首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of Sodium Chloride Salinity on Seedling Emergence in Chickpea   总被引:5,自引:1,他引:5  
Although laboratory (Petri dish) germination as an estimate of seed viability is a standard practice, it may not give an accurate prediction of seedling emergence in the field, especially when saline irrigation water is used. Experiments were conducted to investigate seedling emergence in two chickpea cultivars (ILC 482 and Barka local) in response to varied salinity levels and sowing depths. Seeds were sown in potted soil at a depth of 2, 4 or 6 cm. The salinity treatments were 4.6, 8.4 and 12.2 dS m–1. Tap water (0.8 dS m–1) served as the control. Depth of sowing had a significant effect on seedling emergence. Seeds sown 6 cm deep showed the lowest seedling emergence. Similarly, salinity had an adverse effect on seedling emergence. The lowest seedling emergence percentages were obtained at the highest salinity treatment (12.2 dS m–1). The interaction between salinity treatment and seeding depth was significant. Hypocotyl injury was implicated as a possible cause of poor seedling emergence in chickpea under saline water irrigation and was less severe when pre-germinated seeds were used. ILC 482 appeared to be more tolerant to salinity than Barka local, suggesting that breeding programmes involving regional exchange of germplasm may be helpful.  相似文献   

2.
Evaluation of commonly grown cotton (Gossypium hir-sutum L.) genotypes under saline environment may help to cope with the venture of the crop failure in salt-affected soils. In a pot experiment, four cotton genotypes (MNH-93, NIAB-78. S-12, and B-557) were grown to compare their relative performance on a sandy clay loam soil (original ECe = 1.9 dS m−1) salinized with a salt mixture (Na2SO4, NaCl, CaCl2, MgSO4 in the ratio of 9:5:5:1 on equivalent basis) to EQ levels of 10 and 20 dS m−1. The crop was raised to the flower initiation stage. The imposed salinity stress exhibited deleterious effect on the germination and vegetative growth with significant differences among the genotypes. Leaf area, stem thickness, shoot (stem + leaves) and root weights decreased with the increase in substrate salinity. NIAB-78 showed the least decline followed by MNH-93. Leaf thickness showed an opposite trend as an increase in this parameter was observed with the rising salinity, the maximum increase being in the case of NIAB-78. Analysis of the leaf sap showed increased Na+ and Cl concentrations and decreased K+ concentration with the increase in substrate salinity. A better osmotic adjustment, a lower Na+/K+ ratio and a lower Cl concentration were found in the leaves of NIAB-78 followed by MNH-93. This contributed towards their better growth performance under saline conditions.  相似文献   

3.
The effects of salinity on the growth and production of `nopalitos' (young cladode sprouts) of Opuntia ficus-indica (L.) Mill. cv. Copena V-1 were investigated. Salinity (NaCl) irrigation levels with electrical conductivities of 2, 5, 10, 13, 18 and 21 dS m–1 were used. In general, all cladode variables (stem area, number of young cladodes, length and width of cladodes, and fresh and dry weights) decreased with increasing salinity. The root-to-stem ratio and young cladode water content decreased significantly as salinity increased. Other variables that decreased with increasing salinity included harvest index, relative growth rate, stem area ratio, dry mass accumulation, and Na+ and Cl concentrations. For rooted cladodes, increased salinity decreased fresh weight, succulence, and root fresh weight, dry weight and length. Our conclusions suggest that this species is salt sensitive; however, there is some indication that it could be effectively managed in saline environments. Further studies and evaluation of different cultivars are needed to identify the mechanism of adaptation of salt tolerance in this species.  相似文献   

