首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

To determine the effect of incubation on DTPA‐extractable Fe, Zn, and Cu in soils with a wide pH range (4.2 ‐ 9.4) and to determine the nature of this effect, soils were incubated at field moisture capacity for 1 week with and without a sterilant (toluene). After incubation these soils as well as their air‐dry counterparts were analyzed for DTPA‐extractable Fe, Zn, and Cu.

Incubated soils were significantly lower in DTPA‐extractable Fe, Zn, and Cu than air‐dry soils over all soil pH values tested but there was no significant difference in mean values for incubated soils due to the addition of toluene. The results suggest that, upon incubation at field moisture capacity, the decrease in DTPA‐extractable Fe, Zn, and Cu observed was noa‐microbial in nature.  相似文献   

2.
Zinc (Zn) deficiency is a persistent problem in flooded rice (Oryza sativa L.). Severe Zn deficiency causes loss of grain yield, and rice grains with low Zn content contribute to human nutritional Zn deficiencies. The objectives of this study were to evaluate the diethylenetriaminepentaacetic acid (DTPA) extraction method for use with reduced soils and to assess differences in plant availability of native and fertilizer Zn from oxidized and reduced soils. The DTPA‐extractable Zn decreased by 60% through time after flooding when the extraction was done on field‐moist soil but remained at original levels when air‐dried prior to extraction. In a pot experiment with one calcareous and one noncalcareous soil, moist‐soil DTPA‐extractable Zn and plant Zn uptake both decreased after flooding compared with the oxidized soil treatment for both soils. In the flooded treatment of the calcareous soil, both plant and soil Zn concentrations were equal to or less than critical deficiency levels even after fertilization with 50 kg Zn ha?1. We concluded that Zn availability measurements for rice at low redox potentials should be made on reduced soil rather than air‐dry soil and that applied Zn fertilizer may become unavailable to plants after flooding.  相似文献   

3.
Abstract

Metal availability in soils is often assessed by means of extraction with chemical solutions, among others the chelating agent DTPA (diethylenetriaminepentaacetic acid) and the non‐buffered salt calcium chloride (CaCl2). The same procedures are used for polluted soils that were originally created to assess the nutrient status of arable soils. We studied the influence of various parameters (type of shaker, shaking time, soil to solution ratio, and concentration of chemical extractant) and modify the DTPA and CaCl2 extraction procedures to make them suitable for the study of polluted soils. The chosen extraction ratio and extractant concentration were the followings: 8 g/20 mL of 0.1 MCaCl2 and 2 g/20 mL of 0.005 M DTPA. The optimized procedures were applied to nine soil samples affected by different sources of pollution (mine works, vehicle emissions, and various industries). Cadmium (Cd) showed the highest extractability with both extractants. Depending on the soil, copper (Cu) and zinc (Zn) (using DPTA) and Cu and manganese (Mn) (using CaCl2) were the followings in the extractable amounts. Cadmium, Cu, and Zn were highly correlated in both extractions and with total contents.  相似文献   

4.
Abstract

Lowland rice plants were sampled at two growth stages and analyzed for Zn, Cu, Mn, and Fe. Most of the sites were deficient in Cu and one‐third of the sites were rated deficient in Zn. All sites were in the adequate range with respect to Mn. Many Fe values were in the excess to toxic range. Average content of micronutrient cations in rice plants was uniformly greater 30 days after the rice was transplanted than 60 days after transplanting.

Correlations between extractable Mn in lowland soils and Mn in associated rice plants were highly significant with the DTPA extractant and significant with the HCl method, both 30 and 60 days after the rice was transplanted. With HCl, extractable Fe in lowland soils was highly correlated with Fe in associated rice plants, but this relationship was not as close with the DTPA extractant.

In lowland soils, extractable Zn increased significantly and consistently with increases in Cu and Mn extracted with DTPA and HCl. Extractable Zn also increased significantly with increases in Fe when the HCl extractant was used, but not with DTPA.  相似文献   

5.
Abstract

The study reported herein was intended to determine the effect of (i) wet‐incubation and subsequent air‐drying, and (ii) oven‐drying on DTPA‐Fe, Zn, Mn, and Cu.

