首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Susceptibility weighted imaging (SWI) is a high resolution, fully velocity‐compensated, three‐dimensional gradient echo (GE) MRI technique. In humans, SWI has been reported to be more sensitive than T2*‐weighted GE sequences in the identification of both intracranial hemorrhage and intra‐vascular deoxyhemoglobin. However, published clinical studies comparing SWI to T2*‐weighted GE sequences in dogs are currently lacking. The aim of this retrospective, observational study was to compare SWI and T2*‐weighted GE sequences in a group of dogs with intracranial disease. Medical records were searched for dogs that underwent a brain MRI examination that included T2*‐weighted GE and SWI sequences. The presence and appearance of non‐vascular and vascular signal voids observed on T2*‐weighted GE and SWI were compared. Thirty‐two dogs were included with the following diagnoses: presumed and confirmed intracranial neoplasia (27), cerebrovascular accidents (3), and trauma (2). Hemorrhagic lesions were significantly more conspicuous on SWI than T2*‐weighted GE sequences (P < .0001). Venous structures were well defined in all SWI sequences, and poorly defined in all dogs on T2*‐weighted GE. Susceptibility weighted imaging enabled identification of vascular abnormalities in 30 of 32 (93.8%) dogs, including: neovascularization in 19 of 32 (59.4%) dogs, displacement of perilesional veins in five of 32 (15.6%) dogs, and apparent dilation of perilesional veins in 10 of 32 (31.3%) dogs. Presence of neovascularization was significantly associated with T1‐weighted post‐contrast enhancement (P = .0184). Hemorrhagic lesions and venous structures were more conspicuous on SWI compared to T2*‐weighted GE sequences. Authors recommend adding SWI to standard brain protocols in dogs for detecting hemorrhage and identifying venous abnormalities for lesion characterization.  相似文献   

2.
3.
Gadoxetate disodium (Gd‐EOB‐DTPA; gadolinium‐ethoxybenzyl‐diethylene triamine penta‐acetic acid) is a newly developed paramagnetic contrast agent reported to have a high specificity for the hepatobiliary system in humans. The purpose of this prospective study was to describe effects of Gd‐EOB‐DTPA contrast administration on MRI characteristics of the liver in eight clinically healthy dogs. Precontrast dorsal and transverse T1‐weighted spin echo, T2‐weighted fast spin echo, and transverse T1‐weighted 3D gradient echo (VIBE; volume‐interpolated body examination) pulse sequences were acquired for each dog. Dogs were assigned to four groups based on contrast dose administered (0.0125 mmol/kg or 0.025 mmol/kg), and pulse sequences acquired after contrast administration (T1‐weighted spin echo and T1‐weighted 3D gradient echo). Liver signal intensity ratios were calculated and compared between the two contrast dose groups and two postcontrast pulse sequence groups using ANOVA. No adverse effects of contrast administration were observed. All dogs exhibited homogeneous contrast enhancement of the liver with no statistical difference in enhancement between the two different contrast doses. Contrast enhancement in all dogs peaked between 1 and 10 min after intravenous injection. There was a significant difference in mean signal intensity ratios between sequences (P = 0.035) but not between doses (P = 0.421). Postcontrast signal intensities of the liver parenchyma were significantly higher for the T1‐weighted 3D gradient echo images when compared to the T1‐weighted spin echo sequences. Findings indicated that Gd‐EOB‐DTPA contrast administration is safe in healthy dogs and causes homogeneous enhancement of the liver that is more pronounced in T1‐weighted 3D gradient echo MRI pulse sequences.  相似文献   