4.
【目的】本研究旨在科学合理地利用浅层咸水资源。【方法】依托短期定位试验开展了在第3年和第4年不同咸水利用方式下(CK:造墒和蕾期灌淡水;T1:造墒和蕾期灌咸淡混配矿化度3 g·L^-1的微咸水;T2:淡水造墒蕾期灌矿化度5 g·L^-1咸水;T3:造墒和蕾期灌矿化度5 g·L^-1咸水;T4:淡水造墒蕾期不灌水)棉花长势、叶绿素荧光参数、土壤盐分累积及其运移的变化。【结果】T1和T2处理的齐苗率、株高、干物质质量、叶面积指数、叶绿素荧光参数、产量及霜前花率与CK无显著差异,土壤盐分含量较CK有所增加,但未对棉花生长产生明显抑制。T3处理的棉花长势指标、叶绿素荧光参数较CK显著降低,0~100 cm土壤盐分含量较CK明显增加。【结论】从土壤质量安全和咸水高效利用的角度考虑,连续4年用3 g·L^-1的咸淡混合水灌溉或用淡水与5 g·L^-1的咸水轮灌不仅能节约淡水,且不影响棉花产量。本研究结果为当地在棉花生产中安全利用咸水提供技术参考。  相似文献   

5.
Irrigation is a management option available to farmers in the subhumid zones of Sri Lanka to increase mung bean yields during the dry Yala season. The objective of this study was to quantify the yield gain in response to irrigation at different stages of the crop and thereby determine the most suitable stage/s of irrigation. Four field experiments were conducted during Yala in 1995 and 1996 at two sites, Maha-Illuppallama (MI) and Kundasale (KS). Eight irrigation regimes consisting of all possible combinations of irrigation at three growth stages of the crop were defined. The respective growth stages were vegetative (from germination to appearance of first flower), flowering (from appearance of first flower to 75 % pod initiation) and pod-filling (from 75 % pod initiation to maturity). The treatments which received irrigation during two or more stages had significantly higher yields (793–1396 kg ha−1) than those which received irrigation during only one stage (401–756 kg ha−1) with the lowest yield being shown by the rain-fed treatment (227–396 kg ha−1). When at least two stages can be irrigated, irrigation during the flowering and pod-filling stages was most effective. Irrigation during flowering produced the highest yield gain when only one stage could be irrigated. Seed yield showed a strong positive correlation with number of pods m−2. Fifity per cent de-podding caused yield reductions at both sites, indicating sink limitation. In contrast, 50 % defoliation reduced the yields only at MI where the number of pods m−2 was greater than at KS. Hence, source limitation was present only when the number of pods was higher.  相似文献   

6.
Soil salinity is a major abiotic stress which adversely affects the yield and juice quality in sugarcane. However, the mineral nutrient status of plant plays a crucial role in increasing plant tolerance to salinity. We investigated the effects of K and/or Si on plant growth, yield and juice quality in two sugarcane genotypes differing in salinity tolerance. Addition of K and Si significantly (P ≤ 0.05) increased K and Si concentrations and decreased the accumulation of Na+ in plants under salt stress. Cane yield and yield attributes were significantly (P ≤ 0.05) higher where K and Si were added. Juice quality characteristics like Brix (% soluble solids in juice), Pol (% sucrose in juice), commercial cane sugar (CCS) and sugar recovery in both sugarcane genotypes were also significantly (P ≤ 0.05) improved with the supplementation of K and Si. For most of the growth parameters, it was found that K either alone or in combination with Si was more effective to alleviate salt stress in both sugarcane genotypes than Si alone. Moreover, the beneficial effects of K and Si were more pronounced in salt sensitive genotype than in salt tolerant genotype. The results suggested that K and Si counteracted the deleterious effects of high salinity/sodicity in sugarcane by lowering the accumulation of Na+ and increase in K+ concentration with a resultant improvement in K+/Na+ ratio which is a good indicator to assess plant tolerance to salinity.  相似文献   

7.
Increasing irrigation costs and declining water availability compel producers to adapt irrigation strategies for maximum crop yield and water use efficiency. A field trial was conducted to observe the effects of various drip irrigation ratios (IR-0, IR-25, IR-50, IR-75 and IR-100) on water use efficiency (WUE), the irrigation water use efficiency (IWUE), lint yield, yield components and fibre quality at two upland cotton varieties during 2004 and 2005. WUE was found to increase from 0.62 to 0.71 kg m−3 as the irrigation water applied was reduced from 100 % to 75 % of soil water depletion. Deficit irrigation of cotton with drip irrigation at 75 % treatment level (IR-75) did not decrease seed cotton yield and yield components during 2 years, with the exception of the number of bolls in 2005. Among fibre quality parameters, no significant differences in fibre length, fineness, uniformity index and elongation were detected between the 100 % and 75 % irrigation levels in 2005. The results revealed that irrigation of cotton with a drip irrigation method at 75 % level had significant benefits in terms of saved irrigation water without reducing yield, and high WUE indicated a definitive advantage of employing deficit irrigation under limited water supply conditions.  相似文献   