Analysis of wet‐incubated soils showed significant decreases in DTPA‐Fe, Mn, and Cu at the 1% and Zn at the 10% level of probability. Air‐drying of these moist‐incubated soils increased the levels of Fe, Zn, and Cu to values close to their original levels. Levels of Mn sharply deviated from their original values after air‐drying of incubated soils. Correlation coefficients (r) between the amounts of extractable nutrients in original air‐dry soils and wet‐incubated soils were 0.54, 0.87, 0.91, and 0.13 for Fe, Zn, Cu, and Mn, respectively. Oven‐drying increased the levels of DTPA‐extractable micronutrients from 2 to 6 fold.  相似文献   

6.
Abstract

The available (0.1M HCl‐ and DTPA‐extractable) and total forms of copper (Cu) and zinc (Zn) were determined in soils developed on various groups of basalts, namely, the Newer, Older, Lateritized‐Older, and Biu (undifferentiated) basalts. The HCl‐, DTPA‐extractable, and total Cu in the soils ranged from 0.40 to 5.60, 0.15 to 2.64, and 15 to 65 mg Cu kg‐1, respectively, with corresponding means values of 2.06, 0.89, and 41 mg Cu kg‐1. Similarly, HCl‐, DTPA‐extractable, and total Zn varied from 3.00 to 6.20, 0.14 to 2.15, and 25 to 265 mg Zn kg‐1 with respective mean values of 4.65, 0.52, and 89 mg Zn kg‐1. The soils were high in the total forms of Cu and Zn, generally sufficient in available Cu, but deficient in available Zn. Both the total and available forms of Cu and Zn were little correlated with soil properties in soils of the Lateritized‐Older and Biu basalts, while only the available forms were related mainly to silt, clay, pH, and organic carbon in soils of the Newer and Older basalts. Furthermore, the available forms were correlated with each other, but not with the total forms.  相似文献   

7.
Abstract

Tests were made to determine the effects of grinding, type of extraction vessel, type of shaker, speed of shaking, time of shaking, time of filtering, soil to solution ratio and other variables on DTPA‐extractable Zn, Fe, Mn, and Cu from soils.

Time of grinding, force of grinding, and the quantity of soil being ground greatly affected the amount of extractable Fe. At the lower grinding force, the quantity of soil being ground only slightly affected extractable Fe, but at the higher grinding force, more Fe was extracted from the smaller sized samples especially at the longer grinding period. Extractable Zn was also increased by longer grinding time and greater grinding force, but increases were much less than increases for Fe. Increasing grinding time tended to increase extractable Mn. The effects of grinding on Cu was inconclusive. Increasing the ratio of extractant to soil increased the amount of extractable Fe from soils and tended to increase Zn, Mn, and Cu but to a lesser extent. Both shaker speed and type of extracting vessel affected the ex‐tractability of all nutrients except Cu. Greatest differences between extracting vessels occurred at the lowest shaker speed, while these differences were smaller or disappeared at the higher shaker speeds. The more thorough the mixing of soil and extracting solution, the higher were the levels of extractable Fe and Mn. A reciprocal shaker extracted more Fe and Mn from soils than a rotary shaker. The rate of dissolution of all four nutrients by DTPA was greatest during the first 5 minutes of extraction. There were large and significant correlation coefficients between levels of nutrients extracted after 15 or 30 minutes of shaking and those extracted after 120 minutes. The findings indicate that the levels of micronutrients extracted under one set of conditions can be related to levels extracted under other conditions by use of a simple linear regression equation for each nutrient.

The results of this study demonstrate the importance of standardizing the methods of preparation and extraction of soils used in the DTPA micronutrient soil test. A standard method for soil grinding and extraction is proposed for DTPA soil test.  相似文献   

8.
Abstract

To examine the distribution of DTPA‐extractable Fe, Zn, and Cu in clay, silt, and sand fractions; surface soils were collected from cultivated fields of North Dakota, South Dakota, West Virginia, Iowa, Ohio, and Illinois. Clay, silt, and sand fractions were separated after sonic dispersion of soil water suspension and analyzed for DTPA‐extractable Fe, Zn, and Cu. In general, clay had the highest and sand the lowest amount of DTPA‐extractable metals. Consequently, clay had the highest and sand the lowest intensity and capacity factors for these metals since DTPA micronutrient test measures both these factors.  相似文献   

9.
Abstract

In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge.  相似文献   

10.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

11.
Abstract

Extraction of soil zinc with routine chemical extractants does not always reflect differences in Zn availability as detected by plant uptake. This study was undertaken to explore and compare the use of an ion exchange resin and diethylenetriaminepentaacetic acid (DTPA) for extracting soil Zn as related to plant Zn uptake. Beans were grown in 1989 following differential cropping with corn and beans or fallow in 1988 on a Portneuf silt loam near Kimberly, Idaho. Two Zn fertilizer treatments were imposed across previous cropping treatments. A batch method for determining resin extractable soil Zn was established.

