首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water relation patterns and subsequent growth were studied on bare-root and container jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) B.S.P.) seedlings during the first growing season on boreal cut-over sites.Containerized seedlings of both species had greater needle conductance compared to bare-root seedlings over a range of absolute humidity deficits. Needle conductance of containerized seedlings in both species remained high during periods of high absolute humidity deficits and increasing plant moisture stress. Bare-root seedlings of both species had a greater early season resistance to water-flow through the soil-plant-atmosphere continuum (SPAC) than container seedlings. Resistance to water flow through the SPAC decreased in bare-noot seedlings of both species as the growing season progressed, and was comparable to container seedlings 9 through 14 weeks after planting. Four weeks after field planting jack pine container seedlings had greater new root development compared to bare-root seedlings, while at the end of the summer both stock types had similar new root development. Black spruce bare-root seedlings had greater new root development compared with container seedlings throughout the growing season.  相似文献   

2.
Detailed root and shoot development of bareroot and container Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedling stocktypes were compared during the first growing season after outplanting. The study was installed in raised beds with ideal environmental conditions and at a field reforestation site. Survival at both sites was 98% and did not differ between stocktypes. Seedlings were excavated in spring (5, 8, 12, and 16 weeks after planting) and in fall (35, 40, and 45 weeks after planting). In spring, container seedlings had more numbers of new roots and greater new root and shoot biomass than bareroot seedlings at both sites. In fall, bareroot seedlings consistently averaged more new root growth (though nonsignificant) than container seedlings suggesting that stocktype differences may not continue long-term. Container seedlings had significantly greater water percent than bareroot seedlings at the field site (all sample dates) and the raised bed site (weeks 5, 8, and 40 only). Regardless of environmental conditions or season, seedlings at both sites maintained water percent between 60 and 70% of fresh weight. Seedlings grown in the raised beds had much greater growth than those grown in the field. However, relative growth patterns for the two stocktypes were very similar on each site. The data generated establish baseline differences between stocktypes for root initiation, growth, and allometry during the first year after planting. Challenges associated with root development research are discussed.  相似文献   

3.
Plantation data from northern Ontario were subjected to stepwise regression analysis to express survival and total height as functions of site factors, planting stock characteristics and age for each of black spruce (Picea mariana [Mill.] B.S.P.), white spruce (P. glauca [Moench] Voss) and jack pine (Pinus banksiana Lamb.).Total height and height increment were affected more significantly, but by fewer factors, than survival. Black spruce survival was the most heterogeneous variable, as six factors accounted for 55.6% of its variability. Between one and five qualitative site factors (represented by dummy variables) accounted for less than 23% and 30%, respectively, of the variability in survival rate and total height. Stock type, planting season, weed control and chemical site preparation showed low but significant correlations with the response variables. Quality index was significant in every case, while shoot:root ratio, root collar diameter and dry weight were significant in some cases. The single most significant variable was plantation age, accounting for up to 30% and 63%, respectively, of the variability in survival rate and total height.  相似文献   

4.
This review examines the published work on bareroot and container stocktypes in forest restoration programs. The objective was to define overall trends between these two stocktypes and describe what they mean in terms of available information on their nursery and field performance. Stock quality assessments show bareroot seedlings have larger shoot systems because they are typically grown at lower densities, and in many instances longer timeframes, than container seedlings. Container systems typically produce seedlings having a lower shoot to root ratio and a greater root growth potential, conferring greater drought avoidance potential. However, assessments of stress resistance and nutrition found no conclusive evidence that either stocktype has a performance advantage, other than the container plug acting as a source of water and nutrient storage available for outplanting performance. Bareroot seedlings are more sensitive to handling practices of lifting, storage, transport and planting and these practices can negatively affect their performance. Container seedlings can have a higher level of field survival which is related, in part, to their greater drought avoidance potential, thereby overcoming planting stress. Bareroot and container seedlings have comparable survival rates on sites with minimal planting stress. Once seedlings are established, bareroot and container seedlings can have comparable field performance. In many instances where plant competition is the main limiting site variable, larger sized bareroot and container stocktypes have the best chance for successful stand establishment. The lack of a natural root form and root distribution for both stocktypes is a debated mechanical stability issue, though risks of windthrow have not been consistently demonstrated for either stocktype.  相似文献   