8.
A 3-year study was conducted in the Central Valley of California to evaluate 125 prospective winter-growing cover crops for growth and nitrogen productivity in saline soils. Soil saturation paste electrical conductivities (ECes) in the surface 15 cm averaged 7 dS  m−1 at fall planting and 5.3 dS m−1 at spring harvest dates of each experiment. Species evaluated varied substantially in plant height. In general, the tallest plants were the Brassica species, which consistently grew to over 1.4 m. Annual grasses (barley, rye, triticale and wheat) averaged about 1.0–1.3 m in each year. Of the legume species screened, heights were greatest for Hedysarum coronarium , Trifolium alexandrium , Vicia spp., and Medicago polymorpha and truncatula , averaging 59, 47, 39, 38 and 37 cm, respectively, over all experiments. About one third of the species screened produced crop cover in excess of 90 % in each year. Groups of plants with consistently high crop cover percentages included various species/accessions of Brassica , Hedysarum , annual grasses, cool-season annual medics, Medicago polymorpha and Medicago truncatula , and two annual clovers, Trifolium alexandrium cv 'Multicut' and rose clover, Trifolium hirtum cv 'Hykon.' Total above-ground plant dry weights were highest for Brassica spp., which produced twice as much biomass as the annual grass species, and roughly four times as much dry matter as any of the legume species. Hedysarum , Lana and Namoi woolypod vetch, purple vetch, berseem clover, and several of the annual medic species consistently had the highest biomass among the legumes.  相似文献   

9.
The effect of salinity on the nodulation, N-fixation and plant growth of selected chickpea- Rhizobium symbionts was studied- Eighteen chickpea rhizobial strains were evaluated for their growth in a broth culture at salinity levels of 0 to 20 dS m−1 of NaCl + Na2SO4. Variability in response was high. Salinity generally reduced the lag phase and/or slowed the log phase of multiplication of Rhizobium. Nine chickpea genotypes were also evaluated for salt tolerance during germination and early seedling growth in Petri dishes at five salinity levels (0–32 dS m−1). Chickpea genotypes ILC-205 and ILC-1919 were the most salt-tolerant genotypes. The selected rhizobial strains and chickpea cultivars were combined in a pot experiment aimed at investigating the interactive effect of salinity (3, 6 and 9 dS m−1) and N source (symbiosis vs. inorganic N) on plant growth. Symbiotic plants were more sensitive to salinity than plants fed mineral N. Significant reductions in nodule dry weight (59.8 %) and N fixation (63.5 %) were evident even at the lowest salinity level of 3 dS m-1. Although nodules were observed in inoculated plants grown at 6 dS m-1, N-fixation was completely inhibited. The findings indicate that symbiosis is more salt-sensitive than both Rhizobium and the host plant, probably due to a breakdown in one of the processes involved in symbiotic-N fixation. Improvement of salinity tolerance in field grown chickpea may be achieved by application of sufficient amounts of mineral nitrogen.  相似文献   

10.
Seedling growth and ion content of Pakistani bread wheat cultivars was assessed in solution culture in the absence and presence of NaCl (100 and 200 mol m−3) to determine whether seedling traits could be used in breeding programs for salt-tolerance. Growth was recorded as seedling fresh weight, and the shoot and leaves analysed for major inorganic ions. Plants subjected to salt stress excluded Na+ and Cl ions from the shoot to varying extents. Exclusion preferentially maintained lower Na+ and Cl levels in the apical tissue, as the leaf to leaf gradient in Na+ and Cl became steeper as the external salinity increased, although there were significant differences between cultivars. Correlation analysis on individual plants indicated that excluding Na+ at low salinity, and Na+ and Cl at high salinity, were correlated significantly with growth performance, although it was clear that other factors were also involved. The relationship of tolerance to ion exclusion was stronger when the data were examined on an individual plant basis than when related to pooled cultivar data or to the cultivar rank order derived from field trials, probably due to large variations in Na+, and to a lesser extent, Cl transport in supposedly homozygous cultivars.  相似文献   

