nitrogen (N) surpluses from fertilizer application can cause major environmental harm including pollution of surface water, groundwater, and air. To assess such negative externalities, N balances are a complex but useful tool to predict surpluses and to measure effects of nutrient optimization strategies in agriculture. The Yaqui Valley in north‐western Mexico is representative for thousands of square kilometres of intensive, irrigated wheat production under arid conditions worldwide and has been targeted for conservation agriculture in recent years. For these cropping systems, detailed N balances are scarce and often incomplete. To help fill this knowledge gap, data from a long‐term experiment were collected in 2013/14 on a Vertisol to examine the impact of three tillage‐straw management practices (CTB: conventionally tilled beds; PB‐straw: permanent raised beds with residue retention; PB‐burn: permanent raised beds with residue burning) on N dynamics. Tillage had significant effects on soil NO3‐N, NH4‐N, and total N contents across the cropping period. Soil total N content was at all sampling depths lowest in CTB. Soil NO3‐N in the 0–90 cm profile was highest in PB‐burn over the cropping period and ranged from 77 kg ha?1 in the bed before pre‐planting fertilizer application up to 269 kg ha?1 in the furrow after the second fertilizer application. Annual simple N balances were +59 kg N ha?1 in CTB, +39 kg N ha–1 in PB‐straw, and +46 kg N ha?1 in PB‐burn. Residual mineral soil N was significantly affected by tillage‐straw management and lowest for PB‐straw (+205 kg N ha?1) and highest for CTB, and for PB‐burn (+283 kg N ha?1 each) in the 0–90 cm soil profile. Soil NO3‐N moved out of the effective wheat root zone, as indicated by the high residual NO3‐N content at 30–90 cm depth, which is an important pathway of N leaching. Quantifiable N losses through leaching and volatilization averaged 100 kg N ha?1. Our findings suggest that there is potential for substantial reductions in N inputs in all tillage‐straw systems to decrease N losses and to reduce mineral residual soil N, but care should be taken to avoid reducing grain protein content, which in PB straw was already below the quality standard. A knowledge transfer of the European “Nmin” concept is advisable in this region to regulate N fertilizer over‐application.  相似文献   

13.
Diverting the infiltrating water away from the zone of N application can reduce nitrate–nitrogen (NO3–N) leaching losses to groundwater from agricultural fields. This study was conducted from 2001 through 2005 to determine the effects of N-application methods using a localized compaction and doming (LCD) applicator and spoke injector on NO3–N leaching losses to subsurface drainage water and corn (Zea mays L.)–soybean (Glycine max L.) yields. The field experiments were conducted at the Iowa State University’s northeastern research center near Nashua, Iowa, on corn–soybean rotation plots under chisel plow system having subsurface drainage ‘tile’ system installed in 1979. The soils at the site are glacial till derived soils. The N-application rates of 168 kg-N ha?1 were applied to corn only for both the treatments each replicated three times in a randomized complete block design. For combined 5 years, the LCD N-applicator in comparison with spoke injector showed lower flow weighted NO3–N concentrations in tile water (16.8 vs. 20.1 mg L?1) from corn plots, greater tile flow (66 vs. 49 mm), almost equivalent NO3–N leaching loss with tile water (11.5 vs. 11.3 kg-N ha?1) and similar corn grain yields (11.17 vs. 11.37 Mg ha?1), respectively, although treatments effects were found to be non-significant (p?=?0.05) statistically. The analysis, however, revealed that amount and temporal distribution of the growing season precipitation also affected the tile flow, NO3–N leaching loss to subsurface drain water, and corn–soybean yields. Moreover, the spatial variability effects from plot to plot in some cases, resulted in differences of tile flow and NO3–N leaching losses in the range of three to four times despite being treated with the same management practices. These results indicate that the LCD N-applicator in comparison with spoke injector resulted in lower flow weighted NO3–N concentrations in subsurface drain water of corn plots; however, strategies need to be developed to reduce the offsite transport of nitrate leaching losses during early spring period from March through June.  相似文献   

