首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved understanding of potential soluble phosphorus (P) loss in run‐off and leachate from agriculturally managed soils presents practical and theoretical challenges. Our study aimed to discover whether modified Morgan extractable P (MMP) can be used to predict water‐soluble P (WSP). We first addressed the relationship between MMP and WSP, and whether MMP is useful for predicting the WSP concentrations demanded by water quality regulations. Secondly, we applied novel soil chemical models to explain why the relationship between MMP and WSP depends upon soil properties. Thirdly, we explain how soil properties relate to potential soluble P loss in situations in which soil is subjected to a wide liquid‐to‐soil ratio (e.g. run‐off and rivers) compared with those with a narrow ratio (e.g. soil porewater). To address these P loss scenarios, 60 agricultural topsoils (0–10 cm) were collected from a mixed‐farming catchment (Lunan catchment, northeast Scotland) and chemically characterized. Theoretical understanding of P solubility was obtained with a P sorption model. The data showed variability in the relationship between MMP and WSP. Modelling shows the MMP versus WSP relationship is nonlinear, depending on several confounding factors (P sorption capacity (PSC), Ca, pH) and the liquid‐to‐soil ratio (L:S) employed for WSP determination. Consequently, the slope of the relationship is not unique but depends subjectively on the set of soils surveyed. MMP versus WSP at large L:S (e.g. in run‐off or rivers) is positively correlated to PSC, whereas at narrow L:S (e.g. porewater) there is a negative correlation with PSC. The study provides new ideas for the interpretation and extrapolation of agronomic soil test data for soils of varied properties and highlights the need to utilize insights from soil chemistry.  相似文献   

2.
A small increase in soil organic matter (SOM) content can change soil hydrological properties from a completely wettable to a partially water‐repellent state. Although considerable research describes hydrophobic compounds as a primary driver of this shift, the influence of pore shape has only been considered in a few studies and none of these has emphasized the role of different carbon compounds. Using a capillary bundle model of non‐cylindrical (wavy) capillaries, we described measured hydrological properties of five agricultural soils that have a small degree of water repellency and textures ranging from coarse sand to heavy clay. To isolate the influence of SOM, it was removed by combustion to provide an SOM‐free treatment. Water and methanol sorptivities quantified infiltration rates and soil‐water wetting angles in packed soil cores. Different cores were sectioned to measure wetting profiles and calculate diffusivity. The results from natural soils were supplemented by measurements carried out on model ‘soils’ consisting of quartz particles (50–200 µm) with four different hydrophobic states. Soil organic matter removal increased water sorptivity from about 60% for a coarse sandy soil (Haplic Arenosol) to about 290% for a heavy clay soil (Haplic Leptosol), corresponding to a decreased apparent wetting angle of 20–30°. Application of the wavy pore model suggests that the apparent wetting angle resulting from SOM removal can be several times smaller than its Young value. Generally, SOM removal increased water diffusivity values by one to two orders of magnitudes. The SOM components having the greatest impact on contact angle were hexanedioic acid and heneicosanoic acid (both hydrophilic) and docosane (hydrophobic).  相似文献   

3.
Water repellency can be a significant factor in soil physical behaviour, but little is known about the depth dependence of the contact angle of field soils. We investigated contact angles and wetting properties as a function of depth for a wide range of agricultural and forest soils in Germany. The agricultural soils ranged from silty to sandy texture (six profiles), and the forest soils ranged from sandy to loamy texture (eight profiles). Contact angles (CA) were measured with the Wilhelmy plate method (WPM). In most of the soils, advancing WPM contact angles were considerably greater than 0° and they varied irregularly with depth. In general, sandy soils had larger WPM contact angles than silty soils. From the relation of the contact angle with texture and pH the quality of soil organic matter (SOM) was considered as more important for the wetting properties than the total amount of soil organic carbon (SOC). Finally, it was found that for soils with intermediate sand contents either under agricultural or forest use, the kind of land use seemed not to influence CA. Coarse‐textured sandy soils that were used only as forest sites were more hydrophobic than silty soils which were exclusively used as agricultural soils. We conclude that a coarse texture favours, in combination with other factors (mainly pH), hydrophobic SOM.  相似文献   