11.
The absorption and utilization of nitrogen (N) by plants are affected by salinity and the form of N in the root medium. A hydroponic study was conducted under controlled conditions to investigate growth and N uptake by barley ( Hordeum vulgare L.) supplied with five different NH4+-N/NO3-N ratios at electrical conductivity of 0 and 8 dS m−1. The five NH4+-N/NO3-N ratios were 0/100, 25/75, 50/50, 75/25 and 100/0, each giving a total N supply of 100 mg N l−1 in the root medium. A mixed N supply of NH4+ and NO3 resulted in greater accumulation of N in plants than either NO3 or NH4+ as the sole N source. Plants produced a significantly higher dry matter yield when grown with mixed N nutrition than with NH4+ or NO3 alone. Total dry matter production and root and shoot N contents decreased with increasing salinity in the root medium. The interaction between salinity and N nutrition was found to be significant for all the variables. A significant positive correlation (r=0.97) was found between nitrogen level in the plant shoot and its dry matter yield.  相似文献   

12.
Soybean [Glycine max (L.) Merr.] plant density for maximum yield in Japan is usually from 16 to 25 plants m−2. The objective of this study was to compare yield and yield components, especially node number between square- and zigzag- (an equilateral triangle-planting pattern or plants in the row offset from each other) planting patterns within a range of plant populations (16, 20 and 25 plants m−2).
Field experiments with cultivar Enrei (Maturity Group VII) were conducted in the field at Niigata University on a loamy sand soil in 1991, 1992 and 1993.
Yield increased as density decreased in 1991 and as density increased in 1992 and 1993. This result seemed to be due to adverse weather conditions during seed filling in 1991. Yield tended to be higher in zigzag- than in square-planting patterns except at 20 plants m−2. Seed number m−2 due to increased yield was highly correlated with branch node number. The yield increase was caused by an increase in total node number, especially branch node number m−2 (about 60 % contribution at 16 plants m−2 and about 40 % contribution at 25 plants m−2).  相似文献   

13.
Salinity stress and inefficient nitrogen fertilization adversely affect cotton growth and yield. The effect of salinity on the growth and stress response of cotton seedlings and the effect on N‐use efficiency from the use of the inhibitors of urease (NBPT) and nitrification (DCD) under salinity stress were studied in growth chambers. The study consisted of three levels of salinity – low (0.45 dS m?1), moderate (8 dS m?1) and high (16 dS m?1) – and five N treatments – unfertilized control, 100 % N rate with urea, 80 % N rate with urea, 80 % N rate with urea +NBPT and 80 % N rate with urea +NBPT + DCD. The results indicated that salinity stress reduced plant growth (low leaf area and plant dry matter), decreased N assimilation (low NR, GS and protein), increased plant stress response (high GR and SOD), and decreased leaf chlorophyll, stomatal conductance and quantum yield. Addition of NBPT to urea improved N uptake by 22 % under low salinity; however, this effect was not observed with increasing salinity. No benefit of addition of DCD was observed in any of the parameters collected. In conclusion, salinity stress hindered the performance of the additive NBPT and negatively affected the growth and physiology of cotton.  相似文献   

14.
Interactive effect of NaCl salinity and putrescine on shoot growth, ion (Na+, K+ and CI) concentration in leaf, stem and inflorescence and yield of rice (Oryza sativa L. var. GR-3) were studied. When rice plants were subjected to salt stress (12 dS/m) the extension growth and dry weight of shoot system as well as total leaf area and chlorophyll content were found markedly reduced. Analysis of leaf, stem and inflorescence of salt-stressed plants showed higher concentration of Na+ and Cl ions and lower concentration of K+ ion compared to the control. Salinization also caused a considerable fall in grain yield.
Foliar application of putrescine (10−5M) significantly increased the growth and yield of salt-stressed plants. Putrescine treatment decreased the influx of Na+ and Cl ions and increased the K+ level in all the tissues of salinized plants examined. Putrescine also increased the chlorophyll content in salt-stressed plants. These results suggest that exogenous application of putrescine can be used successfully to ameliorate the stress injuries caused by NaCl salinity in rice plants to a considerable extent.  相似文献   