5.
Bareroot jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) were planted near Elliot Lake, Ontario, on a boreal reforestation site. Site preparation treatments were mixed, mineral and undisturbed (i.e., control) soil. Seedling water relations and growth were examined during the first field season. During the first 28 days after planting, jack pine base (i.e., predawn) and minimum xylem water potential readings were more negative in the control site preparation treatment. White spruce, during the first 10 days, in all site preparation treatments had base and minimum xylem water potential readings more negative than –1.7 MPa. By day 28 base xylem water potentials of white spruce had increased to approximately –1.0 MPa in all site preparation treatments. As the growing season progressed, white spruce minimum xylem water potential readings ceased exceeding the measured turgor loss point first in the mixed followed by the mineral and then control site preparation treatment. Jack pine minimum xylem water potential readings, in all site preparation treatments, almost never exceeded the measured turgor loss point. Water stress and stomatal optimization integrals, day 28 and 125, for both species showed least water stress and greater stomatal optimization in the mixed, mineral and control site preparation treatments, respectively. Both species had less new root growth in the field during the first 28 days after planting compared to seedlings grown for 28 days in a greenhouse for root growth capacity testing. Root growth at 28 days and both shoot and root development at the end of the growing season, were greatest to least in mixed, mineral, and control site preparation treatments, respectively.  相似文献   

6.
One-year old seedlings of trembling aspen (Populus tremuloides Michx.), black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), and jack pine (Pinus banksiana Lamb.) were subject to seven soil temperatures (5, 10, 15, 20, 25, 30 and 35 °C) for 4 months. All aspen seedlings, about 40% of jack pine, 20% of white spruce and black spruce survived the 35 °C treatment. The seedlings were harvested at the end of the fourth month to determine biomass and biomass allocation. It was found that soil temperature, species and interactions between soil temperature and species significantly affected root biomass, foliage biomass, stem biomass and total mass of the seedling. The relationship between biomass and soil temperature was modeled using third-order polynomials. The model showed that the optimum soil temperature for total biomass was 22.4, 19.4, 16.0 and 13.7 °C, respectively, for jack pine, aspen, black spruce and white spruce. The optimum soil temperature was higher for leaf than for root in jack pine, aspen and black spruce, but the trend was the opposite for white spruce. Among the species, aspen was the most sensitive to soil temperature: the maximum total biomass for aspen was about 7 times of the minimum value while the corresponding values were only 2.2, 2.4 and 2.3 times, respectively, for black spruce, jack pine and white spruce. Soil temperature did not significantly affect the shoot/root (S/R) ratio, root mass ratio (RMR), leaf mass ratio (LMR), or stem mass ratio (SMR) (P>0.05) with the exception of black spruce which had much higher S/R ratios at low (5 °C) and high (30 °C) soil temperatures. There were significant differences between species in all the above ratios (P<0.05). Aspen and white spruce had the smallest S/R ratio but highest RMR while black spruce had the highest S/R but lowest RMR. Jack pine had the highest LMR but lowest SMR while aspen had the smallest LMR but highest SMR. Both LMR and SMR were significantly higher for black spruce than for white spruce.  相似文献   

7.
The number of fertile and infertile scales, filled and empty seeds, cone volume, seed efficiency and the incidence of insect and disease damage to seed were evaluated for seven jack pine (Pinus banksiana Lamb) and six black spruce (Picea mariana [Mill.] B.S.P.) seedling seed orchards in northern Ontario, Canada. On average, the seed potential of jack pine and black spruce cones was 50 and 82 seeds, respectively. Cone volume and the number of fertile scales were under strong genetic control and well correlated with one another for both species. Seed efficiency values were high for jack pine (60%) but poor for black spruce (24%). The incidence of seed insect damage was less than 2.5% for both species and nil for seed diseases.  相似文献   