4.
近15年台兰河流域土地利用变化及其生态效应研究   总被引:2,自引:1,他引:1  
利用 1990、2000 和 2005 年的 TM 影像数据,在 GIS 技术支持下,定量研究了近 15 年来台兰河流域的土地利用变化特征.结果表明:1990-2005 年,台兰河流域耕地和沙地面积均明显增加,分别增加 3.50万 hm~2 和 2.05万 hm~2,而草地和天然林地面积锐减,其中草地净减少 6.00万 hm~2,反映出流域有大面积拓荒的趋势.选择研究区 5 组自然条件相同而土地利用方式不同的代表性样区进行对比研究,结果发现不同土地利用方式对土壤有机质含量及总盐的影响主要发生在 0~25 cm 土层中,剖面中土壤有机质含量及总盐自上而下明显降低.人工甘草地和盐碱地的土壤总盐远高于其他土地利用类型,土壤表层(0~20 cm)有机质含量在几种土地利用类型之间的比较是:经济林>耕地>人工甘草地>改良沙地>盐碱地.随耕种年限的增加耕地总盐含量降低,有机质含量增加.  相似文献   

5.
Vertisols are important cropping soils in tropical and subtropical areas, but in many regions, decades of cropping has substantially reduced concentrations of plant-available phosphorus (P), especially in the subsoil layers. Phosphorus behaviour in P-depleted Vertisols has received comparatively little attention, and the availability of P following the addition of inorganic P fertilisers at different concentrations is poorly understood. In this study, we evaluated short-term P sorption and desorption behaviour in cropped Vertisols in relation to specific soil physical and chemical properties. We collected the surface and subsurface of 15 Australian soils with a broad range of physical and chemical properties, comprising nine Vertisols, three Ferralsols, two Lixisols and one Calcisol. For each soil, we generated sorption and desorption curves (fitted with a Freundlich equation), determined soil physical and chemical properties likely to influence P sorption and evaluated the relationships between the measured soil properties and the Freundlich equation sorption coefficients. The P sorption curves differed drastically between soils, with the sorption equation coefficients (aS × b) significantly correlated with the P buffering index (PBI) and clay content. Clay content itself was correlated with citrate-extractable Fe and Al oxides and BET surface area. Vertisols formed on basaltic parent materials had greater Fe and Al oxide concentrations, resulting in an overall greater P sorption capacity. Sorption and desorption hysteresis were mostly small. The reacting materials in these soils probably had limited ability to continue to react with P. The Vertisols differed in their capacity to replenish P in the soil solution by desorbing different proportions of previously sorbed P, although the proportion of desorbable P generally increased with greater concentrations of sorbed P. These results suggest that for fertiliser management in these soils, smaller volumes of P enrichment combined with higher P concentrations may result in a greater P recovery by the crop.  相似文献   

6.
Sorption by soil organic matter (SOM) is considered the most important process affecting the bioavailability of hydrophobic organic chemicals (HOCs)in soil.The sorption capacity of SOM for HOCs is affected by many environmental factors.In this study,we investigated the effects of soil pH and water saturation level on HOC sorption capacity of SOM using batch sorption experiments.Values of soil organic carbon-water partition coefficient (KOC) of six selected polycyclic aromatic hydrocar...  相似文献   

