首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Plant growth‐promoting rhizobacteria (PGPR) are soil bacteria that colonize the rhizosphere of plants, enhance plant growth, and may alleviate environmental stress, thus constituting a powerful tool in sustainable agriculture. Here, we compared the capacity of chemical fertilization to selected PGPR strains to promote growth and alleviate salinity stress in tomato plants (Solanum lycopersicum L.). A pot experiment was designed with two main factors: fertilization (chemical fertilization, bacterial inoculation with seven PGPR, or a non‐fertilized non‐inoculated control) and salt stress (0 or 100 mM NaCl). In the absence of stress, a clear promotion of growth, a positive effect on plant physiology (elevated Fv/Fm), and enhanced N, P, and K concentrations were observed in inoculated plants compared to non‐fertilized controls. Salinity negatively affected most variables analyzed, but inoculation with certain strains reduced some of the negative effects on growth parameters and plant physiology (water loss and K+ depletion) in a moderate but significant manner. Chemical fertilization clearly exceeded the positive effects of inoculation under non‐stressed conditions, but conversely, biofertilization with some strains outperformed chemical fertilization under salt stress. The results point at inoculation with selected PGPR as a viable economical and environment‐friendly alternative to chemical fertilization in salinity‐affected soils.  相似文献   

2.
Application of plant growth regulator (PGR) may alleviate some negative effects of environmental stresses such as salinity. A controlled environment experiment was conducted to study barley (Hordeum vulgare L. cv. Reyhane) growth, yield, antioxidant enzymes and ions accumulation affected by PGRs under salinity stress conditions at Shiraz University during 2012. The treatments were PGRs at four levels—water (as control), cycocel (CCC, 19 mM), salicylic acid (SA, 1 mM), and jasmonic acid (JA, 0.5 mM)—and four salinity levels—no stress (0.67 dS m?1, as control), 5, 10, and 15 dS m?1, which were arranged in a factorial experiment based on completely randomized design with four replicates. The results showed that salinity stress significantly decreased plant height, peduncle length, leaf area, ear length, grain number, dry weight, grain yield, harvest index, potassium (K+) accumulation, and potassium/sodium (K+/Na+) concentration ratio, which were closely associated with stress severity. However, PGRs compensated some of these negative effects, so that SA foliar application had the most ameliorative effect. Salt stress also increased Na+ accumulation as well as the activity of peroxidase, catalase, and superoxide dismutase (SOD). Since ion discrimination and enhanced antioxidant enzymes are associated with salt tolerance, in this experiment PGRs application might have enhanced K+ accumulation and antioxidant enzyme activity. The activity of SOD and K+/Na+ ratio were found to be useful in salt tolerance manipulation in barley plants.  相似文献   

3.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

4.
ABSTRACT

The effects of three sodium chloride (NaCl) levels (0, 1200, and 2400 mg kg? 1 soil) and three irrigation intervals (3, 7, and 14 d) on the growth and chemical composition of two Pistacia vera rootstocks (‘Sarakhs’ and ‘Qazvini’) were investigated under greenhouse conditions. Eight-week-old pistachio seedlings were gradually exposed to salt stress which afterward, water stress was initiated. At any irrigation interval, plant height and shoot and root dry weights of both rootstocks were reduced with increasing salinity. However, increasing irrigation intervals alleviated the adverse effects of soil salinity. A negative relationship observed between relative shoot growth and electrical conductivity of soil saturation extract (ECe) confirmed the above findings. Under 3-d irrigation interval, the ECe required to cause a 50% growth reduction was lower than those under 7- and/or 14-d irrigation intervals. Shoot and root chemical analyses indicated that the salinity as well as irrigation regime affected the concentration and distribution of sodium (Na+), potassium (K+), and chloride (Cl?) in pistachio. The concentration of Na+, K+ and C1? ions increased with a rise in NaCl level, and was generally declined with increasing irrigation interval. Based on plant height, shoot and root dry weights and the concentrations of Na+, K+, and C1? in the plant tissues, at lowest irrigation intervals ‘Sarakhs’ shows a higher sensitivity to soil salinity than ‘Qazvini’, but with increasing irrigation interval, ‘Sarakhs’ and ‘Qazvini’ can be classified as resistant and sensitive to salinity, respectively.  相似文献   