8.
The effects of herbaceous competing vegetation on two containerized stocktypes of jack pine (Pinus banksiana Lamb.) were investigated to assess their relative competitive tolerance in the first year after planting. Stocktypes were of similar genetic origin and age, but differed in initial size. First-season survival of Multi-pot™ 1-67 and 6-45 seedlings was 37% and 60%, and diameter increment was 0.25 mm and 0.33 mm, respectively, in the presence of competition. Competitive tolerance was reflected in mid- to late-season physiology: the larger stocktype maintained higher macronutrient concentration and photosynthetic performance, as well as greater capacity to protect tissues from photooxidative damage. The 1-67 trees had lower net photosynthetic rate, glutathione (GSH) concentration, and foliar macronutrients particularly N, K, and Ca in the presence of grass. Both stocktypes had high nonphotochemical quenching in grass plots which likely served a protective function, but in 6-45 trees GSH was also increased which would have provided additional protection from risk of photooxidative damage. These findings contribute to our understanding of how size-based differences in competitive ability may be manifested physiologically.  相似文献   

9.
The acquired thermotolerance of first-year seedlings of jack pine (Pinus banksiana Lamb.) hardened at 36, 38, 40 or 42 degrees C for 90, 180 or 360 minutes and of black spruce (Picea mariana (Mill.) B.S.P.) hardened at 34, 36, 38 or 40 degrees C for 30, 90, 180 or 360 minutes was determined by comparison of needle damage to that of non-hardened seedlings (25 degrees C) following exposure to temperatures of 49 and 47.5 degrees C, respectively. Compared to seedlings kept at 25 degrees C, heat injury sustained from exposure to high temperatures was markedly reduced following hardening for 180 minutes at 36 and 38 degrees C in jack pine and black spruce, respectively. Increasing the exposure time at 36 degrees C in jack pine, and at 36 to 40 degrees C in black spruce, also reduced needle damage. The duration of increased thermotolerance was investigated in jack pine, black spruce and white spruce (Picea glauca (Moench) Voss) by comparing heat injury from high temperatures in non-hardened seedlings and in seedlings hardened at 38 degrees C for 180 minutes a day for either 1, 3 or 6 days. In all three species, the duration of acquired thermotolerance increased with the number of days of heat hardening. For jack pine and white spruce seedlings hardened at 38 degrees C for 6 days, increased thermotolerance persisted for at least 14 and 10 days, respectively, after the end of the hardening treatment. In contrast, the thermotolerance of black spruce seedlings hardened at 38 degrees C for 6 days remained elevated for only 4 days.  相似文献   

10.
Black spruce (Picea mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.) seedlings were transplanted into Japanese paperpots at five different stages of development between the occurrence of an erect hypocotyl and 14 days after initiation of primary needles. Transplanting difficulty increased between the first and last treatments, and transplanting generally became impracticable after the stage of primary-needle initiation. Transplanting had a relatively minor effect on the eventual size of 12-week-old pine and 16-week-old spruce seedlings, although the incidence of root deformities inside the container increased rapidly as transplanting was delayed beyond the erect-hypocotyl stage. These deformities persisted after seedlings were outplanted, but did not appear to have a negative effect on the subsequent growth of new roots into the planting medium. Despite the absence of major adverse effects, it is recommended that transplanting be avoided as a routine practice for supplementing stocking in trays of containerized seedlings because of possible biological risks, the difficulty of ensuring careful transplanting and high labor costs.  相似文献   