Both plant Zn concentration and Zn uptake by beans in 1989 were significantly higher in Zn fertilized than unfertilized treatments regardless of previous crop; and higher in plots previously cropped with corn than beans or fallow, regardless of Zn treatment. DTPA and resin extractable soil Zn were significantly higher in Zn fertilized plots compared to unfertilized plots but did not differ between previous cropping treatments. Resin and DTPA extractable soil Zn concentrations were positively correlated. Resin extracted soil Zn correlated better with plant Zn concentration and Zn uptake throughout the growing season than DTPA extracted soil Zn, particularly in plots that had been fallowed or previously cropped with corn. Resin may be extracting labile soil Zn not extracted with DTPA and, therefore, be better simulating plant uptake. Both extraction methods correlated better with Zn uptake when evaluated within cropping treatments, emphasizing the need to consider previous crop when calibrating soil tests.  相似文献   

12.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

13.
An attempt was made to study the effects of sulfuric acid additions to iron (Fe)‐ and phosphorus (P)‐deficient calcareous soils. Several greenhouse experiments were conducted with sorghum (Sorghum bicolor L.) grown in two calcareous soils. Addition of sulfuric acid to soils increased soil acidity, salinity, DTPA‐extractable Fe, available P (NaHCO3‐extractable), and crop yield. The change in soil pH is the primary cause of increased nutrient availability and thus crop yield. Leaching after acid application is highly beneficial in decreasing salinity during germination and seedling stages and therefore has a direct impact on the yield. The beneficial effects of acid carried over for at least two greenhouse cropping seasons (approximately 4.5 months).  相似文献   

14.
Abstract

Zinc availability was studied using five soils from Hawaii which had histories of massive phosphorus applications. Heavy phosphate fertilization usually increased extractable Zn, irrespective of the extractant used. The extra extractable Zn associated with the added P probably came from Zn as an accessory element in the fertilizer. Treble superphosphate commonly used in Hawaii contains about 1400 ppm Zn. The Zn content of phosphate fertilizers must be considered before making statements about the effect of fertilizer P on Zn solubility and availability in soils.

Two solutions (0.1N HCl and 0.005M DTPA) were compared as Zn extractants for Hawaii soils. DTPA extracted less Zn than 0.1N HCl. Zinc extracted by repeated HCl treatment was more closely related to the labile Zn pool (E‐values and L‐values) than was DTPA‐extractable Zn. The results suggest that 0.1N HCl extractable Zn, Zn E‐value and Zn L‐value measured the quantity of a single fraction of soil Zn.

Repeated extraction of soil with 0.1N HCl seems to be a suitable procedure for evaluating the Zn status of acid, highly weathered soils of Hawaii.  相似文献   

15.
The extractability and distributions of zinc (Zn) were evaluated in calcareous agricultural soils from South-West Iran. Both single [diethylenetriaminepentaacetic acid (DTPA)] and sequential extraction procedures (Singh scheme) were applied to 20 representative soils. The DTPA extractable zinc levels were low (on average 3.34%). The sequential extraction procedures were also utilized for the study of zinc phytoavailability in maize plants (Zea mays L.) in a greenhouse experiment. The Singh scheme was significantly better than DTPA plus soil properties in phytoavailability prediction of zinc in soils. Significant correlations were found between the amounts of DTPA extractable zinc and the iron (Fe) oxides-bound (AFe and CFe) and residual fractions extracted by the Singh procedure. Zinc concentrations in plant samples (mean value of 27.49 mg kg?1) were poorly correlated with the different extracted soil fractions (single and sequential). The Singh procedure provided better predictions of zinc uptake by plants than DTPA extraction method.  相似文献   