7.
The Soreq recharge basins, used for wastewater reclamation employing the Soil-Aquifer Treatment (SAT) system, have been recharged, on average, by about 1,800 m depth of secondary effluent during their operation period of ~25 years. An estimated amount of ~6 kg P m?2 was added to the soil/sediment column during this period. The objective of this study was to compare phosphorous sorption characteristics of representative pristine soils in the Soreq recharge site to those of the basin soils sampled after a long period of effluent recharge. Batch isotherm experiments were conducted: samples of one g of soil were equilibrated with 25 mL of 0.02 M NaCl solution containing 0–3.2 mM of phosphate for 7 days at 25± 1°C and P sorption was measured. Long-term effluent recharge significantly decreased the maximum P sorption capacity of the top sandy soil (0.15–0.3 m) and only very slightly decreased maximum P isotherm capacity of the deep clayey-sand soil (10–10.5 m). The retention of P in the basin sandy soil primarily involved sorption and surface precipitation reactions on soil carbonates. In the basin clayey-sand soil, P was retained by its sorption on surfaces of Fe, Al, Mn oxide/hydroxides and clay minerals. Long-term effluent recharge increased EPC0, (the equilibrium P concentration in solution at which there is no sorption or desorption to or from the soil under the given conditions), of the basin soils compared to the pristine soils. Due to loading of the top horizons with P by prolonged recharge and reduced P concentration in the effluent, EPC0 of the basin sandy soil is now equal to the average P concentration of the recharged effluents. If effluent P concentration will decrease further, the top sandy soil will become a source of P to the reclaimed water, rather than a sink. The clayey-sand layers and lenses in the vadose zone of the SAT system of the Soreq site offer a large capacity for P adsorption. With gradual leaching of carbonate minerals and synthesis of secondary clay minerals, driven by long-term effluent recharge, P retention mechanisms in the basin soil may be changed, but this process would be extremely slow.  相似文献   

8.
Forest soils contain about 30% of terrestrial carbon (C) and so knowledge of the influence of forest management on stability of soil C pools is important for understanding the global C cycle. Here we present the changes of soil C pools in the 0-5 cm layer in two second-rotation Pinus radiata (D.Don) plantations which were subjected to three contrasting harvest residue management treatments in New Zealand. These treatments included whole-tree harvest plus forest floor removal (defined as forest floor removal hereafter), whole-tree, and stem-only harvest. Soil samples were collected 5, 10 and 15 years after tree planting at Kinleith Forest (on sandy loam soils) and 4, 12 and 20 years after tree planting at Woodhill Forest (on sandy soils). These soils were then physically divided into light (labile) and heavy (stable) pools based on density fractionation (1.70 g cm−3). At Woodhill, soil C mass in the heavy fraction was significantly greater in the whole-tree and stem-only harvest plots than the forest floor removal plots in all sampling years. At Kinleith, the soil C mass in the heavy fraction was also greater in the stem-only harvest plots than the forest floor removal plots at year 15. The larger stable soil C pools with increased residue return was supported by analyses of the chemical composition and plant biomarkers in the soil organic matter (SOM) heavy fractions using NMR and GC/MS. At Woodhill, alkyl C, cutin-, suberin- and lignin-derived C contents in the SOM heavy fraction were significantly greater in the whole-tree and stem-only harvest plots than in the forest floor removal plots in all sampling years. At Kinleith, alkyl C (year 15), cutin-derived C (year 5 and 15) and lignin-derived C (Year 5 and 10) contents in the SOM heavy fraction were significantly greater in stem-only harvest plots than in plots where the forest floor was removed. The analyses of plant C biomarkers and soil δ13C in the light and heavy fractions of SOM indicate that the increased stable soil C in the heavy fraction with increased residue return might be derived from a greater input of recalcitrant C in the residue substrate.  相似文献   

9.
Abstract

Classical analytical methods limit understanding of the dynamics of geochemical processes in soils. The technique of diffusive gradients in thin films (DGT) allows the quantification of the mobilization fluxes of traces metals in soils and more specifically the metal supply from the soil's solid phase. Diffusive gradients in thin films, measuring fluxes from soil solids to solutions, were reported in three different cadmium (Cd)–contaminated soils with different levels of soil organic matter (SOM). The soil solution concentration ratio between the labile Cd, determined using differential pulse anodic stripping voltammetry, and the total Cd obtained by inductively coupled plasma–atomic emission spectrometry was compared. The data suggest that SOM affected the complexation of Cd in the soil solution, and the values obtained by DGT also demonstrated that the sorption of the Cd to the solid phase was also affected. The fluxes of Cd into the DGT were decreased when organic matter was added to the soils but were also decreased when SOM was reduced using hydrogen peroxide (H2O2).  相似文献   