11.
Bareroot jack pine (Pinus banksiana Lamb.) seedlings (2 + 0) and bareroot white spruce (Picea glauca (Moench) Voss) transplants (1 1/2 + 1 1/2) were taken from cold storage and planted on a clearcut forest site in northeastern Ontario on several dates between May 6 and June 5 during which period soil temperature at 15 cm depth increased from 0 to 18 degrees C. Additional cold-stored trees were transferred to a greenhouse where they were grown in pots for 0, 7 or 28 days and then placed with their roots in aerated water maintained at one of a range of constant temperatures between 0 and 22 degrees C. In both species, daytime xylem pressure potentials (Psi(x)) and needle conductances (g(wv)) decreased with decreasing soil or water temperature. At all root temperatures, g(wv) was lower, and Psi(x) higher, in jack pine than in white spruce. After 28 days in the greenhouse, g(wv) of jack pine seedlings, and Psi(x) of white spruce, was higher than in plants just removed from cold storage. In both species, water-flow resistance through the soil-plant-atmosphere continuum (RSPAC) increased as root temperature decreased. At all root temperatures, RSPAC was higher in plants just removed from cold storage than in plants grown in the greenhouse for 28 days, during which time many new unsuberized roots were formed. At root temperatures above 10 degrees C, RSPAC of both species was higher in trees newly planted in mineral soil than in trees with roots in aerated water; presumably because the roots of planted trees had limited hydraulic contact with the soil. On the day following removal from cold storage, relative plant water flow resistance increased, in both species, more rapidly with declining root temperature than could be accounted for by the change with temperature in the viscosity of water, thus indicating an effect of temperature on root permeability. The same effect was evident in jack pine seedlings, but not white spruce transplants, that had been grown for 28 days in the greenhouse after removal from cold storage.  相似文献   

12.
Water relations of bare-root jack pine (Pinus banksiana Lamb.) and white spruce (Picea glauca (Moench) Voss) planted in a greenhouse and on a boreal cut-over site were examined during the first growing season. In field-planted trees, maximum stomatal conductances (g(wv)) were initially low (< 0.10 cm s(-1)). Base and minimum xylem pressure potentials (Psi(x(base)) and Psi(x(min))) were less than -1.5 and -1.7 MPa for jack pine and -2.0 and -2.6 MPa for white spruce, respectively. During the growing season, maximum g(wv) increased in both species to around 0.2 cm s(-1). Base and minimum xylem pressure potentials also increased in both species to around -0.5 and -1.0 MPa in jack pine and -1.0 and -1.5 MPa in white spruce, respectively. Minimum xylem pressure potentials in white spruce fell below the turgor loss point during the first half of the growing season. Osmotic potential at the turgor loss point Psi(pi(TLP)) decreased after field planting to around -2.7 and -2.3 MPa in jack pine and white spruce, respectively. In the greenhouse, minimum values of Psi(pi(TLP)) were -2.2 and -2.3 MPa in jack pine and white spruce, respectively. Maximum bulk modulus of elasticity was greater in white spruce and underwent greater seasonal change than in jack pine. Relative water content (RWC) at turgor loss ranged between 71 and 74% in jack pine and 80 and 87% in white spruce. Available turgor (T(avail)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and xylem pressure potential at the turgor loss point, was similar in jack pine and white spruce just after field planting. For the rest of the growing season, however, T(avail) in jack pine was two to three times that in white spruce. Diurnal turgor (T(diurnal)), defined as the integral of turgor over the range of RWC between Psi(x(base)) and Psi(x(min)), as a percent of T(avail) was higher in field-planted white spruce than jack pine until the end of the season. Dynamics of tissue water potential components are discussed in relation to plantation establishment.  相似文献   

13.
Significant reductions in needle water content were observed in white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill) B.S.P.), and jack pine (Pinus banksiana Lamb.) seedlings in response to a 10-day drought, although turgor was apparently maintained. When the seedlings were re-watered after the drought, jack pine needles regained their original saturated volume, whereas white spruce and black spruce needles did not. Significant drought-induced reductions in turgor-loss volume (i.e., tissue volume at the point of turgor loss) were observed in shoots of all three species, especially jack pine. Repeated exposure to 7 days of drought or treatment with the cytochrome P(450) inhibitor, paclobutrazol ((2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pentan-3-ol), reduced seedling height relative to that of untreated controls in all three species. The reductions in saturated and turgor-loss needle volumes in the paclobutrazol-treated seedlings were comparable with those of seedlings subjected to a 10-day drought. The treatment-induced reductions in shoot and needle water contents enabled seedlings to maintain turgor with tissue volumes close to, or below, the turgor-loss volume of untreated seedlings. Paclobutrazol-treated seedlings subsequently survived drought treatments that were lethal to untreated seedlings.  相似文献   