4.
Volumetric imaging (VOL), a three‐dimensional magnetic resonance imaging (MRI) technique, has been described in the literature for evaluation of the human brain. It offers several advantages over conventional two‐dimensional (2D) spin echo (SE), allowing rapid, whole‐brain, isotropic imaging with submillimeter voxels. This retrospective, observational study compares the use of 2D T1‐weighted SE (T1W SE), with T1W VOL, for the evaluation of dogs with clinical signs of intracranial disease. Brain MRI images from 160 dogs who had T1W SE and T1W VOL sequences acquired pre‐ and postcontrast, were reviewed for presence and characteristics of intracranial lesions. Twenty‐nine of 160 patients were found to have intracranial lesions, all visible on both sequences. Significantly better grey‐white matter (GWM) differentiation was identified with T1W VOL (P < .001), with fair agreement between the two sequences (weighted κ = 0.35). Excluding a mild reduction in lesion intensity in three dogs precontrast on the T1W VOL images compared to T1W SE, and meningeal enhancement noted on the T1W VOL images in one dog, not identified on T1W SE, there was otherwise complete agreement between the two sequences. The T1W VOL sequence provided equivalent lesion evaluation and significantly improved GWM differentiation. Images acquired were of comparable diagnostic quality to those produced using a conventional T1W SE technique, for assessment of lesion appearance, number, location, mass effect, and postcontrast enhancement. T1W VOL, therefore, provides a suitable alternative T1W sequence for canine brain evaluation and can facilitate a reduction in total image acquisition time.  相似文献   

5.
Objective : To describe the patterns of enhancement of extradural intervertebral disc on chemically fat saturated gadolinium‐enhanced magnetic resonance images and to investigate the clinical and pathological associations with enhancement. Methods : Medical records and magnetic resonance images were reviewed from 30 dogs with histopathologically confirmed disc disease and enhancement on a T1‐weighted postcontrast fat saturated sequence. Results : Median duration of neurological signs was 4 days and the most common grade of severity was II, seen in 46·6% of dogs. Homogeneous, heterogeneous and peripheral patterns of disc enhancement were described, with peripheral enhancement most commonly identified (57% of dogs). There were no clinical or pathological differences between the dogs with each of the patterns. The mean signal intensity of a region of interest within the extruded disc material and contrast‐to‐noise ratio of the disc material were significantly higher on postcontrast T1‐weighted fat saturated images (P=<0·0001 each). Clinical Significance : The use of fat saturated gadolinium‐enhanced magnetic resonance imaging can detect enhancement of extradural disc material. Patterns of enhancement are not associated with the clinical presentation or pathological features.  相似文献   

6.
Understanding the normal course and optimizing visualization of the canine peripheral nerves of the lumbar plexus, in particular the sciatic and the femoral nerves, is essential when interpreting images of patients with suspected peripheral neuropathies such as inflammatory or neoplastic conditions. The purpose of this prospective, anatomic study was to describe the magnetic resonance imaging (MRI) anatomy of the normal canine femoral and sciatic nerves and to define the sequences in which the nerves are best depicted. A preliminary postmortem cadaver study was performed to determine optimal sequences and imaging protocol. In a second step the optimized technique was implemented on 10 healthy Beagle dogs, included in the study. The applied protocol included the following sequences: T1‐weighted, T2‐weighted, T2‐Spectral Attenuated Inversion Recovery, T1‐weighted postcontrast and T1‐Spectral Presaturated Inversion Recovery postcontrast. All sequences had satisfactory signal‐to‐noise ratio and contrast resolution in all patients. The sciatic and femoral nerves were seen in all images. They were symmetric and of homogeneous signal intensity, being iso‐ to mildly hyperintense to muscle on T2‐weighted, mildly hyperintense in T2‐Spectral Attenuated Inversion Recovery, and iso‐ to mildly hypointense in T1‐weighted images. No evidence of contrast enhancement in T1‐weighted and T1‐Spectral Presaturated Inversion Recovery postcontrast sequences was observed. The anatomic landmarks helpful to identify the course of the femoral and sciatic nerves are described in detail. This study may be used as an anatomical reference, depicting the normal canine femoral and sciatic nerves at 3 Tesla MRI.  相似文献   