15.
We tested the hypothesis that by reducing the application of N, based on the decrease in evapotranspiration (ET) expected due to increase in soil salinity, it is possible to reduce N loss without causing N deficiency or further yield loss in salt‐stressed maize plants. We tested four levels of salinity of irrigation water (S1 = 0.5; S2 = 2.5; S3 = 5.0; and S4 = 7.5 dS m?1) and four N rates using outdoor soil columns with five replicates. The N rates were as follows: N1: N recommendation for maize (2.6 g per column); N2: 0.3 times the N recommendation (0.78 g per column); N3: reduction in N1 based on the decrease in ET caused by salinity; and N4: reduction in N2 based on the decrease in ET caused by salinity. The amounts of N for N3 and N4 were reduced (in relation to N1 and N2) by 7 %, 15 % and 30 % for 2.5, 5.0 and 7.5 dS m?1, respectively. Salinity caused NO3? accumulation in the soil, plant growth inhibition and stomatal closure. The low rates of N (N2 and N4) did not meet the N demand of maize plants, especially for low levels of salinity (control and 2.5 dS m?1). On the other hand, based on the available growth data, physiological responses and nutritional status, one can conclude that plants under N1 and N3 had the same potential for final yield. For these N rates, reduction in N application according to ET (N3 rate) not only allowed plant growth and maize physiological responses, but also increased N‐use efficiency and greatly reduced soil nitrate accumulation compared to N1 rate, at the same levels of salinity. We conclude that reduction in N application, based on reductions in ET, is a good strategy to reduce both the risk of ground water contamination by NO3? leaching and fertilization costs, without causing additional damage to plant development under salt stress.  相似文献   

16.
For examining links between growth of salinity-exposed cotton and corresponding changes in physiological characters, a bioregulator was used as a tool for specific manipulations. Greenhouse-grown cotton ( Gossy-pium birsutum L. cv. Paymaster 145 ) was subjected to NaCl levels up to 14.9 dS m−1. The bioregulator MCBuTTB, a cytokinin analog with known ability in improving growth and yield in several salt-stressed crops, was applied by imbiding seed (0 or 268 ppm) plus one foliar spray in dosages equaling 0, 1, and 3 kg ha−1 at 45 DAP. MCBuTTB improved germination, growth, flowering, and finally boll weight. This result coincided with lower osmotic and higher water potentials in leaves, higher leaf turgidity, and more agilely reacting stomata. Treated plants had higher K and preferably Na concentrations in its leaves but ion accumulation was not a precondition for osmotic adjustments, because in cotton exposed to a manmtol-simulated drought MCBuTTB triggered a similar osmotic adjustment and sustained vigour. Regression analyses indicated that osmotic adjustment alone did not cause the raised leaf turgidity. All characters which contribute to salinity resistance appeared as mutually depending and interacting but they respond to a regulatory agent of cytokinin-like activity.  相似文献   

17.
Salinity is one of the major factors limiting agricultural productivity in arid and semi‐arid regions. Saline areas around the world are increasing and sources of fresh water are decreasing. The increasing importance of the use of brackish water to supplement regular irrigation has demonstrated a need for finding new potential plants with tolerance to irrigation with saline water which can be used in industrial agriculture. The aim of this study was to determine whether irrigation with brackish water of Crambe Abyssinica, a plant commonly used for industrial oil production and for ornamental purposes and with high economical value, especially in Central Asia and the Aral Sea region, is feasible. One more goal was to study how it influences growth and development, seed and oil yield and some physiological parameters such as photosynthesis, transpiration, chlorophyll content, osmotic potential and accumulation of fresh and dry weight. The effects of three salinity levels, 3, 6 and 9 dS m?1, were investigated in a greenhouse experiment during two consecutive years. Results of this study showed that growth of Crambe abyssinica in arid zones and irrigation with mild saline water up to EC 6 dS m?1, mostly common in these areas is feasible, suggesting tolerance to moderate salinity levels and feasibility of its culture in areas of the Aral Sea with adequate salinity levels. Consequently, in spite of the fact that biomass and seed yield were significantly decreased in plants irrigated with brackish water, Crambe abyssinica might be cultivated as an alternate source of green biomass and for industrial vegetable oil under conditions not suitable for conventional plant production.  相似文献   