16.
17.
Abstract

Soil extraction techniques to measure the status of available micronutrients for plants are important in the diagnosis of deficiency or toxicity. Mehlich 3 (M3), EDTA (pH=8.2), DTPA‐TEA, and Soltanpour and Schwab (SS) solutions were confronted for their ability to extract simultaneously copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe). Argentinean soils from different taxonomic orders with widely varying properties were investigated. The values obtained showed that DTPA‐TEA and SS solutions extracted similar amounts of Zn, Fe, and Mn, while EDTA dissolved comparatively higher amounts of Fe and Mn. Mehlich 3 yielded the highest extractions for the four micronutrients. Soil pH not only affected the extraction of Mn by DTPA‐TEA, SS, and EDTA extractions, but also the extraction of Fe by EDTA. The organic carbon affected the determination of Fe and Zn in all cases. The correlations of the different tests for Cu, Zn, Mn, and Fe were significant. The results suggest that for the determination of the bioavailable status of micronutrients, any of the studied tests could be applied using the soil edaphic properties as factors to improve the correlations between them and standardize the methods.  相似文献   

18.
A greenhouse experiment was carried out to determine copper (Cu) desorption characteristics in ten bulk and rhizosphere soils (Typic Calcixerepts) amended with sewage sludge (1% w/w) using rhizoboxes. The kinetics of Cu desorption in the bulk and the rhizosphere soils were determined after successive extraction with DTPA‐TEA and 10 mM citric acid in a period of 1 to 504 h at (25 ± 1)°C. The results show that Cu extracted after 504 h using DTPA‐TEA were significantly (P < 1%) lower in the rhizosphere than the bulk soils. However, Cu extracted after 504 h using citric was significantly (P < 1%) higher in the rhizosphere than in the bulk soils. The results illustrated that, on average, citric acid extracted 56% more Cu from the bulk soils than DTPA‐TEA, and citric acid extracted 85% more Cu from the rhizosphere soils than DTPA‐TEA. Desorption kinetics of Cu in the two extractants was well described by power‐function, parabolic diffusion, and first‐order equations. The results show that a 10 mM citric acid extractant may be recommended to determine the kinetics of Cu desorption in calcareous soils amended with sewage sludge.  相似文献   

19.
Abstract

An Investigation was conducted to determine the content and distribution of total and DTPA‐extractable Zn in the genetic horizons of 72 agriculturally important soils from the six major mineral soil areas in Louisiana.

The concentration of total Zn appeared to vary more with the clay constituents of the soils and the amount of the element in the parent materials than with soil depth. The majority of the soils had the largest amounts of total Zn in the subsurface horizons. The range in total Zn for all soils and horizons was from 7.0 to 150.0 ppm.

The DTPA‐extractable Zn in all of the soils and horizons ranged from 0.08 to 4.22 ppm. In the majority of the soil profiles the highest concentration of extractable Zn was in the surface horizons. There was a decrease in the extractable Zn with increasing soil depth. The alluvial soils along the Ouachita and Mississippi Rivers, and the Mississippi Terrace soil areas contained relatively large amounts of DTPA‐extractable Zn.

In some soils the extractable Zn significantly correlated with total Zn. There was also a close relationship between extractable Zn and organic matter content, especially in the Ap horizons.  相似文献   

20.
Abstract

The extraction of a field‐moist soil with DTPA will result in a level of extractable iron (Fe) lower than that of the air‐dried soil. Soil gas‐phase carbon dioxide (CO2) levels may be considerably higher than ambient atmospheric levels, especially in wet soils in the field. This study was undertaken to determine whether gas‐phase CO2 level influences the quantity of Fe extracted by DTPA. Three moist calcareous soils were incubated for 21 days, each at three different partial pressures of CO2, after which the moist soils were extracted with DTPA. A sample of each soil was also air dried, and was subsequently extracted with DTPA. In each case, DTPA‐extractable Fe from the moist sample was lower than that from the air‐dried sample; however, DTPA‐extractable Fe increased with increasing CO2 partial pressure of in the moist soils. DTPA‐extractable Fe concentration for a given soil following air drying was not significantly influenced by the CO2 partial pressure during incubation of the originally field‐moist soil. DTPA‐extract pH of the moist soils followed the same trend as soil‐solution pH (i.e., as CO2 concentration of the soil gas‐phase increased, soil solution pH and DTPA extract pH both decreased); however, the slope of the pH versus log PCO2 curve was less pronounced in the DTPA extract due to the buffering capacity of the triethanolamine. From this study, it is concluded that elevated soil gas‐phase CO2 partial pressure does not contribute to the lower level of DTPA‐extractable Fe observed when the extraction is performed on a field‐moist versus an air‐dried soil; increased CO2 partial pressure actually resulted in a slight increase in concentration of DTPA‐extractable Fe obtained from a field‐moist soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号