7.
Magnetic resonance imaging (MRI) is commonly used to diagnose degenerative lumbosacral stenosis; however, studies show limited correlation between imaging and clinical signs. The purpose of this prospective observer agreement study was to use dynamic MRI of the lumbosacral (LS) spine of healthy dogs to determine reliable reference ranges. Twenty‐two healthy large breed dogs were prospectively enrolled. MRI of the LS spine was performed in T2‐weighted, T1‐weighted, and T2‐weighted SPACE sequences in neutral, flexed, and extended positions. Four observers performed image analyses. Measurements included LS angle, vertebral canal height and area, and LS foraminal areas. Ordinal categorical assessment of loss of fat signal in the foramina, LS compression, intervertebral disc (IVD) degeneration, spondylosis, and IVD protrusion was also performed. The majority of values were significantly larger in flexion versus neutral position, and significantly smaller in extension versus neutral position (P < .05). Subclinical compression and IVD protrusion was noted in a neutral position in 45% and 55% of dogs and in an extended position in 85% and 73% of dogs, respectively. Interobserver agreement was strong (intracluster correlation coefficient [ICC] > .5) except for the L7:LS vertebral canal area ratio (ICC ≤ .03). Intraobserver agreement was high (rho > .5) for all measurements except for the mid‐L6:LS vertebral canal height ratio (rho = .38). There was poor interobserver agreement for loss of fat signal in the foramina and evidence of compression. This study provides the groundwork for future studies using dynamic MRI to evaluate dogs with signs of clinical LS disease.  相似文献   

8.
Thoracic CT may be used in the workup of patients with pleural effusion. In humans, certain pleural features on CT aid in diagnosing an underlying cause for pleural effusion, whereas this is not well studied in veterinary medicine. This retrospective cross‐sectional analytical study assessed pleural and other intrathoracic abnormalities on CT in dogs and cats with pleural effusion and explored potential discriminatory features between effusion types. Eighty‐nine dogs and 32 cats with pleural cytology and/or histopathology were categorized into malignant pleural disease (15 dogs and 11 cats), pyothorax (34 dogs and 7 cats), chylothorax (20 dogs and 11 cats), transudative (11 dogs and 2 cats), and hemorrhagic effusion (9 dogs and 1 cat). Multivariable logistic regression analysis comparing malignancy to other effusions found that older patient age (dogs: odds ratio 1.28, P = 0.015; cats: odds ratio 1.53, P = 0.005), nodular diaphragmatic pleural thickening (dogs: odds ratio 7.64, P = 0.021; cats: odds ratio 13.67, P = 0.031), costal pleural masses (dogs: odds ratio 21.50, P = 0.018; cats: odds ratio 32.74, P = 0.019), and pulmonary masses (dogs: odds ratio 44.67, P = 0.002; cats: odds ratio 18.26, P = 0.077) were associated with malignancy. In dogs, any costal pleural abnormality (odds ratio 47.55, P = 0.002) and pulmonary masses (odds ratio 10.05, P = 0.004) were associated with malignancy/pyothorax, whereas any costal pleural abnormality (odds ratio 0.14, P = 0.006) and sternal lymphadenopathy (odds ratio 0.22, P = 0.040) were inversely associated with transudates. There were, however, many overlapping abnormalities between effusion types, so further diagnostic testing remains important for diagnosis.  相似文献   

9.
In order to compare the accuracy of MR sequences for diagnosis of meningeal disease, MR images of the brain, and histopathologic specimens including the meninges of 60 dogs were reviewed retrospectively by independent observers in a cross‐sectional study. MR images included T1‐weighted pre‐ and postgadolinium images, subtraction images, T2‐weighted images, and T2‐weighted fluid‐attenuated inversion‐recovery (FLAIR) images. Pathologic changes affected the pachymeninges in 16 dogs, leptomeninges in 35 dogs, and brain in 38 dogs. The meninges were normal in 12 dogs. Meninges were classified histopathologically as normal (grade 0), slightly or inconsistently affected (grade 1), or markedly affected (grade 2). When applying relaxed pathologic criteria (grades 0 and 1 considered normal), the results of ROC analysis (area under curve, AUC) were: T1‐weighted postcontrast images 0.74; subtraction images 0.7; T2‐weighted images 0.68; FLAIR images 0.56. The difference in AUC between T1‐weighted postgadolinium images and FLAIR images was significant (P = 0.04). AUC for FLAIR images was not significantly different from 0.5. When applying strict pathologic criteria (only grade 0 considered normal), none of the MR sequences had AUC significantly different from 0.5. On the basis of T1‐weighted postgadolinium images and subtraction images, correct anatomic classification of lesions occurred more often for pachymeningeal than leptomeningeal lesions (P < 0.001). Overall, MR imaging had low sensitivity for diagnosis of meningeal pathology in dogs, particularly for changes affecting the leptomeninges. Subtraction images had similar accuracy to T1‐weighted postgadolinium images for meningeal lesions in dogs. T2‐weighted FLAIR images appear to have limited diagnostic utility for meningeal lesions.  相似文献   

