首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.  相似文献   

3.
The records of four dogs with cervical spinal cord meningiomas were retrospectively reviewed. Signalment, history, laboratory findings, neurological examination, and histopathological findings were evaluated. Magnetic resonance imaging (MRI) was performed using a 1.0-T superconducting magnet and T2-weighted (W) and noncontrast and postcontrast T1-W spin echo pulse sequences. Meningiomas were located at the level of the second, third, and fifth cervical vertebrae and the C2-3 intervertebral space. All meningiomas appeared as focal masses that were hyperintense to the spinal cord on T2-W images and iso- to hypointense on the T1-W images. They could be identified as intradural and extramedullary in origin based on a broad-based dural margin seen on at least one of the imaging planes and a gradual expansion of the subarachnoid space cranial and caudal to the mass, best noted on the transverse and dorsal plane images. On dorsal plane T2-W images in three dogs, expansion of the subarachnoid space adjacent to the mass appeared similar to the myelographic "golf tee" sign. All meningiomas exhibited moderate, well-defined contrast enhancement with dural tails seen in three of the four dogs. One dog had extension into the intervertebral foramen along the nerve and ipsilateral atrophy of the muscles of the neck. By differentiating the meningiomas from intramedullary tumors and by clearly depicting the extent of the masses, MRI provided valuable information about treatment options and prognosis.  相似文献   

4.
Volumetric imaging (VOL), a three‐dimensional magnetic resonance imaging (MRI) technique, has been described in the literature for evaluation of the human brain. It offers several advantages over conventional two‐dimensional (2D) spin echo (SE), allowing rapid, whole‐brain, isotropic imaging with submillimeter voxels. This retrospective, observational study compares the use of 2D T1‐weighted SE (T1W SE), with T1W VOL, for the evaluation of dogs with clinical signs of intracranial disease. Brain MRI images from 160 dogs who had T1W SE and T1W VOL sequences acquired pre‐ and postcontrast, were reviewed for presence and characteristics of intracranial lesions. Twenty‐nine of 160 patients were found to have intracranial lesions, all visible on both sequences. Significantly better grey‐white matter (GWM) differentiation was identified with T1W VOL (P < .001), with fair agreement between the two sequences (weighted κ = 0.35). Excluding a mild reduction in lesion intensity in three dogs precontrast on the T1W VOL images compared to T1W SE, and meningeal enhancement noted on the T1W VOL images in one dog, not identified on T1W SE, there was otherwise complete agreement between the two sequences. The T1W VOL sequence provided equivalent lesion evaluation and significantly improved GWM differentiation. Images acquired were of comparable diagnostic quality to those produced using a conventional T1W SE technique, for assessment of lesion appearance, number, location, mass effect, and postcontrast enhancement. T1W VOL, therefore, provides a suitable alternative T1W sequence for canine brain evaluation and can facilitate a reduction in total image acquisition time.  相似文献   

5.
F. Audigié  DVM  PhD    J. Tapprest  DVM  PhD    C. George  DVM    D. Didierlaurent  N. Foucher  F. Faurie  DVM    M. Houssin  DVM    J.-M. Denoix  DVM  PhD 《Veterinary radiology & ultrasound》2004,45(3):210-215
The purpose of this paper was to correlate the magnetic resonance imaging (MRI) characteristics of a mature brain abscess in a horse with histopathologic alterations of brain tissue. Eight months after the onset of clinical signs, MRI of the brain of a 10-month-old filly was performed. A large space-occupying lesion in the right cerebral hemisphere was identified. This space-occupying lesion was delineated by a thick and well-defined capsule that was isointense to brain parenchyma on the T1-weighted images and with a markedly hypointense on the T2-weighted images. The identification of such a capsule is highly diagnostic of a mature brain abscess. The lesion seen on MR images was confirmed at necropsy where a large abscess of the right hemisphere was observed. Streptococcus zooepidemicus and Pseudomonas aeruginosa were isolated from the abscess. Based on histopathologic examination, the signal characteristics of the capsule on T1-weighted and T2-weighted images were found to be due to the presence of numerous hemosiderin-laden macrophages. These results are in agreement with previous studies on human patients. This report confirms the value of MRI in the diagnosis of equine brain diseases.  相似文献   