14.
Results from several field studies involving numerous measurements were used to describe the change of soil microbial biomass C (Cmic) and N (Nmic) during the growth period of annual crops (years 1988–1992, 1994, 1995) under the temperate climatic conditions of central Europe. The data were taken from our own investigations as well as from the literature. Only studies with at least eight measurements on one plot during the growth period were used. The total number of farms (cash crop–production farms) was 7, that of experimental plots was 15. The evaluation of these results through regression analysis demonstrated that Cmic and Nmic from the beginning of a year increased only slightly until summer and subsequently decreased until autumn to their initial levels. This increase on an average corresponded to a C assimilation of approx. 100 kg ha–1 and an N immobilization of approx. 20 kg ha–1 (30 cm)–1. The increase in Nmic alone could not explain N immobilization rates frequently observed in different studies using 15N‐labeled fertilizers. Most of the labeled N that was immobilized (>50 kg N ha–1) might have accumulated in the matrix of soil organic matter (SOM). Therefore, the changes in microbial biomass may be of less importance for changes in soil N storage as frequently assumed.  相似文献   

15.
High N fertilizer and flooding irrigation applied to rice in anthropogenic‐alluvial soil often result in N leaching and low use efficiency of applied fertilizer N from the rice field in Ningxia irrigation region in the upper reaches of the Yellow River. Sound N management practices need to be established to improve N use efficiency while sustaining high grain yield levels and minimize fertilizer N loss to the environment. We investigated the effects of Nursery Box Total Fertilization technology (NBTF) on N leaching at different rice growing stages, N use efficiency and rice yield in 2010 and 2011. The four fertilizer N treatments were 300 kg N ha−1 (CU, Conventional treatment of urea at 300 kg N ha−1), 120 kg N ha−1 (NBTF120, NBTF treatment of controlled‐release N fertilizer at 120 kg N ha−1), 80 kgN ha−1 (NBTF80, NBTF treatment of controlled‐release N fertilizer at 80 kg N ha−1) and no N fertilizer application treatment (CK). The results showed that the NBTF120 treatment increased N use efficiency, maintained crop yields and substantially reduced N losses to the environment. Under the CU treatment, the rice yield was 9634 and 7098 kg ha−1, the N use efficiency was 31·6% and 34·8% and the leaching losses of TN were 44·51 and 39·89 kg ha−1; NH4+‐N was 5·26 and 5·49 kg ha−1, and NO3‐N was 27·94 and 26·22 kg ha−1 during the rice whole growing period in 2010 and 2011, respectively. Compared with CU, NBTF120 significantly increased the N use efficiency and decreased the N losses from the paddy field. Under NBTF120, the N use efficiency was 56·3% and 51·4%, which was 24·7% and 16·6% higher than that of CU, and the conventional fertilizer application rate could be reduced by 60% without lowering the rice yield while decreasing the leaching losses of TN by 16·27 and 14·36 kg ha−1, NH4+‐N by 0·90 and 1·84 kg ha−1, NO3‐N by 110·6 and 10·14 kg ha−1 in 2010 and 2011, respectively. Our results indicate that the CU treatment resulted in relatively high N leaching losses, and that alternative practice of NBTF which synchronized fertilizer application with crop demand substantially reduced these losses. We therefore suggest the NBTF120 be a fertilizer application alternative which leads to high food production but low environmental impact. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

The study was carried out to investigate the water balance and runoff and infiltration losses of nutrients in a paddy field plot located in southern Korea. Field monitoring was carried out during the cropping season from May 1, 1999 to September 30, 2000. The soil of the experimental paddy field belonged to the Jisan series (SiL; fine loam, mixed, mesic Fluventic Haplaquepts) covering on area of 5,000 m2 (100 m × 50 m). The measured input quantities of N and P into the paddy field were as follows: 122 and 140 kg N ha?1 and 29 and 30 kg P2O5 kg ha?1 from chemical fertilizer, 20 and 28 kg N ha?1 and 0.35 and 0.36 kg P ha?1 from precipitation, and 26 and 35 kg N ha?1 and 0.57 and 0.72 kg P ha?1 from irrigation water, respectively. The measured outputs of N and P during the study period were as follows: 48 and 52 kg N ha?1 and 1.1 and 1.6 kg P ha?1 from runoff water, and 9 and 12 kg N ha?1 and 0.04 and 0.05 kg P ha?1 from infiltration. The runoff loading was the highest in June, presumably because of the higher concentrations of chemical components associated with chemical fertilizer application. The runoff losses of nutrients were compared to the amounts of nutrients supplied by chemical fertilizers. It was found that the losses of N accounted for 34.3 and 42.6% of the chemical fertilizer applied, while those of P accounted for 3.8 and 5.3%. The ratio between nutrient losses by infiltration and the chemical fertilizer applied was 6.4 and 9.8% for N and 0.1 and 0.2% for P, respectively.  相似文献   

