首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
借助显微照相和对刀具磨损过程中的刀刃退缩量、刃口圆弧半径、前、后刀面磨损区的宽度、前、后角变化量以及负间隙等磨损参数的测量分析,研究了高速钢和硬质合金刀具在一般切削条件下铣削硬质纤维板时的磨损形态。结果发现,两种刀具的刀刃退缩量虽然都随切削路程的增加而增加,但磨损后的微观几何形状却各有特点:高速钢刀具在初期磨损阶段后,刀口圆弧半径基本不再加大,磨损主要集中在后刀面,表现为负间隙的不断加大;硬质合金刀具的刃口圆弧半径随切削路程的增加基本成线性增加关系,同时负间隙也不断加大。研究表明,可以用刀刃退缩量来表示刀具的磨损程度,以负间隙表示刀具的变钝程度,以磨损参数的集合来描述刀具的磨损形态。本文建议重磨应以刀具磨损后的微观几何形状变化为依据。  相似文献   

2.
分析氟涂层刀具铣削饰面刨花板的切削性能,为氟涂层刀具在木材切削加工领域应用提供理论指导。利用CNC加工中心分别进行未涂层刀具和氟涂层刀具铣削饰面刨花板试验,采用工具显微镜和扫描电镜拍摄刀具前后刀面的磨损形貌,采用超景深三维显微镜对饰面刨花板的切削加工表面进行粗糙度测量,研究氟涂层刀具铣削饰面刨花板的切削性能。结果表明,在相同的铣削长度条件下,氟涂层刀具铣削饰面刨花板的后刀面磨损带宽度显著低于未涂层刀具的后刀面磨损带宽度,且随着铣削长度的逐渐增加,未涂层刀具磨损带宽度增加急剧,而涂层刀具磨损带宽度增大缓慢;氟涂层刀具主要为磨料磨损,可以有效减少胶黏剂和刨花颗粒产生的黏结磨损,且降低崩刃现象;在相同的铣削长度条件下,氟涂层刀具铣削饰面刨花板的切削表面粗糙度值明显低于未涂层刀具铣削饰面刨花板的切削表面粗糙度值,且铣削饰面刨花板的刨花层可显著减少表面毛刺和凹坑,且饰面耐磨层崩边较少。因此,氟涂层刀具铣削饰面刨花板可以有效降低刀具磨损,提高饰面刨花板切削表面质量。  相似文献   

3.
在切削淬硬模具钢SKD11中,为开发和选用与生产条件相匹配的具备优化几何角度的高性能铣刀,对专用于高硬度模具钢SKD11铣刀的几何角度进行了优化及试验分析.设计了4类不同几何结构的TiAlN复合涂层铣刀.从切削力、切削振动、切削变形、铣刀耐用度以及铣刀磨损机理等方面对这4类铣刀高速铣削SKD11过程进行了研究,综合评价其铣削性能,确定了在常用的高速加工生产条件下的优化铣刀.所选择的优化槽形铣刀具的寿命比之其他刀具延长3倍,在切削力和切削振动方面,该刀具具有最稳定的表现,而且大小较其他刀具下降70%.  相似文献   

4.
本文通过对比试验研究了高温合金GH2132在无涂层硬质合金刀具、Ti Al N涂层硬质合金刀具和C7 PLUS涂层硬质合金刀具切削下的耐用度和磨损规律。结果表明:C7 PLUS涂层硬质合金刀具切削的耐用度最好;磨损规律分析表明硬质合金刀具在切削GH2132合金时,低速时刀具主要发生粘结磨损和磨粒磨损,高速时主要发生扩散磨损,同时也会发生磨粒磨损。  相似文献   

5.
根据金属切削刀具磨损与切削力的关系,建立了基于人工神经网络的切削刀具磨损的识别与控制系统,初步实现了用人工神经网络对金属切削刀具磨损的动态识别与控制。  相似文献   

6.
为获得铣削速度v、背吃刀量ap、每齿进给量fz和径向铣削深度ae对铣削力的影响规律,利用Ti Al N涂层刀具进行了高速铣削NAK80模具钢试验.结果表明,铣削力随着铣削速度的增加而减小,随背吃刀量的增大而增大,并随每齿进给量和径向铣削深度的增加而增加.在单因素试验结果的基础上,应用线性回归分析方法,建立了铣削力的回归数学预测模型.  相似文献   

7.
在硬质合金微型刀具加工高硅铝合金等难加工材料时,通过采用改进的热丝CVD装置开展了DLC涂层硬质合金微钻制备工艺优化,得到了最优沉积工艺,并配合高速加工高硅铝合金(Si15%)材料微小孔钻削性能对比试验,分析了刀具的磨损机理.结果表明:两步预处理方法适合复杂形状硬质合金衬底的预处理方法.钻削高硅铝合金时,DLC涂层具有低摩擦系数和高耐磨损特性,同等切削条件下,涂层微钻的切削寿命比未涂层硬质合金微钻提高了10倍.  相似文献   

8.
采用单因素试验方法,可以研究高速铣削铝合金材料时切削参数对加工表面粗糙度的影响.通过试验,找出了铣削速度、进给量和切削深度对表面粗糙度的影响规律,为指导企业生产提供一定的试验依据.  相似文献   

9.
在于切削、低温氮气和低温氮气油雾3种冷却润滑条件下,通过Sialon陶瓷刀具和SiC晶须增韧Al2O3陶瓷刀具车削K424镍基高温合金的实验,研究了低温氮气及油雾对刀具磨损和表面粗糙度的影响,开发了一个新的冷却系统以获得低温氮气.试验结果表明,切深线沟槽磨损严重限制陶瓷刀具使用寿命,与干切削相比,使用低温氮气和低温氮气油雾增加了切深线沟槽磨损速率,但降低了已加工表面的质量.  相似文献   