10.
连续种植蔬菜对潮土磷素水平的影响   总被引:9,自引:1,他引:9  
Soil P status, inorganic P fractions, and P sorption properties were studied using sandy fluvo-aquic horticultural soils, which are high in organic matter content for vegetable production in comparison with a soil used for grain crop production in Zhengzhou, Henan Province, China. P fractions, Olsen-P, and OM were determined at different depths in the soil profile and sorption isotherm experiments were performed. Most P in excess of plant requirements accumulated in the topsoil and decreased with soil depth. Total P, inorganic P, and OM concentrations increased with continued horticultural use. Olsen-P concentrations in the 0-20 cm depth of horticultural soils were 9 to 25 times higher than those of the grain crop soil. A linear transformation of the Langmuir equation showed that the P adsorption maximum (491.3 mg P kg-1) and the maximum phosphate buffering capacity (162.1 L kg-1) for 80-100 cm were greater in the grain crop soil than the horticultural soils. Thus, the most immediate concern with excess P were in areas where heavy P fertilizer was used for vegetable crops and where soil P sorption capacities were low due to sandy soils and high organic matter content.  相似文献   

11.
oil P status, inorganic P fractions, and P sorption properties were studied using sandy fluvo-aquic horticultural soils,which are high in organic matter content for vegetable production in comparison with a soil used for grain crop productionin Zhengzhou, Henan Province, China. P fractions, Olsen-P, and OM were determined at different depths in the soilprofile and sorption isotherm experiments were performed. Most P in excess of plant requirements accumulated in thetopsoil and decreased with soil depth. Total P, inorganic P, and OM concentrations increased with continued horticulturaluse.Olsen-P concentrations in the 0-20 cm depth of horticultural soils were 9 to 25 times higher than those of the graincrop soil. A linear transformation of the Langmuir equation showed that the P adsorption maximum (491.3 mg P kg^-1)and the maximum phosphate buffering capacity (162.1 L kg^-1) for 80-100 cm were greater in the grain crop soil than thehorticultural soils. Thus, the most immediate concern with excess P were in areas where heavy P fertilizer was used forvegetable crops and where soil P sorption capacities were low due to sandy soils and high organic matter content.  相似文献   

12.
Glassy, rubbery, and crystalline phases are representatives of supramolecular structures which strongly differ in order, density, and other characteristics. In this contribution, the amorphous nature of soil organic matter (SOM) is reviewed with respect to the glassy/rubbery model, glass transition mechanisms, interactions of SOM with water, and physical aging. Glass‐transition behavior and physical aging are inherent properties of amorphous solids, and numerous spectroscopic investigations give insights into different domain mobilities of humic substances (HS). The correlation between sorption nonlinearity and glassiness of polymers and HS supports a relation between sorption and amorphicity in Aldrich humic acid. Further evidence is still required for the transfer to soil HS and SOM. Sorption and differential scanning calorimetry (DSC) data suggest a correlation between aromaticity and glassiness in HS, and the available data do currently not allow to decide unambiguously between specific sorption and hole filling as explanation. This needs to be verified in future research. Although parts of the investigations have up to now only been conducted with humic substances, the collectivity of available data give strong support for the glassy/rubbery conception of SOM. They clearly indicate that amorphous characteristics cannot be excluded in SOM. This is further supported by the observation of different types of glass‐transition behavior in samples of whole humous soil. In addition to classical glass transitions in water‐free soil samples, water surprisingly acts in an antagonistic way as short‐term plasticizer and long‐term antiplasticizer in a second, nonclassical transition type. Latter is closely connected with physico‐chemical interactions with water and suggests water bridges between structural elements of SOM (HBCL‐model). The gradual increase of Tg* in SOM indicates physico‐chemical aging processes, which are not restricted to polymers. They may be responsible for contaminant aging, changes in surface properties and increased soil compaction in agricultural soils.  相似文献   

