首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fusarium oxysporum f. sp. lactucae, the causal agent of fusarium wilt of lettuce (Lactuca sativa), occurs in most countries in which lettuce is grown and causes serious economic losses. Three races (1, 2 and 3) of the pathogen have previously been identified on the basis of their ability to cause disease on differential lettuce cultivars, as well as by means of molecular tools developed to characterize different races of this pathogen. Only race 1 has been detected in Europe so far. In this study, two isolates of F. oxysporum, obtained from lettuce plants grown in the Netherlands showing symptoms of wilt, have been characterized by combining the study of pathogenicity with differential cultivars of lettuce and molecular assays to determine whether the isolates are different from the known races of F. oxysporum f. sp. lactucae. This study reports the presence of F. oxysporum f. sp. lactucae for the first time in the Netherlands. The causal pathogen has been identified, using the IRAP‐SCAR technique, as a new race of F. oxysporum f. sp. lactucae. Specific primers have been designed to identify this new race.  相似文献   

2.
This study evaluated the effect of different organic amendments on lettuce fusarium wilt caused by Fusarium oxysporum f. sp. lactucae in pots under controlled conditions. Their effects on the density of the pathogen, on the total fungi and on fluorescent Pseudomonas spp. were also evaluated after two subsequent lettuce crops. A significant reduction in the severity of the symptoms of F. oxysporum f. sp. lactucae was found after the use of Brassica carinata pellets (52–79% reduction) and compost (49–67% reduction), while Brassica green manure and cattle and chicken manure only provided partial control of fusarium wilt. However, variations in effectiveness were observed for the same treatment in repeated trials. In general, an increase was observed in Pseudomonas and a decrease in fungal populations in the growing medium, which was obtained by mixing a blonde sphagnum peat and a sandy loam soil with B. carinata pellets and compost after two consecutive cropping cycles. Prolonging the Brassica and compost treatments from 30 to 60 days did not significantly affect disease severity, plant growth or the microbial population of the total fungi or Pseudomonas. The largest lettuce biomass was obtained in the non‐inoculated growing medium amended with brassica flour, chicken manure, B. carinata pellets and compost, as a consequence of fertilization. The treatment with B. juncea green manure, B. carinata (pellets and flour) and compost applied 30 days before planting led to promising results and merits further investigation for use under field conditions.  相似文献   

3.
Fusarium oxysporum f. sp. lactucae (FOL) is a soil‐ and seedborne pathogen and the causal agent of fusarium wilt on lettuce. Four races have been identified within FOL, with different worldwide distribution. Several molecular techniques have been used to detect and identify this pathogen; however, not all of them have the optimal characteristics in terms of sensitivity to perform FOL detection in plant and seed material. A loop‐mediated isothermal amplification (LAMP) assay was developed based on the sequence‐characterized amplified region (SCAR) obtained in a previous rapid amplification of polymorphic DNA (RAPD) study. The LAMP assay has been validated according to the EPPO standard PM7/98. The LAMP assay was tested with lettuce seeds, soil and plant material, and can be used successfully to amplify DNA from each of these matrices. In seed lots artificially inoculated with FOL, the detection limit of the LAMP test was 0.004% infected seed.  相似文献   

4.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

5.
Although the maritime Pacific Northwest (PNW) is the only region of the United States suitable climatically for spinach seed production, the acidic soils are highly conducive to spinach Fusarium wilt caused by Fusarium oxysporum f. sp. spinaciae. A soil bioassay developed to quantify the risk of spinach Fusarium wilt in fields has been offered to seed growers annually since 2010. Soil sampled from growers' fields each winter was planted with highly susceptible, moderately susceptible, and partially resistant spinach inbred lines, and the plants rated weekly to calculate a Fusarium wilt severity index (FWSI) and the area under the disease progress curve (AUDPC). Results for 147 soils tested from 2010 to 2013 have been published. This study examined results for an additional 248 soils tested from 2014 to 2019 with the bioassay modified to include an option of agricultural limestone amendment to the soils tested. FWSI and AUDPC were affected significantly (p < .001) by the main effects of soil and spinach inbred line, and the interaction of these factors. Correlation analyses showed a range in degree of association of FWSI and AUDPC with spinach seed crop rotation duration and soil properties, depending on the spinach inbred line (r = −.255 to –.267, n = 172 soils with characteristics suitable for correlation analyses). Stepwise regression models for 172 soils with relevant parameters for regression analyses identified spinach seed crop rotation interval, rate of agricultural limestone amendment, soil pH, and soil Fe, Mn, and Zn concentrations as most strongly associated with FWSI and AUDPC. However, the models accounted for ≤33.4% (R2) of the variability in Fusarium wilt risk. The soil bioassay remains a primary tool for spinach seed growers to select fields with low risk of Fusarium wilt.  相似文献   