10.
Vertebral lesions and associated neurological signs occur in dogs with multiple myeloma, however, veterinary literature describing MRI findings is currently lacking. The objective of this multicenter, retrospective, case series study was to describe neurological signs and MRI findings in a group of dogs that presented for spinal pain or other neurological deficits and had multiple myeloma. Electronic records of four veterinary referral hospitals were reviewed. Dogs were included if they had a pathologically confirmed diagnosis of multiple myeloma, had presented for spinal pain or other neurological signs, and had undergone MRI of the vertebral column. The MRI studies were evaluated and the anatomical location of lesion(s), signal intensity, presence of extra‐dural material, degree of spinal cord compression, extent of vertebral lesions, and contrast enhancement were recorded. Twelve dogs met inclusion criteria. Most dogs (n = 8) had a chronic progressive history, with varying degrees of proprioceptive ataxia and paresis (n = 11), and spinal pain was a feature in all dogs. The MRI findings were variable but more consistent features included the presence of multiple expansile vertebral lesions without extension beyond the outer cortical limits of affected vertebrae, and associated extradural material causing spinal cord compression. The majority of lesions were hyper‐ to isointense on T2 (n = 12) and T1‐weighted (n = 8) sequences, with variable but homogeneous contrast‐enhancement (n = 12). These described MRI characteristics of multiple myeloma may be used to aid early identification and guide subsequent confirmatory diagnostic steps, to ultimately improve therapeutic approach and long‐term outcome.  相似文献   

11.
Clinical and imaging diagnosis of canine insulinomas has proven difficult due to nonspecific clinical signs and the small size of these tumors. The aim of this retrospective case series study was to describe MRI findings in a group of dogs with pancreatic insulinomas. Included dogs were presented for suspected pancreatic insulinoma, MRI was used to assist with localization of the primary lesion, and the diagnosis was confirmed with surgical exploratory laparotomy and histopathology. The MRI studies for each dog were retrieved and the following data were recorded: T1‐weighted and T2‐weighted signal intensities, type of contrast enhancement, size and location of the primary lesion, and characteristics of metastatic lesions (if present). A total of four dogs were sampled. In all patients, the insulinoma displayed high‐intensity signal on T2‐weighted fat saturation images, similar to human studies. On postcontrast T1‐weighted fat saturation images, the tumors were primarily isointense to normal pancreatic tissue, in contrast to human studies where a low‐intensity signal is typically identified. Abnormal islet tissue was detected with MRI in all four dogs and metastases were identified in three dogs. Variations in the MRI appearance of primary and metastatic lesions were identified and could have been related to the variation of tissue composition, including the presence of neoplastic cells, hemorrhage, and fibrovascular stroma, and to the transformation of this tissue throughout the disease process.  相似文献   

