首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 484 毫秒
1.
为准确检测和识别烟草病害,为制定合理的病害防治措施提供科学依据,提出基于萤火虫算法优化支持向量机(FA-SVM)技术的烟草早期病害识别方法。以烟草常见的蛙眼病与赤星病为研究对象,利用可见光拍摄带有2种病害的烟草植物叶片,获取图像样本。利用形态学方法和图像分割技术得到病斑图像。提取病斑的颜色、纹理及形态学等共计32个特征,构建原始特征空间。利用蚁群算法(Ant colony optimization,ACO)对特征空间进行优化,依据适应度值选取最优特征组合,当适应度值达到最高为95.68时,有13个特征被选择。运用萤火虫算法(Firefly algorithm,FA)优化支持向量机(Support vector machine,SVM)的惩罚因子(c)与径向基核函数参数(g),提高分类器性能。当c=94.12、g=2.43时,对不同发育时期的2种病害的识别率达到96%。结果表明,利用FA-SVM技术识别烟草蛙眼病与赤星病2种常见病害是可行的。  相似文献   

2.
为了减少黄瓜叶部病害给农业生产带来的损失,提高病害的识别率和精度,提出了一种基于颜色特征和属性约简算法的黄瓜病害叶片分割与识别方法。该方法首先利用最大类间方差(Otsu)阈值法对黄瓜病害叶片图像进行病斑分割;其次提取病斑图像的36个分类特征,再利用基于区分矩阵的属性约简算法进行特征选择;最后利用最近邻分类器进行病害识别。该方法在5种常见黄瓜病害叶片图像数据库上进行了病害识别试验,结果表明,识别率高达94.8%。说明,该方法对作物病害叶片图像识别是有效可行的。  相似文献   

3.
邵彧  张善文  李萍 《吉林农业科学》2021,46(4):113-118,134
通过维数约简实现特征提取是图像识别的一个重要步骤.由于同一种作物病害叶片和病斑图像的高度复杂性,在各种不同拍摄角度、位置和光照等条件下得到的图像之间差异较大,使得很多经典的维数约简和特征提取算法不能有效地用于作物叶部病害识别.本文在判别局部保持投影(Discriminant Locality Preserving Projections,DLPP)的基础上,提出一种基于DLPP的苹果叶部病害识别方法.首先利用GrabCut算法对采集的病害叶部图像进行背景分割,然后利用分水岭算法对去背景图像进行分割,得到病斑图像;再利用DLPP将病斑图像投影到低维判别空间,得到分类特征;最后利用K-最近邻分类器进行病害类别识别.在实际苹果病害叶片图像数据库上的实验结果表明,该方法是有效可行的.  相似文献   

4.
针对利用植物病害叶片图像特征识别病害类别的复杂性,提出一种基于特征融合与局部判别映射的植物叶部病害识别方法。首先,在中心对称局部二值模式(CS-LBP)的基础上,设计了一种自适应中心对称局部二值模式(ACS-LBP),由此分割病害叶片的病斑图像;然后提取并融合病斑图像的纹理、形状和颜色特征;再利用局部判别映射算法对融合特征进行维数约简;最后利用支持向量机进行病害类别分类。在3种常见苹果病害叶片图像数据库上进行病害识别验证试验,结果表明,该方法能够有效识别苹果叶部病害,平均识别率高达96%以上。  相似文献   

5.
基于自适应中心对称局部二值模式的作物病害识别方法   总被引:1,自引:0,他引:1  
基于局部二值模式(LBP)算子在模式识别中直方图维数高、判别能力差、具有冗余信息等缺点,针对作物病害叶片图像的特点,提出一种自适应中心对称局部二值模式(Adaptive Center-Symmetric Local Binary Patterns,ACSLBP)算法,并应用于作物病害识别。该算法能够得到光照和旋转不变性的纹理特征,利用模糊C均值聚类算法对病害叶片图像进行分割,再将分割后的病斑图像进行分块,然后采用自适应阈值提取每个子块的ACSLBP纹理直方图,结合作物病害叶片图像的颜色特征,利用最近邻分类器识别作物病害。在黄瓜4种常见病害叶片图像数据库上进行试验,平均识别率高达95%以上,表明该方法是有效可行的。  相似文献   

