首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
稻壳粉/聚乙烯复合材料性能的研究   总被引:2,自引:0,他引:2  
采用稻壳粉对高密度聚乙烯(HDPE)进行改性,研究了稻壳粉用量对复合材料力学性能和吸水率的影响,并观察了稻壳粉在HDPE中的分散情况。结果表明:复合材料的弯曲强度随稻壳粉用量的增加先增加后下降,而拉伸强度、断裂伸长率和冲击强度则随稻壳粉用量的增加而下降;稻壳粉在HDPE中的分散不均匀,用量较大时易出现聚集现象,两相间的粘接性变差。  相似文献   

2.
以未改性稻壳粉和丙烯酸酯改性稻壳粉填充聚乙烯制备木塑复合材料。通过接触角测定仪测定不同探测液在稻壳粉及聚乙烯表面的接触角,计算出其表面自由能,进而推导出复合材料的界面张力和粘附功。结果表明,改性后稻壳粉的表面自由降低了,复合材料的界面张力和粘附功也降低了。  相似文献   

3.
木粉和稻壳粉是制备木塑复合材料( WPC)常用原料.WPC在使用过程中经常受到热和水分的影响,笔者对比研究了稻壳粉/HDPE和木粉/HDPE两种复合材料经历热氧老化和长时间水浸渍后性能的变化规律.结果表明:木粉/高密度聚乙烯(HDPE)复合材料的弯曲强度和弹性模量都大于稻壳粉/HDPE的;随着热氧老化或水浸渍处理时间的延长,复合材的挠曲性能下降,其中木粉/HDPE复合材的弹性模量下降最为迅速;复合材料表面明度值随着热处理时间的延长而减小,说明颜色变暗,稻壳粉与木粉填充的复合材之间差别不大.通过光学显微镜观察发现,HDPE与稻壳粉或木粉之间都有缝隙存在,为水分和氧气的进出提供了通道.  相似文献   

4.
CMC-g-PMMA改性稻壳碎料-水泥复合材料的性能   总被引:1,自引:0,他引:1  
采用羧甲基纤维素与甲基丙烯酸甲酯的接枝共聚物(CMC-g-PMMA)作为改性剂对稻壳碎料进行表面处理,制成不同稻壳碎料含量的稻壳碎料-水泥复合材料(RHPC).对RHPC复合材料的密度、抗折性能、断面表面形貌、吸声性能、保温性能和燃烧性能进行测试和分析.结果表明:添加CMC-g-PMMA可大幅度提高RHPC复合材料的抗折强度和模量,当稻壳碎料含量为20%,CMC-g-PMMA添加量为1%时,抗折强度和模量分别为未添加助剂试样的2.27和2.71倍;声波频率为2 000 Hz以下,提高稻壳碎料含量后,水泥复合材料的吸声系数明显提高,1 000 Hz时,稻壳碎料含量为40%的试样的吸声系数高达0.67;制备的稻壳碎料-水泥复合材料为不燃性材料,具有良好的保温性能.  相似文献   

5.
木粉和稻壳粉是制备木塑复合材料(WPC)常用原料。WPC在使用过程中经常受到热和水分的影响,笔者对比研究了稻壳粉/HDPE和木粉/HDPE两种复合材料经历热氧老化和长时间水浸渍后性能的变化规律。结果表明:木粉/高密度聚乙烯(HDPE)复合材料的弯曲强度和弹性模量都大于稻壳粉/HDPE的;随着热氧老化或水浸渍处理时间的延长,复合材的挠曲性能下降,其中木粉/HDPE复合材的弹性模量下降最为迅速;复合材料表面明度值随着热处理时间的延长而减小,说明颜色变暗,稻壳粉与木粉填充的复合材之间差别不大。通过光学显微镜观察发现,HDPE与稻壳粉或木粉之间都有缝隙存在,为水分和氧气的进出提供了通道。  相似文献   

6.
稻壳的外表面覆盖有二氧化硅膜,使用传统的脲醛树脂(UF)和酚醛树脂胶(PF)生产的100%的稻壳板难以达到木质刨花板的质量指标。本研究采用以异氰酸酯(ISO)改性的脲醛树脂和酚醛树脂胶制造稻壳-木材复合材料。稻壳与木片的混合比例为1:1,施胶量为7%,设计密度0.8g/cm3。试验结果表明,3:4的ISO/UF、2:5的ISO/PF、改性胶粘剂制备的板材的物理力学性能达到国标刨花板二等品的要求;用3:4的ISO/PF改性胶粘剂制备的板材达到优等品的要求。  相似文献   