12.
T2*‐weighted magnetic resonance imaging (MRI) has been reported to help improve detection of intracranial hemorrhage and is widely used in human neuroimaging. To assess the utility of this technique in small animals, interpretations based on this sequence were compared with those based on paired T2‐weighted and fluid‐attenuated inversion recovery (FLAIR) sequences in 200 dogs and cats that underwent brain MRI for suspected intracranial disease. Two sets of images (T2 + FLAIR and T2*) were reviewed separately in random order unaccompanied by patient information and were interpreted as normal or abnormal based on whether intracranial abnormalities were seen. The number and location of intracranial lesions were recorded. Eighty‐five studies were considered normal and 88 were considered abnormal based on both sets of images, with good agreement (κ = 0.731) between the two. Susceptibility artifact was present in 33 cases (16.5%) on T2*‐weighted images. In 12 cases (6%) a total of 69 lesions were seen on T2*‐weighted images that were not seen on T2/FLAIR, all of which were associated with susceptibility artifact caused by presumed intracranial hemorrhage. Pseudolesions were seen on T2*‐weighted images in five cases, none of which were associated with susceptibility artifact. Abnormalities were seen on T2/FLAIR images that were not seen on T2*‐weighted images in 35 cases, confirming that T2* does not replace standard spin echo sequences. These results support inclusion of T2*‐weighted sequences in small animal brain MRI studies and indicate that that a large number of abnormalities (especially hemorrhagic lesions) can go undetected if it is not performed.  相似文献   

13.
Magnetic resonance (MR) imaging characteristics of intracranial granular cell tumors (GCTs) have been previously reported in three dogs. The goal of this retrospective study was to examine a larger number of dogs and determine whether distinctive MR characteristics of intracranial GCTs could be identified. Six dogs with histologically confirmed intracranial GCTs and MR imaging were included. Tumor location, size, mass effect, T1‐ and T2‐weighted signal intensity, and peritumoral edema MR characteristics were recorded. In all dogs, GCTs appeared as well‐defined, extra‐axial masses with a plaque‐form, sessile distribution involving the meninges. All tumors were located along the convexity of the cerebrum, the falx cerebri, or the ventral floor of the cranial vault. All tumors were mildly hyperintense on T1‐weighted images, and iso‐ to hyperintense on T2‐weighted images. A moderate‐to‐severe degree of peritumoral edema and mass effect were evident in all dogs. Findings indicated that, while several MR imaging characteristics were consistently identified in canine cerebral GCTs, none of these characteristics were unique or distinctive for this tumor type alone.  相似文献   

14.
Evaluation of brain disease in veterinary patients uses a wide variety of MRI sequences. A shortened protocol that maintains consistency of interpretation would reduce radiologist reporting time, patient anesthetic time, and client cost. The aims of this retrospective, methods comparison, observer agreement study were to evaluate whether abbreviated MRI protocols alter differential diagnoses and recommendations compared to our institution's standard protocol; evaluate interobserver agreement on standard brain MRIs; and assess whether differential diagnoses change after postcontrast images. Normal and pathologic canine and feline brain MRIs were retrieved from hospital archives. Three protocols were created from each: a 5-sequence noncontrast enhanced Fast Brain Protocol 1 (FBP1); a 6-sequence contrast-enhanced Fast Brain Protocol 2 (FBP2); and an 11-sequence standard brain protocol (SBP). Three blinded veterinary radiologists interpreted FBP images for 98 cases (1 reader/case) and SBP images for 20 cases (3 readers/case). A fourth observer compared these interpretations to the original MRI reports (OMR). Overall agreement between FBPs and OMR was good (k = 0.75) and comparable to interobserver agreement for multiple reviews of SBP cases. Postcontrast images substantially altered conclusions in 17/97 cases (17.5%), as well as improved interobserver agreement compared to noncontrast studies. The conclusions reached with shortened brain protocols were comparable to those of a full brain study. The findings supported the use of a 6-sequence brain MRI protocol (sagittal T2-weighted [T2w] TSE; transverse T2w turbo spin echo fluid-attenuated inversion recovery, T2*-weighted gradient recalled echo, T1-weighted spin echo, and diffusion weighted imaging/apparent diffusion coefficient; and postcontrast transverse T1-weighted spin echo) for dogs and cats with suspected intracranial disease.  相似文献   