13.
The impact of transgenic plants containing Bacillus thuringiensis (Bt) toxin on soil processes has received recent attention. In these studies, we examined the influence of the lepidopterean Bt Cry1Ac toxin on mineralization and bioavailability of the herbicide glyphosate in two different soils. The addition of 0.25-1.0 microg g(-1) soil of purified Cry1Ac toxin did not significantly affect glyphosate mineralization and sorption in either a sandy loam or a sandy soil. In contrast, extractable glyphosate decreased over the 28 day incubation period in both soils. Our findings suggest that the reduction in the bioavailability of glyphosate was not influenced by the presence of Cry1Ac toxin but rather the results of aging or sorption processes. Results from this investigation suggest that the presence of moderate concentrations of Bt-derived Cry1Ac toxin would have no appreciable impact on processes controlling the fate of glyphosate in soils.  相似文献   

14.
The cycling of dissolved organic matter (DOM) in soils is controversial. While DOM is believed to be a C source for soil microorganisms, DOM sorption to the mineral phase is regarded as a key stabilization mechanism of soil organic matter (SOM). In this study, we added 14C-labelled DOM derived from Leucanthemopsis alpina to undisturbed soil columns of a chronosequence ranging from initial unweathered soils of a glacier forefield to alpine soils with thick organic layers. We traced the 14C label in mineralized and leached DOM and quantified the spatial distribution of DO14C retained in soils using a new autoradiographic technique. Leaching of DO14C through the 10 cm-long soil columns amounted up to 28% of the added DO14C in the initial soils, but to less than 5% in the developed soils. Biodegradation hardly contributed to the removal of litter-DO14C as only 2–9% were mineralized, with the highest rates in mature soils. In line with the mass balance of 14C fluxes, measured 14C activities in soils indicated that the major part of litter DO14C was retained in soils (>80% on average). Autoradiographic images showed an effective retention of almost all DO14C in the upper 3 cm of the soil columns. In the deeper soil, the 14C label was concentrated along soil pores and textural discontinuities with similarly high 14C activities than in the uppermost soil. These findings indicate DOM transport via preferential flow, although this was quantitatively less important than DOM retention in soils. The leaching of DO14C correlated negatively with oxalate-extractable Al, Fe, and Mn. In conjunction with the rapidity of DO14C immobilization, this strongly suggests that sorptive retention DOM was the dominating pathway of litter-derived DOM in topsoils, thereby contributing to SOM stabilization.  相似文献   

15.
Abstract. The effects of silt-laden Yellow River irrigation water on the properties of reclaimed dune sands were investigated at the Shapotou Research Station in Ningxia Autonomous Region, China. The practice resulted in distinct and rapid improvements in the physical and chemical properties of reclaimed desert soils. Irrigation led to the development of sandy loam topsoils, with up to 39 cm accumulating over 25 years of treatment. These topsoils had improved structure, greater soil organic matter contents and smaller bulk densities than buried desert sands. Geochemical analyses suggested river silt and sheep manure were making distinctive contributions to the improved soil fertility, with older topsoils having progressively greater concentrations of Ca, Mg, K, P, S, Fe, Mn and Zn. Soil Cr concentrations are increasing and it seems appropriate that changes in heavy metal concentrations in irrigated soils are monitored.  相似文献   