7.
采用异氰酸酯(ISO)改性的脲醛树脂胶制造低密度稻壳-木材复合材料。稻壳与木质刨花的混合比例为1:1,施胶量为7%,试验结果表明,异氰酸酯改性的脲醛树脂胶黏剂适用于低密度稻壳-木材复合材料,其物理力学性能明显优于使用传统的脲醛树脂胶黏剂。低密度稻壳-木材复合材料的物理力学性能随着改性剂异氰酸酯用量的增加而提高。密度是稻壳-木材复合材料物理力学性能的重要影响因素,低密度稻壳-木材复合材料的物理力学性能随着密度的增加而提高。在设定密度为0.45g/m~3和0.5g/cm~3的条件下,3:4的ISO/UF的稻壳-木材复合材料的物理力学性能均达到日本刨花板工业标准(JIS A5908)的要求。  相似文献   

8.
热压工艺对稻壳-木材复合材料性能影响的研究   总被引:2,自引:0,他引:2  
研究测试了热压温度与时间对稻壳-木材复合材料物理力学性能的影响。试验结果表明,随着热压时间的延长,稻壳-木材复合材料的物理力学性能相应地提高。在140~160℃的热压温度区间表内,提高热压温度有助于提高稻壳一木材复合材料的物理力学性能;稻壳一木材复合材料适宜的热压工艺条件为30s/mm板厚的热压时间,160℃的热压温度。  相似文献   

9.
稻壳粉被广泛地应用于聚合物复合材料,但对这些复合材料的耐老化性能研究得还很少。本文研究了两种稻壳粉/聚乙烯(RH-PE)复合板经过两年室外自然老化以后的性能变化。试件的抗弯强度和弹性模量没有变化。但在试验结束后试件的亮度增加了23%以上,总色差变化9个单位以上,意味着消费者当初挑选的颜色发生了明显变化。傅立叶红外(FTIR)和X射线光电子能谱(XPS)分析显示,试件表面发生了氧化反应,老化后红色板材产业明显的C=O峰,但黄色板材的C=O峰并没有明显变化。两种板材都显示木素纤维素减少和聚乙烯的无定形区域减少。图7表4参16。  相似文献   

10.
测试了稻壳形态对稻壳-木材复合材料物理力学性能的影响。试验结果表明,以20网日、30网日和40网目的稻壳为补充材料制备的密度为0.80g/cm^3的板的物理力学性能均达到国标二级品的要求。确立20网目的稻壳适宜于稻壳-木材复合材料。  相似文献   

11.
通过共混挤出法制备聚氨酯预聚体(PUP)改性的聚乳酸/木粉(PLA/WF)复合材料,并对复合材料进行力学性能测试、动态热机械分析、接触角测量以及断面扫描电镜分析。力学性能分析表明:当PUP用量(以PLA和WF的质量计)为20%时,复合材料断裂弯曲应变和冲击强度分别为5.78%和18.3 k J/m2,较未改性的复合材料分别提高了209%和123%,PUP显示出较好的增韧效果。动态热机械分析表明:随着PUP用量的增加,复合材料中PUP相和PLA相的玻璃化转变温度均有所下降,并且储能模量显著降低,材料韧性得到改善。PUP的加入可显著提高复合材料对水的接触角,材料疏水性能得到改善。当PUP用量为25%时,接触角达83.7°,较未增韧复合材料接触角(66.6°)提高25.7%。拉伸断面的扫描电镜分析表明:添加PUP的复合材料断面有更多的木粉被拉出且空穴变多,断面更为不平整,呈现韧性断裂的特征。  相似文献   

12.
作为合聚俣物复合材料增强的木纤维素包括木纤维素粉和纤维素纤维。本文综述3个方面主要的研究进展;木纤维素粉在热固性塑料中的增强,用偶俣剂涂覆纤维素纤维在热塑性聚合物中的增强以及纤维素纤维在易生物降解聚俣物的增强。简要介绍了三类木纤维素增强复合材料的性质,指出最终的目标是制备符合环保要求完全物降解的复合材料。  相似文献   

13.
稻壳综合利用—生物质热电联产及精细化工综合开发   总被引:1,自引:0,他引:1  
针对稻壳综合利用生产精细化工产品过程中稻壳燃烧产生的热能发电,提出一种解决稻壳污染环境、生物质再生能源热电联产的方案。  相似文献   