14.
Stem deformation has often been observed in young black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) plantations. Whenever important stem deformations are observed at the time of harvesting, timber value is negatively affected especially during the wood transformation process. The present work was undertaken to quantify and qualify the importance of stem deformation of black spruce and jack pine in the boreal forest of central Quebec at the stand and tree levels. In 30 black spruce and jack pine plantations, approximately 22% of spruce trees and 27% of pine trees exhibited stem deformation. The proportion of deformed trees was higher in the youngest plantations and decreased with the age of the plantations. Stem deformation caused the formation of compression wood which is another factor that can reduce the value of wood products. Thirty-nine black spruces and 34 jack pines were analysed at the tree level. On average, compression wood represented 14% and 20% of stem volume in 7- and 10-year old black spruce plantations, respectively. These proportions ranged from 18% in the youngest jack pine plantation to 26% in the oldest one. Stems of both species classified as normal contained a lower volume of compression wood than stems classified as deformed or very deformed. Annual percentages of compression wood and annual shoot length increased significantly with tree age (p < 0.0001 for both variables). Statistically significant correlations were also found between the range of displacement of the stem and the percentage of compression wood. The fewer number of trees with deformed stems in older plantations combined with high compression wood formation suggests that, over time, a deformed tree can become normal and straight in appearance.  相似文献   

15.
North American jack pine (Pinus banksiana Lamb.) stands are generally characterized by an even-aged structure resulting from high intensity fires (HIF). However, non-lethal fires of moderate intensity (MIF), which leave behind surviving trees, have also been reported. The objectives of this study were two-fold: (1) assess the concurrent dynamics of live trees, understory vegetation and different types of coarse woody debris (CWD) during succession after HIF; and (2) document how MIF affects stand structure component dynamics compared to HIF. Stands affected by both HIF and MIF were selected. Tree characteristics and age structure, understory biomass, and CWD volume were assessed. Our results suggest that the structural succession of jack pine stands following HIF comprises three stages: young stands (<48 years), premature and mature stands (58–100 years) and old stands (>118 years). Canopy openness and jack pine density significantly decreased with time since HIF, while black spruce density and CWD volume significantly increased. The highest structural diversity was measured in the premature and mature stands. Compared to HIF, MIF increased mean jack pine basal area, decreased average stand density, delayed the replacement of jack pine by black spruce replacement in the canopy, decreased CWD volume, and significantly increased bryophytes mass. MIF increased the diversity of live trees and generally decreased CWD structural diversity. The study confirms the diversity of natural disturbance magnitude and successional processes thereby initiated. Thereafter, it appeared to be relevant for adjustment of disturbance emulating forest-management systems.  相似文献   

16.
Many studies have estimated approximately ranges of thresholds of low soil temperature in the growth and ecophysiological traits of trees, but difficultly determined the exact values. To resolve the problem, black spruce (Picea mariana) and jack pine (Pinus banksiana) seedlings were exposed to 5, 10, 15, 20, 25, 30 and 35°C soil temperature in greenhouses. After 90 days of the treatment, net photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E), water use efficiency (WUE) and specific l...  相似文献   

