首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effect of salinity on the nodulation, N-fixation and plant growth of selected chickpea- Rhizobium symbionts was studied- Eighteen chickpea rhizobial strains were evaluated for their growth in a broth culture at salinity levels of 0 to 20 dS m−1 of NaCl + Na2SO4. Variability in response was high. Salinity generally reduced the lag phase and/or slowed the log phase of multiplication of Rhizobium. Nine chickpea genotypes were also evaluated for salt tolerance during germination and early seedling growth in Petri dishes at five salinity levels (0–32 dS m−1). Chickpea genotypes ILC-205 and ILC-1919 were the most salt-tolerant genotypes. The selected rhizobial strains and chickpea cultivars were combined in a pot experiment aimed at investigating the interactive effect of salinity (3, 6 and 9 dS m−1) and N source (symbiosis vs. inorganic N) on plant growth. Symbiotic plants were more sensitive to salinity than plants fed mineral N. Significant reductions in nodule dry weight (59.8 %) and N fixation (63.5 %) were evident even at the lowest salinity level of 3 dS m-1. Although nodules were observed in inoculated plants grown at 6 dS m-1, N-fixation was completely inhibited. The findings indicate that symbiosis is more salt-sensitive than both Rhizobium and the host plant, probably due to a breakdown in one of the processes involved in symbiotic-N fixation. Improvement of salinity tolerance in field grown chickpea may be achieved by application of sufficient amounts of mineral nitrogen.  相似文献   

2.
Due mainly to alterations in plant metabolism, lack of oxygen and excess salts are disturbances that affect crop yields. In different parts of the world crops are subjected t o those disttirbances, simultaneously or successively. Our objective was to determine the effects of a winter waterlogging followed by a spring salt peak on rapeseed yield, A pot experiment, combining waterlogging and salinization was carried out. The waterlogging duration was: 0 (control), 3, 7 and 14 days and the sahnity treatments were peaks of Electrical Conductivity of 5 and 8 dSm−1 and the control. The yield started decreasingfrotn 3 days during waterlogging, mainly due to the lower number of seeds per plant. The salt peak from 5 dSm−1 affected the yield only in plants which had suffered a waterlogging lower than 7 days, showing interaction between salinity and waterlogging, Only salinity reduced oil content. The saline peak affected the K, Ca and Na concentration in plant tissues, but the effect of salinity on rapeseed could be more related to soil water potential than specific ion toxicities or imbalance.  相似文献   

3.
In a soil lacking indigenous Bradyrhizobium japonicum , soybean ( Glycine max [L.] Merr.) nodulation depends upon the number of rhizobia applied with the inoculum. This field study reports the effect of different rates of applied rhizobia on nodulation, dry matter and nitrogen content in soybean in a Mediterranean soil lacking B. japonicum.
Treatments included six rates of B. japonicum , ranging from 2.5 × 104 to 6.075 × 106 rhizobia cells per seed applied to the seed as peat inoculant at planting, 100 kg N ha−1 and an uninoculated control. The experiment was conducted in an Entisol soil. Regression analysis showed linear relationship between the rate of applied rhizobia and the number of the nodules per plant or the dry weight per nodule. In early stages of development (32 and 68 days after planting) plant dry weight was not affected by inoculation rate. At harvest a rate of 7.5 × 104 rhizobia cells per seed was necessary for maximum total and stover dry weight. A higher rate, 6.75 × 105 rhizobia cells per seed, was required to obtain maximum grain yield, total N content in plant tops and grain N content. Grain percentage N was increased up to 2.025 × 106 rhizobia cells per seed. Nitrogen application increased grain yield, total N content and grain N content at the same level as the lower inoculation rate.  相似文献   