10.
汽车轮胎磨损机理和数学模型的研究   总被引:1,自引:0,他引:1  
本文从力学角度研究了汽车轮胎面磨损机理,找出了轮胎面磨损的主要原因:即胎面与地面在摩擦作用过程中所释放出的摩擦功。并以摩擦功与磨损之间的关系利用回归分析法,建立了不同型号轮胎在各种路面及不同载荷作用下磨损的数学模型。利用该模型的模拟结果,为汽车轮胎的设计和选型以及定量地分析转向机构对轮胎磨损的影响提供可靠依据。  相似文献   

11.
通过对分离式Hopkinson压杆进行高温动态压缩实验,得到在冲击压缩中材料航空铝合金7050-T7451在室温到高温550℃的应变、应变率与应力间的数据依赖关系.利用高速切削实验及有限元模拟相结合对该数据关系进行修正以适合高速切削加工的"高温"、"高应变率"及"大应变"状态.选择综合考虑温度软化效应,应变强化和应变率强化效应的经验Johnson-Cook模型,对其数据关系进行量化的描述,并确定铝合金7050-T7451流动应力本构模型中材料常数的值,最后建立了铝合金7050-T7451的本构模型.以实验和模拟中输出主切削力为比较指标,验证了所建模型的正确性.  相似文献   

12.
为了推广固体硼铬稀土共渗技术,需对硼铬稀土共渗层的摩擦磨损行为进行试验研究。本文利用MM200型磨损试验机对比研究了45钢硼铬稀土共渗层和硼化物层的耐磨性和抗咬合性,并对磨损机理进行探讨。结果表明,由于硼铬稀土共渗层表层组织和高温氧化物膜较为致密等原因,故与硼化物层相比,具有较高的耐磨性和承载能力。  相似文献   

13.
用脉冲电沉积技术制备表面平整光亮的纳米晶Co-Ni-Fe合金镀层.采用XRD、TEM、SEM、EDS等方法研究了纳米晶Co-Ni-Fe合金镀层的微观组织结构、表面形貌和合金成分.研究了干滑动摩擦条件下纳米晶镀层的摩擦磨损性能、磨损后的组织结构和硬度的变化.结果表明:纳米晶Co-Ni-Fe合金镀层的晶体结构为单相面心立方结构.镀层的摩擦系数和磨损量随着摩擦载荷的提高而增大,即镀层的耐磨性随载荷的提高而下降.摩擦磨损使纳米晶Co-Ni-Fe合金镀层发生晶粒长大,摩擦载荷越大,磨损后镀层的硬度越低.  相似文献   

14.
采用环-盘摩擦磨损试验机进行SSOMC型船用柴油机曲轴颈-轴瓦材料配副磨合磨损试验,通过对摩擦系数、磨损失重量及磨损表面形貌的分析,研究了不同轴向载荷对AlSn40合金轴瓦磨合磨损性能的影响。结果表明:在不同轴向载荷下,AlSn40合金轴瓦磨合性能存在一定差异。当试验载荷小于40N或大于60N时,其磨合磨损性能均较差;当试验载荷在40~60N时,其磨合磨损性能最佳。研究表明,AlSn40合金轴瓦在中等轴向载荷下可获得良好的磨合磨损性能。  相似文献   

15.
在MM-200型和MHK-500型磨损试验机上对ADI的滑动摩擦磨损行为进行了试验研究,运用扫描电镜和X射线衍射对试样进行了测试分析.结果表明,在摩擦磨损过程中ADI表层的奥氏体量和奥氏体中的固溶碳量有所减少,硬度升高.在此基础上讨论了ADI的耐磨性能,并与40Cr钢和V-Ti球铁作了耐磨性对比试验.  相似文献   

16.
为了对高效铣削淬硬模具钢SKD11的新型铣刀进行优选,对不同几何结构的铣刀加工得到的表面质量进行了分析.综合考虑了加工表面粗糙度、切屑微观形态、硬度及硬化层深度、残余应力分布和晶相组织结构变化等多方面因素,研究了不同铣刀的几何特性及其磨损特性对表面质量的影响.实验结果表明,前角5°,后角10°,刀尖圆弧半径为1 mm,铣刀螺旋角为45°的几何结构铣刀完成了表面完整性试验中.此外,在淬硬钢铣削加工中合理地选择加工参数可以获得0.4μm的表面粗糙度;采用合理的正前角可以抑制锯齿形切屑的产生.铣削淬硬模具钢能在加工表面产生残余压应力,通过增加铣刀后角和抑制后刀面磨损可以推迟加工表面软化现象的发生.  相似文献   

17.
通过优化排布金刚石磨料研制出钎焊单层金刚石端面砂轮.以硬质合金为加工对象,研究了该砂轮的磨削性能.结果显示连续干磨时,金刚石磨粒的失效形式主要是磨耗磨损和断裂两类,没有出现传统的电镀和烧结工具磨粒大量脱落的现象.这表明钎料合金对磨粒的高强度把持和砂轮的高耐用度.此外,工件的磨削表面获得了良好的粗糙度,理论预测的粗糙度数值和试验数值基本一致.  相似文献   

18.
李佳民  王彦梅  张兆国 《安徽农业科学》2006,34(23):6387-6388,6390
对普通Ni-P合金镀层、微米SiC化学复合镀层及纳米SiC化学复合镀层的镀态硬度和热处理硬度进行了比较研究。通过耐磨性试验对3种镀层的磨损量和磨痕宽度进行了对比,通过扫描电镜对3种镀层的磨痕形貌进行了比较研究。结果表明:纳米SiC复合镀层的耐磨性优于微米SiC复合镀层和普通Ni-P合金镀层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号