16.
Hwang  S.  Ramirez  N.  Cutright  T. J.  Ju  L.-K. 《Water, air, and soil pollution》2003,143(1-4):65-80
Soil type will greatly affect the sorption and subsequent desorptionof hydrophobic contaminants. To gain a better understanding of theimpact of soil type on sorptive behavior, the sorption-desorption of pyrene (PYR) with three different soils was studied. The first soil originated from Colombia and is classified as silty sand with3.54% soil organic matter (SOM) and 18% clay materials (<2 microns). The New Mexico soil is a sandy lean clay comprisedof 8.4% SOM and 10% clay. The last soil originated fromOhio and is a silty sand with 1.84% SOM and 9.6% clay. Based on soil mineralogy and sorption-desorption isotherms,the Colombia soil had the greatest binding potential followedby the New Mexico and Ohio soils. The Freundlich model couldfit both the Colombia and New Mexico soils. For the Ohiosoil, a two-stage Freundlich model was required. For allthree soils, PYR desorption was slow and resistant, anddepicted an apparent hysteresis. The extent of sorption-desorption for each soil was attributed to its individual classification.For instance, the SOM present in the New Mexico soil (8.4%) enabled a relatively easy desorption in comparison to the other two soils. For the Ohio and Colombia soils, the interaction with the clay fractions rendered a stronger sorptive bond.  相似文献   

17.
Zinc (Zn) desorption is an important process to determine Zn bioavailability in calcareous soils. An experiment was performed to assess the pattern of Zn release from 10 calcareous soils of orange orchards, southern Iran and the soil properties influencing it. For Zn desorption studies, soil samples were extracted with diethylene triamine penta-acetic acid solution at pH 7.3 for periods of 0.083–48 h. Suitability of seven kinetic models was also investigated to describe Zn release from soils. Generally, Zn desorption pattern was characterized by a rapid initial desorption up to 2 h of equilibration, followed by a slower release rate. The simple Elovich and two-constant rate kinetic models described Zn release the best, so it seems that Zn desorption is probably controlled by diffusion phenomena. The values of the rate constants for the superior models were significantly correlated with some soil properties such as soil organic matter (SOM) content, cation exchange capacity (CEC), and soil pH, whereas carbonate calcium equivalent and clay content had no significant influence on Zn desorption from soils. SOM had a positive effect on the magnitude of Zn release from soils, while soil pH showed a negative effect on Zn desorption. Furthermore, the initial release rate of soil Zn is probably controlled by CEC in the studied soils. Finally, it could be concluded that SOM, CEC, and soil pH are the most important factors controlling Zn desorption from calcareous soils of orange orchards, southern Iran.

Abbreviations: Soil organic matter (SOM); Cation exchange capacity (CEC); Calcium carbonate equivalent (CCE); Zinc (Zn).  相似文献   


18.
Although the chemical composition of soil organic matter (SOM) is known to significantly influence sorption of pesticides and other pollutants, it has been difficult to determine the molecular nature of SOM in situ. Here, using 13C nuclear magnetic resonance (NMR) data and elemental composition in a molecular mixing model, we estimated the molecular components of SOM in 24 soils from various agro‐ecological regions. Substantial variations were revealed in the molecular nature of SOM. As a proportion of soil carbon the proportion of the carbonyl component ranged from 0.006 to 0.05, charcoal from 0 to 0.15, protein from 0.09 to 0.29, aliphatic from 0.14 to 0.30, carbohydrate from 0.21 to 0.31, and lignin from 0.05 to 0.42. The relationships between Koc (sorption per unit mass of organic carbon) of carbaryl (1‐naphthyl methylcarbamate) and phosalone (S‐6‐chloro‐2,3‐dihydro‐2‐oxobenzoxazol‐3‐ylmethyl O,O‐diethyl phosphorodithioate) and the molecular nature of organic matter in the soils were significant. Of the molecular components estimated, lignin and charcoal contents correlated best with sorption of carbaryl and phosalone. Aliphatic, carbohydrate and protein contents were found to be negatively correlated with the Koc of both pesticides. The study highlights the importance of the molecular nature of SOM in determining sorption affinities of non‐ionic pesticides and presents an indirect method for sorption estimation of pesticides.  相似文献   