6.
基于深度学习和支持向量机的4种苜蓿叶部病害图像识别   总被引:3,自引:2,他引:1  
为实现苜蓿叶部病害的快速准确诊断和鉴别,基于图像处理技术,对常见的4种苜蓿叶部病害(苜蓿褐斑病、锈病、小光壳叶斑病和尾孢菌叶斑病)的识别方法进行探索。对采集获得的899张苜蓿叶部病害图像,利用人工裁剪方法从每张原始图像中获得1张子图像,然后利用结合K中值聚类算法和线性判别分析的分割方法进行病斑图像分割,得到4种病害的典型病斑图像(每张典型病斑图像中仅含有1个病斑)共1 651张。基于卷积神经网络提取病斑图像特征,建立病害识别支持向量机(Support vector machine,SVM)模型。结果表明:当病斑图像尺寸归一化为32×32像素,利用归一化的特征HSV(即特征H、特征S和特征V归一化后的组合特征)构建的病害识别SVM模型最优,其训练集识别正确率为94.91%,测试集识别正确率为87.48%。本研究基于深度学习和SVM所建立的病害识别模型可用于识别上述4种苜蓿叶部病害。  相似文献   

7.
基于图像处理技术的四种苜蓿叶部病害的识别   总被引:1,自引:1,他引:0  
基于图像处理技术,对4种苜蓿叶部病害进行识别研究。利用结合K中值聚类算法和线性判别分析的分割方法对病斑图像作分割,获得了较好的分割效果。结果表明:该分割方法在由4种病害图像数据集整合成的汇总图像数据集上综合得分的平均值和中值分别为0.877 1和0.899 7;召回率的平均值和中值分别为0.829 4和0.851 4;准确率的平均值和中值分别为0.924 9和0.942 4。进一步提取病斑图像的颜色特征、形状特征和纹理特征共计129个,利用朴素贝叶斯方法和线性判别分析方法建立病害识别模型,并结合顺序前向选择方法实现特征筛选,分别获得最优特征子集;同时利用这2个最优特征子集,结合支持向量机(Support vector machine,SVM)建立病害识别模型。比较各模型的识别效果,发现利用所建线性判别分析模型下的最优特征子集,结合SVM建立的病害识别模型识别效果最好,训练集识别正确率为96.18%,测试集识别正确率为93.10%。由此可见,本研究所建基于图像处理技术的病害识别模型可用于识别上述4种苜蓿叶部病害,为苜蓿病害的诊断和鉴别提供了一定依据。  相似文献   

8.
快速准确地识别黄瓜病害类型是黄瓜病害防治的前提,针对现有基于病害叶片图像的黄瓜病害识别方法中的病斑分割和特征提取难题,提出一种基于显著区域和方向梯度直方图的黄瓜病害叶片图像分割与识别方法。首先,利用叶片图像的亮度和颜色低阶特征,结合多尺度分析确定原始采用病害叶片图像的显著图;其次,利用K-均值算法分割显著图,得到病斑图像;再提取病斑图像的方向梯度直方图特征;最后利用支持向量机(support vector machine,简称SVM)进行病害识别。在4种常见黄瓜病害叶片图像数据库上进行测试,平均正确识别率大于90%。结果表明,该方法能够准确分割和识别复杂背景下的黄瓜病害叶片图像,为田间开放环境下实现黄瓜病害的快速自动识别提供了依据。  相似文献   

9.
基于图像的文物识别技术在实体参观、网上博物馆、文物勘探等领域具有广泛的应用前景。利用多特征融合技术对文物图像识别的方法进行研究,采用多特征融合的多核支持向量机(SVM)分类算法对文物图像进行识别,设计了一个基于多特征融合技术的文物图像识别系统。在文物图像识别过程中,针对多特征融合算法进行了实验,实验结果表明:相较于单特征的识别方法,同时利用颜色特征、形状特征和纹理特征能提高文物图像识别率。  相似文献   