18.
[Objective] This study explores the effect of mulching film residue on the spatial and temporal distribution of soil water and salt in a cotton field under drip irrigation. [Method] Three treatments of 0 kg·hm-2, 225 kg·hm-2 and 450 kg·hm-2 residual mulching film were applied. Soil salt content was measured and the difference between the mulching treatments was analyzed using a soil drilling method to delaminate 0–40 cm soil before cotton sowing, after harvesting and on days 1, 3 and 5 after watering during the blooming period. [Result] The results showed that residual mulching film reduced soil moisture uniformity in the drip irrigated cotton field. An uneven distribution of salt in different soil layers was also observed after irrigation. The soil salinity of the 0 kg·hm-2 residual film treatment decreased in each soil layer over time, while the soil salinity of the 225 kg·hm-2 and 450 kg·hm-2 treatments decreased 1 and 3 days after irrigation, but then increased 5 days after irrigation (non-significant difference). With respect to distribution of soil salinity following irrigation, uniformity in the 0 kg·hm-2 residual film treatment was best, followed by the 450 kg·hm-2 treatment and the 225 kg·hm-2 treatment. The effect of residual mulching film on soil salinity balance before and after sowing of cotton was as follows: 250 kg·hm-2 > 450 kg·hm-2 > 0 kg·hm-2. As the depth of the residual film increased, the enrichment of soil salts in the topsoil was more likely to occur. [Conclusion] It can be concluded that residual mulching film hinders the downward migration of soil salinity. Under conditions of elevated residual mulching film, the soil salinity migration is disrupted to the degree that soil salt enrichment occurs at the soil surface.  相似文献   

19.
Due mainly to alterations in plant metabolism, lack of oxygen and excess salts are disturbances that affect crop yields. In different parts of the world crops are subjected t o those disttirbances, simultaneously or successively. Our objective was to determine the effects of a winter waterlogging followed by a spring salt peak on rapeseed yield, A pot experiment, combining waterlogging and salinization was carried out. The waterlogging duration was: 0 (control), 3, 7 and 14 days and the sahnity treatments were peaks of Electrical Conductivity of 5 and 8 dSm−1 and the control. The yield started decreasingfrotn 3 days during waterlogging, mainly due to the lower number of seeds per plant. The salt peak from 5 dSm−1 affected the yield only in plants which had suffered a waterlogging lower than 7 days, showing interaction between salinity and waterlogging, Only salinity reduced oil content. The saline peak affected the K, Ca and Na concentration in plant tissues, but the effect of salinity on rapeseed could be more related to soil water potential than specific ion toxicities or imbalance.  相似文献   

20.
Sorghum hybrid CSH-6 was grown in fields in Delhi, India between July–November 1986 in order to study the effect of nitrogen nutrition and irrigation on dry matter accumulation, grain yield and water use. The treatments included 40 Kg Nha−1 combined with two irrigations (30 DAS, 60 DAS), one irrigation (60 DAS) and no irrigation respectively. Rainfall during the crop season was only 17 cm. The unirrigated plants were considerably water stressed and exhibited very low leaf water potential, less leaf area, delayed anthesis, longer crop duration but shorter grain filling duration. The ears showed sterility and yield was only 0.41 t ha−1 without nitrogen fertilization. Addition of nitrogen fertilizer had no significant effect on yield in unirrigated plants. A single irrigation 60 DAS increased yield due to increase in both grain number and grain weight per ear in fertilized and unfertilized crop respectively. Two irrigations in the unfertilized crop increased the yield to 2.2 t ha−1 while similar treatment in the fertilized crop did not increase the yield significantly. Irrigation increased the WUE for grain yield. The results indicate that nitrogen stress and water stress reduced grain yield primarily through grain number rather than grain weight. Irrigation relieved both water stress and nutrient stress. Nitrogen nutrition was not beneficial under severe water stress conditions but was considerably helpful under mild stress. Biomass, grain yield and harvest index show significant correlation with preanthesis water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号