4.
The effect of varying seed rates (100–1000 seeds m−2) and nitrogen fertilizer (0–60 kg N ha-1) applied either in a single basal dose or in splits was investigated on a tall elongating, photosensitive rice variety, Nalini, under semi-deepwater conditions (0–100cm) during 1993 and 1994 at Cuttack, India. Seedling emergence was higher in 1993 (53.9 %) than in 1994 (44.1 %) and it increased proportionately with increasing seed rate, Increase in the number of tillers and panicles m−2 at higher seed rates was associated with a corresponding decrease in panicle weight. Regression analysis indicated a decrease of 0.91–1.28g in panicle weight for an increase of 100 panicles m−2. The grain yield of rice was significantly higher at 400 seeds m−2 in 1993 and at 600 seeds m−2 in 1994 than at low seed rates but further increase in seed rate did not increase the yield. Application of N fertilizer increased the panicle number and thereby grain yield significantly. The effect of basal and split applied N at active or maximum tillering stages as well as between 30 and 60 kg N ha−1 was not significant on the grain yield. The results suggest that a basal dose of 30kg N ha−1 and seeding density of 400–600 seeds m−2, resulting in 40–50 % seedling emergence and 150–200 panicles m−2, each with 2.0–2.5 g weight, may be adequate for optimum productivity of rice under semideepwater conditions.  相似文献   

5.
The identification of genotypes having potential salt tolerance is an effective approach to solve the problems of saline soils.
Seed germination and seedling establishment are limiting factors in crop production. Seven wheat ( Triticum aestivum L.) and one Triticale (X Triticosecale Wittmak) genotypes were evaluated for salt tolerance at emergence and early seedling growth in solution culture with NaCl salinities up to 300 mM L−1 (electrical conductivity equals 27.6 dS m−1).
Seedling emergence was delayed by increasing NaCl in nutrient media. At 200 mM L−1 NaCl, the emergence percentages of wheat genotypes ranged between 68.7 % and 91.3 % after 7 days and 79.3 % and 98.7 % after 15 days. While at 300 mM L−1, the emergence percentages of the wheat genotypes were 0.0 % after 7 days. After 15 days the emergence percent ranged between 24 % and 72 %. The emergence percent of the Triticale line was 88.7 after 7 days and 89.3 after 15 days at 200 mM L−1, while it was 25.3 % and 84 % after 7 and 15 days, at 300 mM L−1, respectively. Root and shoot dry weight were greatly reduced by increasing NaCl, however, the Triticale line showed less reduction in growth compared to the wheat genotypes. K+, Ca2+ and Mg2+ were decreased with increasing salinity levels while Na+ content was decreased in the shoot tissues of wheat and Triticale genotypes.  相似文献   

6.
Four bread wheat cultivars were studied at two salinity levels. Tobari 66 had the lowest uptake of Na+ and Cl, and the highest K+/Na+ ratio; Pato had the highest uptake of these ions and Lyallpur 73 was intermediate. Intervarietal differences were greater at higher salinity, suggesting that they were not caused by variation at the Kna1 locus. There were significant differences between inbred lines for Na+, particularly in Blue Silver, suggesting the possibility of selecting genotypes with enhanced tolerance from within existing cultivars. Pato, Tobari 66 and their reciprocal F1 hybrids were further evaluated at four salinity levels. The hybrids exhibited similar relative grain yield to Tobari, with better Na+ and Cl exclusion and higher K+/Na+ ratios than Pato. Overall, Tobari had the highest absolute yield under salinity, and the hybrids were closer to Tobari than to Pato. Tiller and grain numbers, 100-grain weight and yield were more affected by salinity than were height, spike length and spikelet number. We conclude that intervarietal variation for salt tolerance in wheat is controlled by genes which could be transferred to sensitive genotypes to improve their tolerance, and that the K+/Na+ ratio of the youngest leaf could be used to screen for salt tolerance.  相似文献   

7.
The absorption and utilization of nitrogen (N) by plants are affected by salinity and the form of N in the root medium. A hydroponic study was conducted under controlled conditions to investigate growth and N uptake by barley ( Hordeum vulgare L.) supplied with five different NH4+-N/NO3-N ratios at electrical conductivity of 0 and 8 dS m−1. The five NH4+-N/NO3-N ratios were 0/100, 25/75, 50/50, 75/25 and 100/0, each giving a total N supply of 100 mg N l−1 in the root medium. A mixed N supply of NH4+ and NO3 resulted in greater accumulation of N in plants than either NO3 or NH4+ as the sole N source. Plants produced a significantly higher dry matter yield when grown with mixed N nutrition than with NH4+ or NO3 alone. Total dry matter production and root and shoot N contents decreased with increasing salinity in the root medium. The interaction between salinity and N nutrition was found to be significant for all the variables. A significant positive correlation (r=0.97) was found between nitrogen level in the plant shoot and its dry matter yield.  相似文献   