14.
To convert the hydrophilic surface of bamboo flour into a hydrophobic surface, methyl methacrylate (MMA) was grafted onto bamboo flour surface by means of atom transfer radical polymerization (ATRP) method. The grafted bamboo flour was characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy, scanning electron microscopy (SEM), water contact angle and thermogravimetric analysis. The results from FTIR and SEM have confirmed that MMA groups have been successfully grafted onto bamboo surface by means of the ATRP method, which caused the water contact angle increase to be 128.7°, i.e., hydrophilic bamboo flour turned into hydrophobicity. However, the thermal stability of grafted bamboo flour decreased compared with pure bamboo flour.  相似文献   

15.
以淀粉和木粉为原料,甘油为增塑剂,通过挤出成型制备淀粉/木粉可生物降解复合材料,重点研究淀粉/木粉混合比例对复合材料性能的影响。采用扫描电镜(SEM)、X射线衍射仪(XRD)和热重分析(TGA)对复合材料进行表征,并对复合材料的力学性能和吸水性能进行测试。实验结果表明:木粉的加入破坏热塑性淀粉的连续性,使复合材料的结晶度增大。复合材料的拉伸强度、吸水率和吸水厚度膨胀率随着木粉比例增大逐渐增大,断裂伸长率却逐渐降低。TGA测试结果表明,随着木粉加入比例增大,复合材料的热分解起始温度逐渐降低,但热分解的终止温度逐渐升高,淀粉和木粉两相依赖性逐渐减弱。  相似文献   

16.
由聚丙烯(PP)、高密度聚乙烯(HDPE)和聚苯乙烯(PS)组成的混合废旧塑料与木粉经高速混合机混合后,采用双螺杆/单螺杆串联挤出机组制备了木粉/混合废旧塑料复合材料。探讨了马来酸酐接枝苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS-g-MAH)和原位接枝马来酸酐(MAH)对木粉/混合废旧塑料复合材料力学性能的影响。结果表明,与使用MAH和DCP的原位反应共混相比,SEBS-g-MAH显著提高了复合材料的抗冲击性能,但对拉伸和弯曲性能的改善不如原位反应共混显著。总的来说,混合废旧塑料制备的复合材料的力学性能要低于纯塑料混合物制备的复合材料,尤其是拉伸断裂伸长率。微观形态研究表明,添加SEBS-g-MAH和原位接枝MAH均可提高木粉与塑料混合物之间的界面相容性,但与添加SEBS-g-MAH相比,原位接枝MAH能更好的改善PP、HDPE、PS与木粉之间的界面结合。原位接枝MAH可被看作是一种改善木粉与塑料混合物间界面相容性的有效途径。此外,采用动态力学分析(DMA)进一步表征了复合材料的储能模量和阻尼因子。  相似文献   

17.
The effect of steam-exploded wood flour (SE) added to wood flour/plastic composite was examined using SE from beech, Japanese cedar, and red meranti and three kinds of thermoplastic polymer: polymethylmethacrylate, polyvinyl chloride, and polystyrene. Addition of SE increased the fracture strength and water resistance of the composite board to an extent dependent on the polymer species and the composition of wood/SE/polymer. However, water resistance decreased with the increasing proportion of SE when SE meranti was added. Effects of the wood species of SE on the properties of resulting board were small. An increased moisture content of wood flour or SE (or both) increased the variation of board performance.  相似文献   

18.
【目的】通过木粉纤维增强生物塑料聚3-羟基丁酸酯-co-4-羟基丁酸酯(P34HB),为生物复合材料的理论研究和生物可降解塑料的广泛应用提供科学依据和理论支持。【方法】以毛白杨木粉和P34HB为原料,采用共混热压法制备P34HB/木粉生物复合材料,基于电子扫描显微镜(SEM)、差示扫描量热法(DSC)、热重分析(TGA)、傅里叶红外光谱(FTIR)、动态热机械分析(DMA)和力学性能分析等手段对其结构和性能进行表征。【结果】随着木粉含量增加,生物复合材料的拉伸强度、断裂伸长率和弯曲强度先增加后减小,冲击强度逐渐下降,拉伸强度、弹性模量和杨氏模量分别增加89%、59%和103%,储能模量E′逐渐增加,tanδ峰值先下降后上升。生物复合材料的高频率模量大于低频率模量,动刚度比静刚度好。相比P34HB,生物复合材料的热分解区间变宽,热解速率变慢,热解剩余质量增加。【结论】随着木粉含量增加,P34HB分子链运动受阻,生物复合材料的储能模量和脆性增大;同时,木粉纤维的成核作用诱导P34HB形成结晶度高、层状结构发达的横晶层,木粉与P34HB之间界面结合力增强,力学性能和热稳定性明显提高。综合考虑,P34HB/木粉生物复合材料的最佳木粉加入量为50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号