6.
Italy is one of the leading countries for the production and consumption of ready‐to‐eat salads. This has led to a steady increase in the area used over the last decade for the growth of leafy vegetables under intensive systems. The recent new diseases that affect lettuce, wild and cultivated rocket, lamb's lettuce, spinach and basil are reported here: Plectosphaerella cucumerina on wild rocket, endive and lamb's lettuce, Fusarium equiseti on wild and cultivated rocket and lettuce, Myrothecium verrucaria on spinach and wild rocket, Myrothecium roridum on lamb's lettuce, Allophoma tropica on lettuce and Alternaria sp. on basil and rocket are among the new foliar pathogens in Italy. Among the soil‐borne pathogens, Pythium aphanidermatum, Pythium irregulare and Pythium Cluster B2a have recently been isolated in Italy on spinach and Swiss chard, lamb's lettuce and lettuce, while Fusarium oxysporum f. sp. lactucae, which causes lettuce wilt, is gradually spreading to new countries. Some of the new pathogens have been found to be transmitted by seed and typical of tropical climate, and are thus favoured by the increases in temperature linked to climate change. The globalization of markets, climate change and intensive cultivation are among the factors responsible for the proliferation and spread of some of these new pathogens that are ‘alien’ to Italian production systems.  相似文献   

7.
Fusarium wilt of strawberry, caused by Fusarium oxysporum f. sp. fragariae, is a disease of primary concern for strawberry production in many countries. Crop rotation and anaerobic soil disinfestation (ASD) have gained recent interest for their potential to contribute to management of this disease. Both techniques involve incorporation of organic matter into soil, which may be utilized by strains of Fusarium that are competitive saprophytes. We show that F. oxysporum f. sp. fragariae can colonize strawberry, lettuce, raspberry, and broccoli leaf tissues, which are sources of organic matter generated during crop rotation. This pathogen increased in soil population density during ASD treatments that did not become anaerobic, possibly as a result of growth on the organic amendment. However, significant population decreases were observed after ASD treatment when at least 100,000 cumulative reduced mV hours occurred in a 14-day experiment. Post-ASD abundance of F. oxysporum f. sp. fragariae in soil was negatively correlated with cumulative reduced mV hours. The only treatment that consistently caused disinfestation was exposed to a maximum temperature of 22 °C, which indicates there is potential for developing effective ASD treatments in the cool climates where strawberries are grown. Awareness that F. oxysporum f. sp. fragariae can act as a competitive soil saprophyte should be further investigated for its potential to alter disease outcomes where organic amendments are applied.  相似文献   

8.
This study combined the micro‐cross‐section cultural system with in vitro mutagenesis induced by ethyl methanesulphonate (EMS) to screen for fusarium wilt‐resistant lines of Brazil banana (Musa spp., AAA). The results indicated that the optimum EMS concentration and duration for the treatment of micro‐cross‐sections cut from the pseudostem of tissue‐cultured plantlet were 300 mm and 60 min, respectively. Under the optimal treatment, an average of 2·2 regenerated shoots were produced from each explant. One hundred regenerated plantlets were used for screening for fusarium wilt‐resistant lines by the early screening technique. The initial disease symptom – yellowing in lower leaves of susceptible plantlets – was observed 2 weeks after inoculation. After 2 months, only six plants survived – the putative fusarium wilt‐resistant lines. The fusarium wilt pathogen Fusarium oxysporum f. sp. cubense race 4, was identified in the preliminary test field by a SCAR marker technique. Of the six putative resistant lines, five survived the preliminary field test. The regenerated plantlets from these five fusarium wilt‐resistant lines were subjected to early screening again, where they showed markedly reduced disease incidences compared with regenerated plantlets of Brazil banana (control). It was concluded that EMS‐induced mutation of banana through the micro‐cross‐section cultural system is potentially useful for banana improvement.  相似文献   