8.
Nine short-duration pigeonpea genotypes were given adequate soil moisture throughout growth or subjected to water stress during the late vegetative and flowering (stress 1), flowering and early pod development (stress 2), or podfill (stress 3) growth stages under field conditions. The stress 1 treatment had no significant effect on the time to flowering. No stress treatment affected maturity or inter-plant flowering synchronization. The interval from a newly opened flower to a mature pod was about 30 days for all genotypes, and was unchanged in plants that were recovenng from stress 1 or undergoing stress 2. Seed yield was reduced to the greatest extent by stress 2 (by 37 %) and not significantly affected by stress 3 for all genotypes. No consistent differences were found between determinate and indeterminate genotypes in the ability to maintain seed yield under both stress 1 and stress 2. The harvest index was significantly reduced (22 %) by stress 2 but not by stress 1. However, under each soil moisture treatment, genotypic differences for seed yield were associated largely with differences in total dry matter production (TDM). For all genotypes, the number of pods m-2 was the only yield component significantly affected by the water stress treatments. The stability of other yield components should be fully exploited to improve the stability of seed yield under drought conditions (drought resistance). Possible characteristics which may improve the drought resistance of short-duration pigeonpea include the ability to maintain TDM, low flowering synchronization, small pod size with few seeds pod-1, and large 100-seed mass.  相似文献   

9.
Evaluation of commonly grown cotton (Gossypium hir-sutum L.) genotypes under saline environment may help to cope with the venture of the crop failure in salt-affected soils. In a pot experiment, four cotton genotypes (MNH-93, NIAB-78. S-12, and B-557) were grown to compare their relative performance on a sandy clay loam soil (original ECe = 1.9 dS m−1) salinized with a salt mixture (Na2SO4, NaCl, CaCl2, MgSO4 in the ratio of 9:5:5:1 on equivalent basis) to EQ levels of 10 and 20 dS m−1. The crop was raised to the flower initiation stage. The imposed salinity stress exhibited deleterious effect on the germination and vegetative growth with significant differences among the genotypes. Leaf area, stem thickness, shoot (stem + leaves) and root weights decreased with the increase in substrate salinity. NIAB-78 showed the least decline followed by MNH-93. Leaf thickness showed an opposite trend as an increase in this parameter was observed with the rising salinity, the maximum increase being in the case of NIAB-78. Analysis of the leaf sap showed increased Na+ and Cl concentrations and decreased K+ concentration with the increase in substrate salinity. A better osmotic adjustment, a lower Na+/K+ ratio and a lower Cl concentration were found in the leaves of NIAB-78 followed by MNH-93. This contributed towards their better growth performance under saline conditions.  相似文献   

10.
A field experiment was conducted at the Indian Agricultural Research Institute, New Delhi to study the growth and yield of wheat as influenced by the concentrations of ammonium-N and nitrate-N in soil. A series of ammonium and nitrate nitrogen concentrations in soil on a time frame was developed by treating prilled urea with nitrification inhibitors DCD or neem cake as well as by changing the dose and time of N application. The study revealed that number of tillers m-1 as well as ears m-1 row length were significantly positively correlated with ammonium-N concentration at 15 and 30 DAS and nitrate-N concentration at 30 and 45 DAS. Number of grains ear-1 was significantly positively correlated with ammonium-N at 30, 45 and 60 DAS and nitrate-N at 45 and 60 DAS. Ultimately grain yield in wheat was significantly positively correlated with ammonium-N concentration at 15 and 30 DAS and nitrate-N concentration at 30, 45 and 60 DAS. The response between grain yield and concentrations of both ammonium and nitrate forms of N was quadratic. The optimum concentration of ammonium-N in soil for maximum grain yield gradually decreased with the age of the crop from 54.6 to 63.6 μg g-1 at 15 DAS to 22.7 to 26 μg g-1 at 30 DAS. In the case of nitrate-N its optimum concentration for maximum grain yield increased with age of the crop from 25.1 to 30 μg g-1 at 15 DAS to 31.6 to 34 at 45 DAS and it decreased thereafter.  相似文献   