15.
A delay in imaging following intravenous contrast medium administration has been recommended to reduce misdiagnoses. However, the normal variation of contrast enhancement in dogs following a delay has not been characterized. Contrast‐enhanced MR imaging of 22 dogs was assessed, in terms of identification of normal anatomic structures, to investigate the variation associated with 10‐min delay between contrast medium administration and imaging. All dogs had a normal brain MR imaging study and unremarkable cerebrospinal fluid. Specific regions of interest were assessed both objectively, using computer software, and subjectively using three observers. Mean contrast enhancement >10% was seen in the pituitary gland, choroid plexus, meninges, temporal muscle, trigeminal nerve, and the trigeminal nerve root. Structures with an active blood–brain barrier had minimal contrast enhancement (<6%). Enhancing structures had significantly more contrast enhancement at t=1 min vs. t=10 min, except in temporal muscle, the trigeminal nerve and the trigeminal nerve root. Interobserver agreement was moderate to good in favor of the initial postcontrast T1‐weighted (T1w) sequence. The observers found either no difference or poor agreement in identification of the nonvascular structures. Intraobserver agreement was very good with all vascular structures and most nonvascular structures. A degree of meningeal enhancement was a consistent finding. The initial acquisition had higher enhancement characteristics and observer agreement for some structures; however, contrast‐to‐noise was comparable in the delayed phase or not significantly different. We provide baseline references and suggest that the initial T1w postcontrast sequence is preferable but not essential should a delayed postcontrast T1w sequence be performed.  相似文献   

16.
The CT appearance of canine adrenal masses has been reported, but associations between imaging features and pathologic features of these lesions have not been investigated in detail. The purpose of this study was to test associations between different types of adrenal neoplasia and their CT and pathologic features. A retrospective cross‐sectional study was performed and inclusion criteria were histologic diagnosis of primary adrenal neoplasia, contrast‐enhanced CT examination of the abdomen and surgical resection of the mass or necropsy examination. For all included dogs, CT images and histopathologic specimens were reviewed independently by two veterinary radiologists and a veterinary pathologist, respectively. Seventeen dogs met inclusion criteria. Diagnoses were adenocarcinoma in nine (53%) dogs, pheochromocytoma in five (29%) dogs, and adenoma in three (18%) dogs. Pheochromocytoma was associated with CT signs of vascular invasion (likelihood ratio = 4.8, 95% CI = 1.3–18.3, P = 0.03) and macroscopic vascular invasion (likelihood ratio = 9.6, 95% CI = 1.4–65.9, P = 0.02). There was excellent agreement between signs of vascular invasion in CT images and vascular invasion at surgery or necropsy (kappa = 0.86, P = 0.001). A peripheral contrast‐enhancing rim in delayed postcontrast CT images was associated with fibrous encapsulation of the tumor (kappa = 0.53, P = 0.05), and a heterogeneous pattern of contrast distribution in delayed postcontrast CT images was associated with adrenal hemorrhage or infarction on histological examination (kappa = 0.45, P = 0.05). Findings indicated that CT enabled assessment of adrenal neoplasia features that reflected their biological behavior and pathological findings, however overlapping characteristics between tumor types limited the potential for reliably distinguishing them based on CT alone.  相似文献   

17.
A 6‐year‐old domestic short‐haired cat was presented with an acute onset of right cortical encephalopathy. Magnetic resonance imaging (MRI) performed 4 days after the onset of clinical signs revealed a lesion originating from the right frontal sinus with intracranial extension and compression of the right frontal lobe. The lesion was T1‐weighted hypointense and T2‐weighted and fluid‐attenuated inversion recovery hyperintense. Signal voids within the lesion were observed on T2* images, consistent with hemorrhage. Peripheral ring enhancement was visible on postcontrast sequences. These features were consistent with a giant hemorrhagic mucocele. To the authors’ knowledge, this is the first report of MRI characteristics of this lesion in a cat.  相似文献   