17.
Denitrification losses from a horticultural soil as affected by incorporation of fresh plant residues Denitrification in the Ap-horizon of a Luvisol under horticulture as affected by fresh cauliflower residues (Brassica oleracea L. var. botrytis) was measured using the acetylene inhibition technique. The residues were chopped and ploughed in 25 cm deep. Denitrification rates, soil temperature, moisture, nitrate and watersoluble carbon were determined from the end of July until the end of September. One day after incorporation of plant residues the denitrification rate showed a rapid increase to the highest value (5.15 kg N · ha?1 · day?1) of the experimental period. During the following 57 days the rates declined to the level of the untreated control. The highest denitrification rates occurred in the experimental sites which received plant residues. The estimated N-loss for the whole experimental period (57 days) totalled 43.6 kg N · ha?1 in the treatment with plant residues and 2 kg N · ha?1 in the treatment without plant residues. Coefficients of variation of denitrification rates were high (29–206%). Within the treatment ‘with plant residues’ denitrification rate and watersoluble carbon were positively correlated.  相似文献   

18.
Controlled-release urea (CRU) and its placement method in rice production were investigated during 2007 and 2008 seasons. Controlled-release urea was applied at 62.5, 125, and 187.5 kg nitrogen (N) ha?1, and the urea was 187.5 kg N ha?1. All the CRU treatments were applied to the nursery beds once, and they were brought into the paddy field during transplanting, while the urea treatment was split into three applications from the plowing to the harvest. The results showed that rice seedlings with CRUs germinated and grow well and there was no salt damage at the nursery stage. The CRU treatment with 125 kg N ha?1 had 33% less N than urea treatment (187.50 kg N ha?1), but it produced significantly higher grain and straw yields, higher total N uptake and total apparent N uptake efficiency. In addition, all the CRU treatments effectively decreased floodwater ammonium (NH4 +)-N and nitrate (NO3 ?)-N concentrations, pH, and N runoff.  相似文献   

19.
Simultaneous determination of nitrogen transformation rates in soil columns using 15-N: N-Model of a Terra fusca-Rendzina soil Rates of ammonification, nitrification, immobilization, and denitrification were determined in undisturbed columns of a Terra fusca Rendzina soil. A steady input of 15-N labelled ammoniumsulfate with the irrigation water created a steady state of the turnover processes in the soil resulting in a constant output of 15-N-nitrate. In this state the rate constants (8°C) were K1 = 0.64 for the netto-N-nitrification, K2 = 0.11 for the netto-N-denitrification, and K3 = 0.25 for the netto-N-immobilization. 64% of the nitrate was leached, 25% immobilized in organic matter, and 11% denitrified. Relating these rate constants to the turnover of the soil nitrogen one can calculate the mean annual rates for the different processes of a forest soil, using the mean annual temperature. For the Göttinger Wald situation (T = 6.9°C) the following rates were calculated; Ammonification = 183 kg N·ha?1·a?1, immobilization = 44 kg N·ha?1·a?1, netto N-denitrification = 19 kg N·ha?1·a?1, and netto-N-mineralization = 120 kg N·ha?1·a?1.  相似文献   

20.
Denitrification loss from a loam under a cut ryegrass sward receiving 0, 250 and 500 kg N ha?1 a?1 in four equal amounts was measured during 14 months using the acetylene-inhibition technique. The rate of denitrification responded rapidly to changes in soil water content as affected by rain. Mean rates of denitrification exceeded 0.2 kg N ha?1 day?1 only when the soil water content was >20% (w/w) and nitrate was >5μ N g?1 in the upper 20 cm of the profile and when soil temperature at 2 cm was >5–8°C. When the soil dried to a water content <20%, denitrification decreased to <0.05 kg N ha?1 day?1. Highest rates (up to 2.0 kg N ha?1 day?1) were observed following application of fertilizer to soil at a water content of about 30% (w/w) in early spring. Denitrification in the control plot during this period was generally about a hundredth of that in plots treated with ammonium nitrate. High rates of N2O loss (up to 0.30 kg N ha?1 day-1) were invariably associated with high rates of denitrification (> 0.2 kg N ha?1 day?1). However, within 2–3 weeks following application of fertilizer to the plot receiving 250 kg N ha?1 a?1 the soil acted as a sink for atmospheric N2O when its water content was >20% and its temperature >5–8°C. Annual N losses arising from denitrification were 1.6, 11.1 and 29.1 kg N ha?1 for the plots receiving 0, 250 and 500 kg N ha?1 a?1, respectively. More than 60% of the annual loss occurred during a period of 8 weeks when fertilizer was applied to soil with a water content >20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号