11.
The relation between stand density and structure of spring rape ( Brassica napus L.) was described with the aid of comprehensive measurements of structure. The structural components measured were plant height, stem diameter at root collar, site of the lowest pod on the main raceme, number of pods on the main raceme, site of the lowest branch on the main stem, number of primary branches and number of pods on the branches. The experiment was conducted at two nitrogen levels, 110 and 180 kg ha', and was replicated in 3 years, 1988, 1989 and 1990. Stand density was varied by using five different seeding rates and the number of plants m-2 evaluated immediately prior to harvest was used to express the stand density. In the years considered, the densities varied between 16 and 520 plants m-2. The relationship between plant density and rape plant structure was adequately described each year by a mukivariate second degree polynomial model. Varying the nitrogen application rate seemed to have no influence on this relationship. Denser plant stands produced thinner and shorter plants, the shortening occurring in the pod-producing section of the main raceme. Further, with increasing stand density, the number of branches decreased as did the number of pods on the branches and on the main raceme. These changes in plant structure retarded at densities over 150—200 plants m-2. This seems to be the minimum density that should be achieved in rape stands.  相似文献   

12.
Effect of Sodium Chloride Salinity on Seedling Emergence in Chickpea   总被引:5,自引:1,他引:5  
Although laboratory (Petri dish) germination as an estimate of seed viability is a standard practice, it may not give an accurate prediction of seedling emergence in the field, especially when saline irrigation water is used. Experiments were conducted to investigate seedling emergence in two chickpea cultivars (ILC 482 and Barka local) in response to varied salinity levels and sowing depths. Seeds were sown in potted soil at a depth of 2, 4 or 6 cm. The salinity treatments were 4.6, 8.4 and 12.2 dS m–1. Tap water (0.8 dS m–1) served as the control. Depth of sowing had a significant effect on seedling emergence. Seeds sown 6 cm deep showed the lowest seedling emergence. Similarly, salinity had an adverse effect on seedling emergence. The lowest seedling emergence percentages were obtained at the highest salinity treatment (12.2 dS m–1). The interaction between salinity treatment and seeding depth was significant. Hypocotyl injury was implicated as a possible cause of poor seedling emergence in chickpea under saline water irrigation and was less severe when pre-germinated seeds were used. ILC 482 appeared to be more tolerant to salinity than Barka local, suggesting that breeding programmes involving regional exchange of germplasm may be helpful.  相似文献   

13.
Interactive effect of NaCl salinity and putrescine on shoot growth, ion (Na+, K+ and CI) concentration in leaf, stem and inflorescence and yield of rice (Oryza sativa L. var. GR-3) were studied. When rice plants were subjected to salt stress (12 dS/m) the extension growth and dry weight of shoot system as well as total leaf area and chlorophyll content were found markedly reduced. Analysis of leaf, stem and inflorescence of salt-stressed plants showed higher concentration of Na+ and Cl ions and lower concentration of K+ ion compared to the control. Salinization also caused a considerable fall in grain yield.
Foliar application of putrescine (10−5M) significantly increased the growth and yield of salt-stressed plants. Putrescine treatment decreased the influx of Na+ and Cl ions and increased the K+ level in all the tissues of salinized plants examined. Putrescine also increased the chlorophyll content in salt-stressed plants. These results suggest that exogenous application of putrescine can be used successfully to ameliorate the stress injuries caused by NaCl salinity in rice plants to a considerable extent.  相似文献   