9.
Five experimental trials were carried out to test different biological control agents against Fusarium wilt of lettuce, cause byFusarium oxysporum f.sp.lactucae. In the presence of a very high disease incidence, the best results in terms of disease control as well as increased growth response were shown byTrichoderma harzianum T 22 (RootShield), which, at 3 gl −1 of substrate, provided very consistent results.F. oxysporum IF 23 gave good disease control but in two out of five trials reduced the biomass produced. Less consistent, but still significant results were provided byF oxysporium MSA 25, at 3 gl −1 of substrate, and byTrichoderma viride TV 1. The twoF. oxysporum agents Fo 251/2 and Fo 47 and the mixture ofT. harzianum + T. viride (Remedier) partially reduced disease incidence but were less effective than the above mentioned. Less interesting results were offered byStreptomyces griseoviridis (Mycostop). The results obtained show that biological control can play a role in the management of Fusarium wilt of lettuce.  相似文献   

10.
11.
12.
In an earlier study, treatment of radish seed with the bacteriumPseudomonas fluorescens WCS374 suppressed fusarium wilt of radish (Fusarium oxysporum f. sp.raphani) in a commercial greenhouse [Leemanet al., 1991b, 1995a]. In this greenhouse, the areas with fusarium wilt were localized or expanded very slowly, possibly due to disease suppressiveness of the soil. To study this phenomenon, fungi were isolated from radish roots collected from the greenhouse soil. Roots grown from seed treated with WCS374 were more abundantly colonized by fungi than were roots from nonbacterized plants. Among these were several species known for their antagonistic potential. Three of these fungi,Acremonium rutilum, Fusarium oxysporum andVerticillium lecanii, were evaluated further and found to suppress fusarium wilt of radish in a pot bioassay. In an induced resistance bioassay on rockwool,F. oxysporum andV. lecanii suppressed the disease by the apparent induction of systemic disease resistance. In pot bioassays with thePseudomonas spp. strains, the pseudobactin-minus mutant 358PSB did not suppress fusarium wilt, whereas its wild type strain (WCS358) suppressed disease presumably by siderophore-mediated competition for iron. The wild type strains of WCS374 and WCS417, as well as their pseudobactin-minus mutants 374PSB and 417PSB suppressed fusarium wilt. The latter is best explained by the fact that these strains are able to induce systemic resistance in radish, which operates as an additional mode of action. Co-inoculation in pot bioassays, ofA. rutilum, F. oxysporum orV. lecanii with thePseudomonas spp. WCS358, WCS374 or WCS417, or their pseudobactin-minus mutants, significantly suppressed disease (except forA. rutilum/417PSB and all combinations with 358PSB), compared with the control treatment, if the microorganisms were applied in inoculum densities which were ineffective in suppressing disease as separate inocula. If one or both of the microorganism(s) of each combination were applied as separate inocula in a density which suppressed disease, no additional suppression of disease was observed by the combination. The advantage of the co-inoculation is that combined populations significantly suppressed disease even when their individual population density was too low to do so. This may provide more consistent biological control. The co-inoculation effect obtained in the pot bioassays suggests that co-operation ofP. fluorescens WCS374 and indigenous antagonists could have been involved in the suppression of fusarium wilt of radish in the commercial greenhouse trials.Abbreviations CFU colony forming units - KB King's B - PGPR plant growth-promoting rhizobacteria - CQ colonization quotient  相似文献   

13.
In Ehime Prefecture, Japan, lettuce leaf spot (Septoria lactucae) caused huge losses in marketable lettuce yields. To explore potential measures to control disease outbreaks, the effects of inoculum density, leaf wetness duration and nitrate concentration on the development of leaf spot on lettuce (Lactuca sativa) were evaluated. Conidia were collected from diseased plants in an infested field by single-spore isolation and were used to inoculate potted lettuce plants with different conidial concentrations. Lesions developed on inoculated lettuce plants at inoculum concentrations from 100 to 106 conidia/ml. The disease was more severe when the inoculum exceeded 102 conidia/ml, and severity increased with increasing concentrations. Assessment of the relationship between disease development and the duration of postinoculation leaf wetness revealed that symptoms appeared when the inoculated plants remained wet for 12 h or longer. The number of lesions and total nitrogen content in the lettuce leaves both increased when nitrate was applied.  相似文献   