6.
T2-weighted fast spin echo and conventional spin echo are two magnetic resonance (MR) pulse sequences used to image the brain. Given the same scan parameters the resolution of fast spin-echo images will be inferior to that of conventional spin-echo images. However, fast spin-echo images can be acquired in a shorter time allowing scan parameters to be optimized for increased resolution without increasing the time to an unacceptable level. MR imaging of the brain of 54 dogs, suspected of having parenchymal brain abnormalities was performed using a 1.5 T scanner. Acquisition time ranged from 4 min 24 s to 7 min 16 s (average = 5 min 15 s) for fast spin-echo scans and from 6 min 32 s to 11 min 26s (average = 7 min 55s) for conventional spin-echo scans. All reviewers consistently rated the resolution of fast spin-echo images higher than the conventional spin-echo images (P = 0.000). The potential disadvantages of fast spin-echo acquisitions (motion artifacts, blurring, and increased hyperintensity of fat) did not affect the resolution of the images. Fast spin echo offers increased resolution in a comparable time to conventional spin echo by increased number of excitations and finer matrix size, thus improving the signal-to-noise ratio and spatial resolution, respectively.  相似文献   

7.
In humans, contrast-enhanced fluid-attenuated inversion recovery (FLAIR) imaging plays an important role in detecting brain disease. The aim of this study was to define the clinical utility of contrast-enhanced FLAIR imaging by comparing the results with those with contrast-enhanced spin echo T1-weighted images (SE T1WI) in animals with different brain disorders. Forty-one dogs and five cats with a clinical suspicion of brain disease and 30 normal animals (25 dogs and five cats) were evaluated using a 0.2 T permanent magnet. Before contrast medium injection, spin echo T1-weighted, SE T1WI, and FLAIR sequences were acquired in three planes. SE T1WI and FLAIR images were also acquired after gadolinium injection. Sensitivity in detecting the number, location, margin, and enhancement pattern and rate were evaluated. No lesions were found in a normal animal. In affected animals, 48 lesions in 34 patients were detected in contrast-enhanced SE T1WI whereas 81 lesions in 44 patients were detected in contrast-enhanced FLAIR images. There was no difference in the characteristics of the margins or enhancement pattern of the detected lesions. The objective enhancement rate, the mean value between lesion-to-white matter ratio and lesion-to-gray matter ratio, although representing an overlap of T1 and T2 effects and not pure contrast medium shortening of T1 relaxation, was better in contrast-enhanced FLAIR images. These results suggest a superiority of contrast-enhanced FLAIR images as compared with contrast-enhanced SE T1WI in detecting enhancing brain lesions.  相似文献   

8.
9.
Magnetic resonance imaging (MRI) artifacts secondary to metallic implants and foreign bodies are well described. Herein, we provide quantitative data from veterinary implants including total hip arthroplasty implants, cranial cruciate repair implants, surgical screws, a skin staple, ligation clips, an identification microchip, ameroid constrictor, and potential foreign bodies including air gun and BB projectiles and a sewing needle. The objects were scanned in a gelatin phantom with plastic grid using standardized T2-weighted turbo-spin echo (TSE), T1-weighted spin echo, and T2*-weighted gradient recalled echo (GRE) image acquisitions at 1.5 T. Maximum linear dimensions and areas of signal voiding and grid distortion were calculated using a DICOM workstation for each sequence and object. Artifact severity was similar between the T2-weighted TSE and T1-weighted images, while the T2*-weighted images were most susceptible to artifact. Metal type influenced artifact size with the largest artifacts arising from steel objects followed by surgical stainless steel, titanium, and lead. For animals with metallic surgical implants or foreign bodies, the quantification of the artifact size will help guide clinicians on the viability of MRI.  相似文献   

10.
OBJECTIVES: To compare the value of different magnetic resonance sequences in the detection of brain lesions in dogs with multi-focal intracranial neurolocalised lesions and abnormal cisternal cerebrospinal fluid analysis. METHODS: T2-weighted, T1-weighted, T1-weighted-Gd, FLAIR (fluid attenuated inversion recovery) images of 73 dogs with multi-focal intracranial localised lesions were reviewed retrospectively. Control dogs (19) were selected on the basis of normal neurological examination, magnetic resonance images and cerebrospinal fluid analysis. Two board-certified radiologists blindly reviewed the magnetic resonance images. Magnetic resonance sequence sensitivities were compared using the chi-squared test and logistic regression, accounting for clustering at the patient level. Statistical significance was set at the 5 per cent level. RESULTS: The FLAIR sequence was found to have the highest sensitivity (84 per cent, 61 of 73), followed by T2-weighted (63 per cent, 46 of 73), T1-weighted postcontrast (62 per cent, 45 of 73) and T1-weighted (23 per cent, 17 of 73) (P<0.001). FLAIR images were 106.1 times (95 per cent confidence interval 25.2 to 447.5) more likely to correctly identify cerebrospinal fluid-positive patients than T1-weighted, 6.4 times (95 per cent confidence interval 2.2 to 18.2) than T1-weighted postcontrast and 5.8 times (95 per cent confidence interval 2.0 to 16.4) than T2-weighted. FLAIR identified 14 per cent of cases that were classified as normal based on the three others sequences. CLINICAL SIGNIFICANCE: Routine use of FLAIR sequence should be encouraged in dogs undergoing a brain magnetic resonance imaging and probably more specifically in cases of suspected inflammatory brain disease.  相似文献   