14.
Growth and yield responses to plant density (6.75 × 104, 9.75 × 104 and 12.75 × 104 plants ha–1) and stage of transplanting (30, 35 and 40 days after sowing) of winter oilseed rape cultivar HO 605 were investigated in two field trials in the 1996/97 and 1997/98 growing seasons at Zhejiang University Farm, Huajiachi Campus, China. Results revealed a progressive decrease in leaf area per plant in response to increasing plant density and delayed transplanting, though leaf area m–2 and leaf area index were higher in high-density plants. Number of effective branches and pod per branch decreased with increasing plant density and delayed transplanting. There were no significant differences in the mean seed weight among treatments. Although the average number of seeds per pod was significantly lower for high-density plants and delayed transplanting, the economically highest seed yields were realized in relatively high-density plants. Seed oil content was negatively affected by increasing plant density, but no significant differences were observed with delayed transplanting. The highest seed yields of 1730.7 and 1748.1 kg ha–1 with no significant differences were observed for plant densities of 9.75 × 104 and 12.75 × 104 plants ha–1, respectively, transplanted at 35 and 30 days after sowing.  相似文献   

15.
Differential salt sensitivity during growth stages and reproductive compensation of plants after salt stress relief are important factors for adopting appropriate irrigation strategies with saline waters. Consequently, recovery of cotton after exposure to different levels of salt stress was evaluated. An outdoor, sand culture experiment was conducted with cotton. Water salinities were 2, 10 and 20 dS m−1, and the growth phases were vegetative (G1), reproductive (G2) and boll development (G3). G1 and G3 were the least and the most salt tolerant phases, respectively. The significant yield reduction in all of the saline water treatments as compared to control was mainly due to the reduction in number of bolls per plants. In general, cotton plants were capable of producing seed cotton under salt stress, as well as, after salt stress relief. However, as the salt stress severity increased the ability of cotton to compensate yield loss decreased. Irrigation of cotton at G1 stage with either moderate (10 dS m−1) or high (20 dS m−1) salinity waters should be avoided. Moderate saline water could be applied either at G2 or G3 stage. High salinity water can be used for irrigation only at G3 stage to produce acceptable cotton seed yield.  相似文献   

16.
Three chemicals, viz., thiourea, thiamine and ascorbic acid capable of potentiating-SH turnover, were tested with the objective to improve growth and productivity of maize. Thiourea was tested as seed-soaking and foliar-applied treatments as also in combination. Thiamine and ascorbic acid were tested as foliar sprays alone. Foliar treatments were applied at vegetative stage (30 and 45 days after sowing).
The results of the field experiment showed that seed soaking with thiourea (500 ppm) tended to improve grain yield (13.4 per cent over control), but improvement in biological yield was significant. However, seed soaking plus foliar treatment of thiourea significantly increased both biological and grain yields, besides causing significant improvement in leaf area index and number of green leaves plant-1. The increase in grain yield ha-1 was of the order of 34.6 per cent over control.
It was further noted that foliar sprays of thiourea (1000 ppm), thiamine (100 ppm) and ascorbic acid (100 ppm) significantly increased leaf area index, number of green leaves plant-1 and biological yield ha-1. These treatments also significantly increased grain yield ha-1 by 40.6, 20.2 and 26.3 per cent, respectively over control. Improvement in maize yield with thiourea, thiamine and ascorbic acid treatments appeared to have resulted from increased photosynthetic efficiency and canopy photosynthesis on account of the biological activity of -SH group. It was also apparent that leaf senescence was delayed under the influence of these chemicals. It is therefore suggested that thiourea, thiamine and ascorbic acid are the potential bioregulators for improving photosynthetic efficiency and grain yield of maize and possibly other cereals, and that thiourea, a sulphydryl compound, holds considerable promise in this context.  相似文献   

17.
Soil salinity is a major abiotic stress which adversely affects the yield and juice quality in sugarcane. However, the mineral nutrient status of plant plays a crucial role in increasing plant tolerance to salinity. We investigated the effects of K and/or Si on plant growth, yield and juice quality in two sugarcane genotypes differing in salinity tolerance. Addition of K and Si significantly (P ≤ 0.05) increased K and Si concentrations and decreased the accumulation of Na+ in plants under salt stress. Cane yield and yield attributes were significantly (P ≤ 0.05) higher where K and Si were added. Juice quality characteristics like Brix (% soluble solids in juice), Pol (% sucrose in juice), commercial cane sugar (CCS) and sugar recovery in both sugarcane genotypes were also significantly (P ≤ 0.05) improved with the supplementation of K and Si. For most of the growth parameters, it was found that K either alone or in combination with Si was more effective to alleviate salt stress in both sugarcane genotypes than Si alone. Moreover, the beneficial effects of K and Si were more pronounced in salt sensitive genotype than in salt tolerant genotype. The results suggested that K and Si counteracted the deleterious effects of high salinity/sodicity in sugarcane by lowering the accumulation of Na+ and increase in K+ concentration with a resultant improvement in K+/Na+ ratio which is a good indicator to assess plant tolerance to salinity.  相似文献   