14.
Botrytis cinerea causes grey mould, a disease common on many economically important crops. Although much attention is paid to the airborne inoculum of this fungus, as it sporulates abundantly in favourable conditions, knowledge on the abundance and genetic characteristics of soilborne inoculum could help improve control strategies. In this study, the soilborne inoculum of B. cinerea was quantified in two greenhouses at different times before and after the cultivation of four successive lettuce crops. Between 0 and 1177 colony‐forming units (CFU) of B. cinerea per gram of soil were recorded. There was no significant correlation between abundance of soilborne inoculum and subsequent disease incidence on lettuce (= 0·11). Sixty‐five isolates collected from diseased plants and 66 isolates collected from the soil were investigated for their genetic diversity. The soil strains showed lower genetic diversity than the lettuce strains when considering the unbiased gene diversity within the nine microsatellite loci, the mean number of alleles per locus and the haplotypic diversity. The genetic differentiation between lettuce and soil strains decreased over three successive lettuce crops. At the same time, the genetic structure of the two groups of strains tended to become similar. These results are consistent with the hypothesis of a flow of inoculum between the lettuce crop and the soil, and vice versa. The study shows that grey mould management should pay more attention to the inoculum of B. cinerea present in the soil.  相似文献   

15.
Arbuscular mycorrhiza (AM) colonization led to a decrease in the severity of fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici in tomato plants. The involvement of two plant defense hormones, namely methyl jasmonate (MeJA) and salicylic acid (SA), in the expression of mycorrhiza induced resistance (MIR) against this vascular pathogen was studied in the AM colonized and non-colonized (controls) plants. Activity of lipoxygenase (LOX), which plays a role in jasmonic acid (JA) biosynthesis, as well as levels of methyl jasmonate (MeJA) increased in AM colonized plants as compared to controls, but did not show any further changes in response to F. oxysporum inoculation. On the other hand, activity of phenylalanine ammonia lyase (PAL), which is an enzyme from salicylic acid (SA) biosynthetic pathway, as well as SA levels, increased in both controls and AM colonized plants in response to application of F. oxysporum spores. Hence the JA and not the SA signalling pathway appeared to play a role in the expression of MIR against this vascular pathogen. The resistance observed in AM colonized plants was completely compromised when plants were treated with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM). This confirmed that the AM-induced increase in JA levels was involved in the expression of resistance toward F. oxysporum. The SA response gene pathogenesis-related 1 (PR1) showed an increased expression in response to F. oxysporum infection in SHAM treated AM colonized plants as compared to plants that were not treated with this JA inhibitor. This suggested the possibility that JA inhibited SA responses, at least in the roots. AM colonization therefore appeared to prime plants for improved tolerance against the vascular pathogen F. oxysporum, which was mediated through the JA signalling pathway.  相似文献   

16.
Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation for four days at 22 °C, yielded a better percentage of diseased plants than a microconidial suspension drench, an injection of a microconidial suspension into the hypocotyl, or a talcum inoculum.Pseudomonas fluorescens strain WCS374 applied in talcum or peat, but not as a suspension drench, induced systemic resistance. A minimal initial bacterial inoculum density of 105 CFU WCS374 root–1 was required to significantly reduce the percentage diseased plants. At least one day was necessary between bacterization of strain WCS374 in talcum on the root tips and inoculation of the pathogen in peat on the root base, for an optimal induction of systemic resistance. Strain WCS374 induced systemic resistance in six radish cultivars differing in their susceptibility toF. oxysporum f. sp.raphani. Significant suppression of disease by bacterial treatments was generally observed when disease incidence in the control treatment, depending on pathogen inoculum density, ranged between approximately 40 to 80%. Strains WCS374 and WCS417 ofPseudomonas fluorescens induced systemic resistance against fusarium wilt, whereasP. putida WCS358 did not. This suggests that the induction of systemic resistance byPseudomonas spp. is dependent on strain-specific traits.Abbreviations CFU colony forming units - IFC immunofluorescence colony-staining - ISR induced systemic resistance - PBS phosphate buffered saline - SAR systemic acquired resistance  相似文献   