11.
The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images.  相似文献   

12.
The purpose of this study was to describe the appearance of the femoral head of normal, young, small breed dogs, and dogs with avascular necrosis using low-field (0.3 T) magnetic resonance (MR) imaging. Images of the femoral heads were obtained in the dorsal plane, and included T1-weighted spin-echo, T2-weighted fast spin-echo, fast spin echo-inversion recovery, and fluid attenuated inversion recovery pulse sequences. MR imaging features of the asymptomatic femoral heads and necks included uniform high signal intensity compared with muscle on T1- and T2-weighted images. There was either uniform enhancement or no enhancement on postcontrast T1-weighted images. The MR imaging findings of dogs affected with avascular necrosis differed from those of asymptomatic dogs. Typically, the affected dogs had inhomogeneous intermediate to low-signal intensity within the femoral head and neck compared with muscle on T1-weighted images, inhomogeneous enhancement of the femoral head and/or neck on postcontrast T1-weighted images, and inhomogeneous low- to high- signal intensity within the femoral head and neck on T2-weighted images.  相似文献   

13.
Janet S.  Muleya  BVM  MVM  Yasuho  Taura  DVM  Ph.D.  Munekazu  Nakaichi  DVM  PhD.  Sanenori  Nakama  DVM  Ph.D.  Akira  Takeuchi  DVM  Ph.D. 《Veterinary radiology & ultrasound》1997,38(6):444-447
The study was carried out to evaluate the applicability of magnetic resonance imaging (MRI) in detecting tumors in the abdomen of the dog. Abdominal ultrasound and MRI were performed on 8 dogs having a mass lesion on abdominal radiography. MR images were obtained in the transverse, sagittal and dorsal planes using T1- and T2-weighted spin echo pulse sequences. There was good visual correlation of the lesion site by MRI and ultrasonography (US).  相似文献   

14.
This article describes the MRI features of a middle ear cholesteatoma in an 8 yr old flat-coated retriever. Physical examination revealed pain on opening the jaw, and otoscopic examination showed tympanic membrane rupture associated with hyperplastic tissue at the entrance of the middle ear. Standard MRI sequences allowed for the identification of a severely expanded bulla containing material that was isointense to brain tissue on T1-weighted images and of mixed intensity on T2-weighted and fluid-attenuated inversion recovery sequences. No postcontrast enhancement of the content was present, but the lining of the bulla was partially enhanced. The images allowed evaluation of the surgical margins and the secondary changes due to the expansion of the mass. Surgery was performed and histopathology confirmed the presumptive diagnosis of cholesteatoma. In the present case, MRI appeared to serve as a good alternative to computed tomography for the diagnosis of cholesteatoma.  相似文献   

15.
The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.  相似文献   

16.
Gadoxetate disodium (Gd‐EOB‐DTPA; gadolinium‐ethoxybenzyl‐diethylene triamine penta‐acetic acid) is a newly developed paramagnetic contrast agent reported to have a high specificity for the hepatobiliary system in humans. The purpose of this prospective study was to describe effects of Gd‐EOB‐DTPA contrast administration on MRI characteristics of the liver in eight clinically healthy dogs. Precontrast dorsal and transverse T1‐weighted spin echo, T2‐weighted fast spin echo, and transverse T1‐weighted 3D gradient echo (VIBE; volume‐interpolated body examination) pulse sequences were acquired for each dog. Dogs were assigned to four groups based on contrast dose administered (0.0125 mmol/kg or 0.025 mmol/kg), and pulse sequences acquired after contrast administration (T1‐weighted spin echo and T1‐weighted 3D gradient echo). Liver signal intensity ratios were calculated and compared between the two contrast dose groups and two postcontrast pulse sequence groups using ANOVA. No adverse effects of contrast administration were observed. All dogs exhibited homogeneous contrast enhancement of the liver with no statistical difference in enhancement between the two different contrast doses. Contrast enhancement in all dogs peaked between 1 and 10 min after intravenous injection. There was a significant difference in mean signal intensity ratios between sequences (P = 0.035) but not between doses (P = 0.421). Postcontrast signal intensities of the liver parenchyma were significantly higher for the T1‐weighted 3D gradient echo images when compared to the T1‐weighted spin echo sequences. Findings indicated that Gd‐EOB‐DTPA contrast administration is safe in healthy dogs and causes homogeneous enhancement of the liver that is more pronounced in T1‐weighted 3D gradient echo MRI pulse sequences.  相似文献   