18.
Field experiments were conducted during the wet seasons of 1991,1992 and 1993 at the Abubakar Tafawa Balewa University Farm, Bauchi (10 ° 22'N, 09 ° 47'E) to study the response of sunflower ( Helianthus annaus L.) to N rates and plant population under rainfed conditions. Four N rates (0, 50, 100 and 150 kg N ha -1) and four plant populations (40000,80000,120000 and 160000 plants ha-1) were factorially combined in a randomized complete block design with three replications. Leaf area index, shoot dry weight and seed yield (kg ha-1) increased significantly with increasing N rates from 0 to 100 kg N ha-1. The growth and yield parameters per plant decreased significantly with increasing plant populations from 40000 to 160000 plants ha-1, but the seed yield (kg ha-1) obtained at 80000 plants ha-1 was significantly higher than all the other plant populations. The interactions of N x plant population confounded the main effect of each factor on the growth and yield of sunflower. The seed yield (3425 kg ha-1) obtained from the use of 100 kg N ha-1 at 80000 plants ha-1 was significantly higher than those obtained from all other combinations of N x population and out-yielded the main effects of 100 kg N ha-1 and 80000 plants ha-1 by 18 % and 25 %, respectively. The use of 100 kg N ha-1 at 80000 plants ha-1 is therefore recommended for maximum yield of sunflower in Bauchi.  相似文献   

19.
Understanding the influence of growth temperature and carbon dioxide (CO2) on seed quality in terms of seed composition, subsequent seedling emergence and early seedling vigour is important under present and future climates. The objective of this study was to determine the combined effects of elevated temperature and CO2 during seed-filling of parent plants on seed composition, subsequent seedling emergence and seedling vigour of red kidney bean ( Phaseolus vulgaris ). Plants of cultivar 'Montcalm', were grown at daytime maximum/nighttime minimum sinusoidal temperature regimes of 28/18 and 34/24 °C at ambient CO2 (350 μmol mol−1) and at elevated CO2 (700 μmol mol−1) from emergence to maturity. Seed size and seed composition at maturity and subsequent per cent emergence, early seedling vigour (rate of development) and seedling dry matter production were measured. Elevated CO2 did not influence seed composition, emergence, or seedling vigour of seeds produced either at 28/18 or 34/24 °C. Seed produced at 34/24 °C had smaller seed size, decreased glucose concentration, but significantly increased concentrations of sucrose and raffinose compared to 28/18 °C. Elevated growth temperatures during seed production decreased the subsequent per cent emergence and seedling vigour of the seeds and seedling dry matter production of seed produced either at ambient or elevated CO2.  相似文献   

20.
The effects of increased yield and grain number per unit area in barley in response to nitrogen application are well known. However, the influence of applied nitrogen on the rates and durations of developmental phases in barley are less well understood. Our objective was to investigate the effect of applied nitrogen on the duration of pre-anthesis development in barley and the number of spikelets per spike in two barley cultivars, Franklin and Schooner, in two studies. We found no effect of nitrogen on the duration of the pre-anthesis period in Schooner, when applied to pots at a rate of 0 or 55 kg N ha-1, or when applied in the held at 0, 40 or 160 kg N ha-1. However, this duration was extended in Franklin in the first study by an application of 55 kg N ha-1. Both plant biomass and grain yield at maturity were increased between 0 and 55 kg N ha-1, and 0 and 160 kg N ha-1. Meld increase was largely associated with an increase in the number of tillers per plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号