19.
Estimation of the phosphorus sorption capacity of acidic soils in Ireland   总被引:4,自引:0,他引:4  
The test for the degree of phosphorus (P) saturation (DPS) of soils is used in northwest Europe to estimate the potential of P loss from soil to water. It expresses the historic sorption of P by soil as a percentage of the soil's P sorption capacity (PSC), which is taken to be α (Alox + Feox), where Alox and Feox are the amounts of aluminium and iron extracted by a single extraction of oxalate. All quantities are measured as mmol kg soil?1, and a value of 0.5 is commonly used for the scaling factor α in this equation. Historic or previously sorbed P is taken to be the quantity of P extracted by oxalate (Pox) so that DPS = Pox/PSC. The relation between PSC and Alox, Feox and Pox was determined for 37 soil samples from Northern Ireland with relatively large clay and organic matter contents. Sorption of P, measured over 252 days, was strongly correlated with the amounts of Alox and Feox extracted, but there was also a negative correlation with Pox. When PSC was calculated as the sum of the measured sorption after 252 days and Pox, the multiple regression of PSC on Alox and Feox gave the equation PSC = 36.6 + 0.61 Alox+ 0.31 Feox with a coefficient of determination (R2) of 0.92. The regression intercept of 36.6 was significantly greater than zero. The 95% confidence limits for the regression coefficients of Alox and Feox did not overlap, indicating a significantly larger regression coefficient of P sorption on Alox than on Feox. When loss on ignition was employed as an additional variable in the multiple regression of PSC on Alox and Feox, it was positively correlated with PSC. Although the regression coefficient for loss on ignition was statistically significant (P < 0.001), the impact of this variable was small as its inclusion in the multiple regression increased R2 by only 0.028. Values of P sorption measured over 252 days were on average 2.75 (range 2.0–3.8) times greater than an overnight index of P sorption. Measures of DPS were less well correlated with water‐soluble P than either the Olsen or Morgan tests for P in soil.  相似文献   

20.

Purpose

Sorption of xenobiotics in soils and especially to soil organic matter (SOM) determines their mobility and bioavailability in ecosystems. However, SOM as the major sorbent may be altered in its physicochemical properties upon changes in boundary conditions such as hydration. Hence, the goal of this study was to determine the influence of soil hydration on physicochemical properties of SOM and the resulting effects on sorption of xenobiotics.

Materials and methods

Samples of a Histosol with 51?% SOM were adjusted to five water contents from 10 to 75?% (w/w based on dry soil mass) and aged for water contact times of 0?weeks to 3?years. The hydrated samples were characterized with respect to thermal properties of SOM and of the incorporated water via differential scanning calorimetry and with respect to hydration-induced swelling via 1H-NMR relaxometry, and the sessile drop method was applied to determine their soil?Cwater contact angle. Sorption kinetics and isotherms of naphthalene-2-ol in the pre-treated peat samples were determined in batch experiments.

Results and discussion

SOM matrix rigidity varied with the water content and increased with water contact time. An initial minimum in SOM rigidity at ~30?% water content became maximum after ~20?weeks, also resulting in the strongest resistance towards water infiltration. We argue that the anomalies at 30?% water content are related to the critical water content for the formation of freezable water w crit in the peat samples, which was 26.2?±?0.3?%. Conditions for water-assisted molecular bridging were assumably optimal at 30?% water content. Whereas parameters of naphthalene-2-ol sorption reflecting the sorbed amount were mainly altered by the wetting properties of SOM, sorption linearity and hysteresis were influenced by the anomalies in peat matrix properties at a water content around 30?%.

Conclusions

The study revealed that the interplay of SOM and water led to highly variable and complex changes in SOM physicochemical properties. These properties may serve as a predictor for sorption of xenobiotics in soil at varying hydration conditions enabling a more precise assessment of the environmental fate of xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号