17.
T2*‐weighted magnetic resonance imaging (MRI) has been reported to help improve detection of intracranial hemorrhage and is widely used in human neuroimaging. To assess the utility of this technique in small animals, interpretations based on this sequence were compared with those based on paired T2‐weighted and fluid‐attenuated inversion recovery (FLAIR) sequences in 200 dogs and cats that underwent brain MRI for suspected intracranial disease. Two sets of images (T2 + FLAIR and T2*) were reviewed separately in random order unaccompanied by patient information and were interpreted as normal or abnormal based on whether intracranial abnormalities were seen. The number and location of intracranial lesions were recorded. Eighty‐five studies were considered normal and 88 were considered abnormal based on both sets of images, with good agreement (κ = 0.731) between the two. Susceptibility artifact was present in 33 cases (16.5%) on T2*‐weighted images. In 12 cases (6%) a total of 69 lesions were seen on T2*‐weighted images that were not seen on T2/FLAIR, all of which were associated with susceptibility artifact caused by presumed intracranial hemorrhage. Pseudolesions were seen on T2*‐weighted images in five cases, none of which were associated with susceptibility artifact. Abnormalities were seen on T2/FLAIR images that were not seen on T2*‐weighted images in 35 cases, confirming that T2* does not replace standard spin echo sequences. These results support inclusion of T2*‐weighted sequences in small animal brain MRI studies and indicate that that a large number of abnormalities (especially hemorrhagic lesions) can go undetected if it is not performed.  相似文献   

18.
As gadolinium‐based contrast agents are paramagnetic and have T2 shortening effects, they have the potential to adversely affect gradient recalled echo sequences. The aim of this prospective, cross‐sectional study was to evaluate the effects of gadolinium administration on T2*‐weighted sequence diagnostic quality and signal intensity when imaging the canine brain. A total of 100 dogs underwent brain magnetic resonance imaging (MRI) including pre‐ and postcontrast T2*‐weighted sequences acquired with a delay (Group A) or immediately (Group B) following gadolinium administration. Pre‐ and postcontrast images were subjectively compared. In dogs with intracranial enhancing masses, regions of interest were drawn on corresponding images and signal intensity ratios were calculated. The effect of degree and pattern of contrast enhancement, susceptibility artifacts, and time between contrast injection and T2*‐weighted sequence acquisition on signal intensity ratio was evaluated. Overall 31 dogs had contrast enhancing intracranial masses. Subjectively, there was no difference in image quality of T2*‐weighted sequences obtained before and after contrast medium administration. No significant signal intensity differences of intracranial contrast enhancing masses were found (Group A P = 0.9999; Group B P = 0.9992). Susceptibility artifacts did not differ in appearance, and there was no effect on calculated signal intensity ratio (P = 0.8142). Similarly, there was no effect of degree of enhancement or contrast heterogeneity on signal intensity ratio (P = 0.4413). No correlation was found between signal intensity ratio and the time to acquisition (P = 0.199). Administration of gadolinium‐based MRI contrast agents does not adversely affect T2*‐weighted imaging of the brain in dogs at 1.5 T even in the presence of contrast enhancing lesions.  相似文献   

19.
Magnetic resonance imaging (MRI) was performed on gthe brain of 5 normal, anesthetized, neonatal (age 3-to-6 days) Quarter Horse foals. The objectives of the study were to develop a technique for imaging the brain of neonatal foals, and to ascertain their normal brain anatomy. Interavenous propofol was administered for induction and maintenance of general anesthesia. Using spin echo MR techniques, T1 weighted sagittal and transverse views, and spin density and T2 weighted transverse views were successfully made of each foal. MR images provided excellent visualization of many anatomic struictures of the brain and head. MRI of the bgrain is feasible for selected neonantal equine patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号