17.
Tree diversity is an important component of biodiversity. Management intensification is hypothesized to affect tree diversity. However, evidence to support the relationship between management intensity and tree diversity in northern forests is lacking. This study examined the effects of fertilization, site preparation, and brush control on tree species diversity, shade tolerance diversity and size diversity of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana [Mill.] B.S.P.), white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) plantations, 15 years after planting in Ontario, Canada. Species diversity and shade tolerance diversity were highly correlated, so were diameter size diversity and height size diversity. Fertilization did not affect the tree diversity indices of any plantations. Species diversity and shade tolerance diversity was interactively influenced by site preparation and brush control in the black spruce, white pine, and white spruce plantations, showing that the highest diversity occurred on sites with intensive site preparation without brush control, whereas on sites with brush control, diversity was higher with least intensity of site preparation. However, in the jack pine plantation, neither species diversity nor shade tolerance diversity differed with management intensification, and is attributed to the fast capture of site resources by the planted crop trees of jack pine which minimized establishment of non-crop species. Tree size diversity increased with site preparation intensity in the jack pine and black spruce plantations, while it decreased with brush control in the white pine and white spruce plantations. We concluded that (1) the effects of management intensification on diversity of northern plantations differ with growth habit of planted crop tree species and (2) species diversity and tree size diversity tend to be highest at intermediate levels of silvicultural intensification during the stand establishment phase, supporting the intermediate disturbance hypothesis.  相似文献   

18.
本文研究了多重复干旱循环对1年生北美短叶松(PinusbanksianaLamb.)和黑云杉(Piceamariana[Mil]B.S.D.)苗木的气体交换速率及水分利用效率的影响。结果表面,多重干旱循环对它们的气体交换(Cs,Pn,Tr)有显著影响(P<0.5),而对其水分利用效率(WUE)影响不大(P>0.1)。尽管北美短叶松的气孔对轻度干旱胁迫不如黑云杉敏感,但是它对中度及严重干旱胁迫的敏感程度却高于黑云杉。在轻度及中度干旱胁迫下,北美短叶松的光合作用主要受非气孔因素的影响,而黑云杉则主要受气孔因素的影响。解除干旱胁迫后,黑云杉的气孔敏感性、光合能力及水分利用效率的恢复都要比北美短叶松更快.我们认为,延迟脱水是北美短叶松的主要耐旱机理,而忍耐脱水则是黑云杉重要的耐旱途径。轻度的干旱胁迫锻炼可以帮助北美短叶松在更严重的干旱胁迫下保持固有而较强的耐旱能力。然而,通过多重复干旱循环锻炼后黑云杉在改善耐旱能力的强度方面则大于北美短叶松  相似文献   

19.
Noland  Thomas L.  Mohammed  Gina H.  Scott  Maureen 《New Forests》1997,13(1-3):105-119
Number of new roots (root growth potential or RGP), new root length, photosynthesis, total nonstructural carbohydrate content of needles and roots, terminal bud condition, and shoot elongation were measured on jack pine container seedlings for 4 weeks at weekly intervals under greenhouse conditions of 100%, 20%, and 10% sunlight to simulate competition-induced, lower light levels in the field. Both lower light levels significantly reduced photosynthetic rate, RGP, new root length, total nonstructural carbohydrate (especially starch) content of needles and roots, speed of terminal bud flush, and shoot growth. Both light level and photosynthetic rate were positively correlated with RGP and new root length, indicating that jack pine seedlings may use current photosynthate as an energy source to support new root growth. RGP and new root length were also both negatively correlated with root starch content suggesting that jack pine seedlings may also use stored carbohydrates as a potential carbon source for root initiation and initial root growth.  相似文献   

20.
Greenhouse and field studies were conducted to determine the effects of indole3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D) on root development and survival of 3+0 bareroot Pinus ponderosa (Dougl. ex Laws.) and 2+0 bareroot Celtis occidentalis (L) seedlings. In the greenhouse, 100 and 200 ppm. IBA and 10 and 50 ppm 2,4-D were applied to seedlings through a root dip in an auxin hygroscopic gel mix. A randomized complete block analysis of variance indicated that IBA gel treatments increased root volume and root dry weight in hackberry and had no effect on ponderosa pine; 2,4-D gel treatments had detrimental effects on both species. In the field, IBA gel treated ponderosa pine seedlings exhibited improved height and survival relative to the non-treated control seedlings. There was no detectable improvement in survival in the field for hackberry. However, diameter and stem dry weight were lower for hackberry seedlings treated with the gel dip alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号