10.
利用作物叶片症状进行作物病害识别是植保中的一个重要研究内容。提出了一种基于区分矩阵属性约简的黄瓜病害叶片图像分割与病害识别方法。首先,利用最大类间方差法对黄瓜病害叶片图像进行病斑分割;其次,提取病斑图像的36个分类特征;再次,利用基于区分矩阵的属性约简算法对36个特征进行特征选择;最后,利用最近邻分类器进行病害识别。在3种常见黄瓜病害叶片图像数据库上的试验结果表明,该方法是有效可行的,能够为基于病害叶片的作物病害识别系统研究提供参考。  相似文献   

11.
为了提高基于数字图像识别番茄叶部病害的准确率,适应不同分辨率条件下的应用需求,并满足实践拍摄条件的不确定性,以番茄晚疫病、花叶病、早疫病叶片图像为研究对象,选择HSV模型中的4维H分量等量分割波段作为颜色特征,基于灰度差分统计的均值、对比度和熵3维特征作为纹理特征,融合7维特征向量作为支持向量机(SVM)分类器的输入,用粒子群算法(PSO)优化SVM模型参数。试验结果表明,融合灰度差分统计与H分量4维特征的病害识别模型准确率可达90%。  相似文献   

12.
[目的/意义]为了提高大豆叶片图像的分类精度与效率,进一步对大豆叶片图像进行存储与管理。[方法/过程]本文利用深度学习方法,针对肉眼观察准确率较低且不同人群分类结果差异较大的大豆叶片图像数据提出了一种自动分类方法。本研究首先对大豆叶片进行ROI感兴趣区域划分,进而利用分水岭分割方法对大豆叶片进行提取,最后通过深度学习高效精确的实现了大豆叶片的分类识别。[结果/结论]通过分析大豆叶片形态图像特点后,基于深度学习开展了对大豆叶片形态的分类识别的研究,达到了较高的识别准确率。  相似文献   

13.
基于量子神经网络和组合特征参数的玉米叶部病害识别   总被引:1,自引:0,他引:1  
【目的】探索一种基于量子神经网络和组合特征参数的玉米叶部病害识别方法,以提高玉米叶部病害识别的准确率和效率。【方法】应用K_means硬聚类算法对玉米叶部病害图像进行彩色图像分割,得到彩色分割图像,分别利用提升小波变换和灰度共生矩阵从彩色分割图像中提取颜色和纹理特征参数,利用多重分形分析从灰度图像中提取病害的形状特征参数。【结果】根据提取的组合特征参数,利用量子神经网络进行玉米病害分类识别,对玉米灰斑病、玉米普通锈病和玉米小斑病的识别率分别达到92.5%、97.5%和92.5%,高于误差反向传播神经网络法的识别率(分别为90.0%、90.0%和92.5%)。【结论】设计的方法可用于玉米叶部病害识别,并为其他农作物病害的智能识别提供借鉴。  相似文献   

14.
基于Fisher判别分析的玉米叶部病害图像识别   总被引:9,自引:2,他引:7  
 【目的】利用计算机视觉技术实现玉米叶部病害的自动识别诊断。【方法】在大田开放环境下采集病害图像样本,综合应用基于H阈值分割、迭代二值化、图像形态学运算、轮廓提取等算法处理病害图像,抽取病斑,提取病害图像的纹理、颜色、形状等特征向量,采用遗传算法优化选择出分类特征,并利用费歇尔判别法识别普通锈病、大斑病和褐斑病3种玉米叶部病害。【结果】研究中提取了墒、相关信息测度、分形维数、H值、Cb值、颜色矩、病斑面积、圆度、形状因子等28个特征向量,利用遗传算法优选出H值、颜色矩、病斑面积、形状因子等4个独立、稳定性好、分类能力强的特征向量,应用费歇尔判别分析法识别病害,准确率达到90%以上。【结论】综合运用数字图像处理技术、图像纹理、颜色、形状特征分析方法、遗传算法、费歇尔判别分析方法可以有效识别基于田间条件下采集的病害图像,为田间开放环境下实现大田作物病虫害的快速智能诊断提供借鉴。  相似文献   