17.
Fusarium oxysporum f. sp. cubense (Foc), causal agent of fusarium wilt of banana, is among the most destructive pathogens of banana and plantain. The development of a molecular diagnostic capable of reliably distinguishing between the various races of the pathogen is of key importance to disease management. However, attempts to distinguish isolates using the standard molecular loci typically used for fungal phylogenetics have been complicated by a poor correlation between phylogeny and pathogenicity. Among the available alternative loci are several putative effector genes, known as SIX genes, which have been successfully used to differentiate the three races of F. oxysporum f. sp. lycopersici. In this study, an international collection of Foc isolates was screened for the presence of the putative effector SIX8. Using a PCR and sequencing approach, variation in Foc‐SIX8 was identified which allowed race 4 to be differentiated from race 1 and 2 isolates, and tropical and subtropical race 4 isolates to be distinguished from one another.  相似文献   

18.
The soilborne fungus Sclerotinia sclerotiorum infects many important crop plants. Central to the success of this pathogen is the production of sclerotia, which enables survival in soil and constitutes the primary inoculum. This study aimed to determine how crop plant type and S. sclerotiorum isolate impact sclerotial production and germination and hence inoculum potential. Three S. sclerotiorum isolates (L6, L17, L44) were used to inoculate plants of bean, carrot, lettuce, oilseed rape (OSR) and potato, and the number and weight of sclerotia per plant quantified. Carpogenic germination of sclerotia collected from different hosts was also assessed for L6. Production of sclerotia was dependent on both crop plant type and S. sclerotiorum isolate, with OSR and lettuce supporting the greatest number (42–122) and weight (1.6–3.0 g) of sclerotia per plant. The largest sclerotia were produced on OSR (33–66 mg). The three S. sclerotiorum isolates exhibited a consistent pattern of sclerotial production irrespective of crop type; L6 produced large numbers of small sclerotia while L44 produced smaller numbers of large sclerotia, with L17 intermediate between the two. Germination rate and percentage was greatest for larger sclerotia (4.0–6.7 mm) and also varied between host plants. Combining sclerotial production data and typical field crop densities suggested that infected carrot and OSR could produce the greatest number (3944 m?2) and weight (73 g m?2) of S. sclerotiorum sclerotia, respectively, suggesting these crops potentially contribute a greater increase in inoculum. This information, once further validated in field trials, could be used to inform future crop rotation decisions.  相似文献   

19.
The role of nitric oxide and reactive oxygen species, molecules indispensable for plant-pathogen signalling, was studied in the Lactuca spp.-Bremia lactucae pathosystem. Using a leaf disc model the translaminar effect of various compounds affecting their metabolism was studied by light microscopy. Time course studies revealed a slowdown in the development of B. lactucae (race BL16) infection structures by rutin (scavenger of reactive nitrogen and oxygen species) and SNP (NO donor) within 48 h post inoculation, followed by a retardation of sporulation. Application of the specific NO scavenger, PTIO, accelerated penetration of B. lactucae but had no further effects on the plant-pathogen interaction. Inhibitors of NO synthase (L-NAME) and nitrate reductase (sodium tungstate) did not influence pathogen development. Our results suggest that drastic change in the NO: hydrogen peroxide ratio seems to determine the pathogen’s fate. NO synthase-like activity significantly increased early after B. lactucae challenge in resistant L. virosa. Confocal laser scanning microscopy revealed the accumulation of nitric oxide in the penetrated cells, pointing to a role in the initiation of the hypersensitive reaction. The tips of germ tubes and appressoria of B. lactucae also accumulated NO, suggesting an essential role for this molecule in penetration of the biotrophic pathogen. Additionally, temporal changes in endogenous levels of rutin and quercetin in extracts from Lactuca spp. leaves will be discussed in connection to their role as part of the antioxidative machinery that influences the plants’ susceptibility/resistance to lettuce downy mildew.  相似文献   

20.
Twelve wild Solanum accessions were tested in a glasshouse at the seedling stage for resistance to Fusarium oxysporum f. sp. melongenae, the causal agent of fusarium wilt of aubergine. Four isolates of the fungus (three Turkish and one Italian) were used. Solanum incanum and S. linneanum were highly susceptible, whereas S. sisymbrifolium, S. torvum and S. aethiopicum Gilo group (one accession) were resistant. In Solanum aethiopicum Aculeatum (two accessions), S. aethiopicum Gilo, S. viarum and S. macrocarpon there were both resistant and susceptible individuals. The sources of resistance found in these wild Solanum spp. could be conveniently used to breed aubergine cultivars resistant to fusarium wilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号