18.
Flexor enthesopathy is a recently recognized elbow disorder in dogs and considered to be an important differential diagnosis for elbow lameness. Primary and concomitant forms of the disease have been previously described and treatments differ for the two forms. The goal of this prospective study was to compare magnetic resonance imaging (MRI) findings for dogs with primary flexor enthesopathy (n = 17), concomitant flexor enthesopathy (n = 23), elbow dysplasia alone (n = 13), and normal elbows (n = 7). Each elbow joint underwent MRI using the same low‐field scanner. Sequences included transverse and sagittal T1‐weighted (before and after IV contrast), transverse and sagittal T2‐weighted, and dorsal STIR. For each elbow, MRI lesions were recorded based on a consensus of two observers unaware of group status. Magnetic resonance imaging lesions involving flexor tendons were found in 100% of clinically affected joints with primary flexor enthesopathy and 96% of clinically affected joints with concomitant flexor enthesopathy. Thickened flexor muscles were the most common lesions, followed by hyperintense tendon signal and contrast enhancement. Irregular, thickened medial humeral epicondyle, edema, and calcified body lesions were less frequently observed. Magnetic resonance imaging characteristics of flexor enthesopathy were not found in normal joints or those affected by elbow dysplasia alone. No significant differences in frequencies and details of individual MRI characteristics were found between primary and concomitant flexor enthesopathy groups. Findings indicated that MRI is a sensitive technique for detection of flexor enthesopathy lesions in dogs, however, MRI characteristics do not allow differentiation of primary versus concomitant forms of the disease.  相似文献   

19.
Intracranial hypertension is a cause of cerebral ischemia and neurologic deficits in dogs. Goals of this retrospective study were to test interobserver agreement for MRI measurements of optic nerve sheath diameter and associations between optic nerve sheath diameter, signalment data, and presumed intracranial hypertension status in a cohort of dogs. A veterinary radiologist interpreted scans of 100 dogs and dogs were assigned to groups based on presence or absence of at least two MRI characteristics of presumed intracranial hypertension. Two observers who were unaware of group status independently measured optic nerve diameter from transverse T2‐weighted sequences. Mean optic nerve sheath diameter for all dogs was 3 mm (1–4 mm). The mean difference between observers was 0.3 mm (limits of agreement, ?0.4 and 1.0 mm). There was no correlation between optic nerve sheath diameter and age for either observer (r = ?0.06 to 0.00) but a moderate positive correlation was observed between optic nerve sheath diameter and body weight for both observers (r = 0.70–0.76). The 22 dogs with presumed intracranial hypertension weighed less than the 78 dogs without (P = 0.02) and were more often female (P = 0.04). Dogs with presumed intracranial hypertension had a larger ratio of optic nerve sheath diameter to body weight for each observer‐side pair (P = 0.01–0.04) than dogs without. Findings indicated that the ratio of MRI optic nerve sheath diameter relative to body weight may be a repeatable predictor of intracranial hypertension in dogs.  相似文献   

20.
The inner ear contains endolymph and perilymph. The second is comparable and in continuity with the cerebrospinal fluid (CSF) so it is expected to suppress in fluid‐attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) if normal. Even though inner ear FLAIR abnormalities have been extensively described in humans with inner ear disease, its diagnostic value in dogs is yet to be proven. The goal of this retrospective cohort study was to investigate the diagnostic utility of FLAIR MRI in dogs with vestibular disease. A review of medical records identified 101 dogs that had brain MRI performed because of vestibular signs. Based on the final diagnosis, patients were allocated to three groups: otitis media/interna, idiopathic vestibular disease, and central vestibular disease. Additionally, a control group (n = 73) included dogs with normal MRI and without vestibular signs. Inner ears were delineated using a region of interest, and signal intensity was measured in FLAIR and T2‐weighted images. The percentages of suppression in FLAIR were calculated and compared between affected and unaffected sides of each individual and between groups using a general linear mixed model. Correlation between suppression and CSF cell count and protein concentration was assessed. Affected inner ears in dogs with otitis media/interna had decreased suppression in FLAIR compared to the unaffected side (P < .001), and all other groups (P < .01). No significant correlation was detected between CSF results and suppression. These results show the diagnostic value of FLAIR in otitis media/interna due to lack of suppression in the affected inner ear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号