15.
针对家庭种植水培黄瓜中用户难以准确识别病害的问题,设计了一种基于图像处理的黄瓜叶片病斑识别系统。应用自适应小波对原始图像进行降噪处理,在HSV空间通过阈值分割结合形态学操作获得理想的黄瓜叶片图像,并通过自适应阈值分离病斑,提取病斑形态学、颜色和纹理原始特征参数。利用GA-BP神经网络定义原始特征参数对分类结果的灵敏度,递归剔除灵敏度较低的若干特征,降低特征参数的维数。根据优化后的特征参数组合,利用支持向量机对黄瓜炭疽病和白粉病进行识别。实验结果表明,本方法对黄瓜炭疽病和白粉病的综合分类正确率在96%以上。设计的方法有效提高了黄瓜病害的识别率,并为其他作物病害的智能识别提供了借鉴。  相似文献   

16.
基于支持向量机的小麦条锈病和叶锈病图像识别   总被引:4,自引:2,他引:2  
为了解决生产中小麦条锈病和叶锈病症状难以区分的问题,提高识别率和精度,提出了一种基于支持向量机和多特征参数的小麦条锈病和叶锈病图像分类识别方法。利用图像裁剪方法获取典型症状的子图像,采用中值滤波算法对图像进行去噪,利用K_means硬聚类算法实现病斑分割,提取病斑区域的形状、颜色和纹理特征空间的50个特征参数,设计支持向量机分类器进行分类识别。根据优选的26个特征参数,利用以径向基函数作为核函数的支持向量机对这2种小麦锈病图像进行识别。结果表明:训练样本识别率均为96.67%,测试样本识别率均为100%;与其他核函数相比,径向基核函数最适合于这2种小麦锈病的识别。所提出的基于支持向量机的方法可有效地进行小麦条锈病和叶锈病的图像识别。  相似文献   

17.
马娜  郭嘉欣 《农学学报》2023,13(2):60-66
快速、及时和准确的发现小麦病害对提高小麦产量具有重要作用。以小麦叶片白粉病、条锈病和叶锈病3种病害为研究对象,提出了基于LM神经网络的小麦叶片病害识别模型。首先采用K-means算法分割小麦叶片病斑区域,提取小麦病斑区域的颜色特征和纹理特征,构建数据集。然后建立LM神经网络小麦叶片病害识别模型,输入数据进行识别。基于颜色和纹理特征的小麦叶片病害识别率为95.3%。在小样本情况下,利用LM神经网络算法能够快速、准确的识别小麦病害叶片。  相似文献   

18.
在基于叶片图像进行植物识别和生长状态监控时,植物目标叶片的准确分割和识别是前提和基础,但复杂背景给叶片的分割和识别带来了极大的挑战。本研究提出基于Mask-RCNN深度学习网络分割和识别复杂背景下多目标叶片的算法,共拍摄自然生长状态下常见的植物叶片图像7 357张,标注3 000张作为训练数据库,这3 000张图像共包含4种植物,分别为孔雀竹芋(Calathea makoyana)、珊瑚树(Viburnum odoratissinum)、洋常春藤(Hedera helix L.)和黄花羊蹄甲(Bauhinia tomentosa)。选择这4种植物的80个测试样本图像进行分割、识别与错分率分析。结果表明:Mask-RCNN深度学习网络对这4种植物的识别效果良好,未出现误识别的情况;分割的平均图像错分率为0.93%,最大值不超过2.49%,即分割准确率达97.51%;同时该算法具有强大的迁移能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号