5.
This study aimed at investigating mechanisms of salt tolerance and ionic relations of chickpea (Cicer arietinum L.) cultivars with different nitrogen (N) sources. Two resistant genotypes, ILC‐205 and ILC‐1919, were subjected to four levels of salinity (0.5, 3.0, 6.0, and 9.0 dS m‐1). Nitrogen sources consisted of inoculation with two resistant Rhizobium strains, CP‐29 and CP‐32, mineral N additions, and no N application. Data was collected on root and shoot contents of sodium (Na+) chlorine, (Cl,) and potassium (K+), and shoot to root Na+ratio, as well as shoot K+ to Na+ ratio. Salinity affected shoot Na+ and Clcontents, but nodulating plants had higher shoot Na+ contents than plants supplied with mineral N. Shoot to root Na+ ratios were lower in the mineral N treatment than in nodulating treatments at 3.0 dS m‐1, indicating that root compartmentalization and shoot exclusion were only possible at low salinities. Potassium levels of nodulating plant shoots were lower than those of non‐nodulating plants only at low salinities. N‐source significantly affected shoot K+/Na+ ratio, with nodulating plants having lower ratios than non‐nodulating plants, indicating that rhizobial infection or nodule formation may lead to salt entry curtailing the selective ability of chickpea roots.  相似文献   

6.
Adequate regulation of mineral nutrients plays a fundamental role in sustaining crop productivity and quality under salt stress. We investigated the ameliorative role of potassium (K as K2SO4) in overcoming the detrimental effects of sodium chloride (NaCl) on sugarcane genotypes differing in salt tolerance. Four levels of NaCl (0, 100, 130 and 160 mM) were imposed in triplicate on plants grown in gravel by supplying 0 and 3 mM K. The results revealed that application of NaCl significantly (p ≤ 0.05) increased sodium (Na+) but decreased K+ concentrations in shoots and roots of both genotypes with a resultant decrease in K+/Na+ ratios. Physical growth parameters and juice quality were also markedly reduced with increasing NaCl concentrations compared with controls. However, addition of K alleviated the deleterious effects of NaCl and improved plant growth under salt stress. Cane yield and yield attributes of both genotypes were significantly (p ≤ 0.05) higher where K was added. Juice quality was also significantly (p ≤ 0.05) improved with the application of K at various NaCl levels. The results suggested that added K interfered with Na+, reduced its uptake and accumulation in plant tissues and consequently improved plant growth and juice quality in sugarcane.  相似文献   

7.
Salinity is one of the most important agricultural problems in Iran. The effect of different levels of salinity and phosphorus on shoot length, root and shoot fresh and dry weight, nutrient elements (sodium (Na+), potassium (K+), phosphorus (P) and chloride (Cl?), proline and soluble sugar contents of barley were investigated. Two cultivars of barley, Hordeum murinum (wild resistant germplasm) and Hordeum vulgar, variety Afzal were treated in vegetative stage under hydroponics condition in a factorial arrangement based on completely randomized block (CRB) design with four levels of salinity [0, 100, 200 and 300 mM sodium chloride (NaCl)] and three levels of phosphorus (15, 30 and 55 μm L?1) with three replications. By increasing salinity, all the measured parameters, except sodium (Na+) content were reduced. Furthermore, with increased in phosphorus levels from 15 to 55 μm, Na+ content of the plant shoots decreased, but length, fresh and dry weights of roots and shoots and K+, P, Cl?, proline, and soluble sugars content of the shoots increased. The results indicated that accumulation of mineral ions for osmotic adjustment and restriction of Na+ accumulation in shoots were involved in phosphorus enhancement of the salt tolerance of barley. Thus, it seems that in saline soils, where there is no possibility for soil leaching and amending, application of phosphorus fertilizers can lead to a satisfactory growth and production in barely yield.  相似文献   

8.
We studied the growth and ionic composition of five wheat genotypes (Inqlab-91, Uqab 2002, SARC-1, SARC-3, and SARC-5) grown under salinity stress to applied silicon. Plants were grown with three levels of salinity [0, 60, and 120 mM sodium chloride (NaCl)] in the presence of 0, 2, and 4 mM Si in nutrient solution for 40 days. Salinity stress significantly decreased shoot and root biomass in plants with varying degrees. Genotype SARC-3 exhibited higher salt tolerance than other genotypes. Silicon (Si) application significantly (P < 0.05) increased plant biomass at both control as well as under saline conditions. Genotypes differed significantly for their response to applied Si in terms of biomass production. Silicon application significantly (P < 0.01) increased potassium (K+) concentration in shoots. Enhanced salinity tolerance in wheat by Si application was attributed to increased K+ uptake thereby increasing K+/sodium (Na+) ratio and lower Na+ translocation towards shoot.  相似文献   

9.
Batis maritima is a promising halophyte for sand‐dune stabilization and saline‐soil reclamation. This species has also applications in herbal medicine and as an oilseed crop. Here, we address the plant response to salinity reaching up to two‐fold seawater concentration (0–1000 mM NaCl), with a particular emphasis on growth, water status, mineral nutrition, proline content, and photosystem II integrity. Plant biomass production was maximal at 200 mM NaCl, and the plants survived even when challenged with 1000 mM NaCl. Plant water status was not impaired by the high accumulation of sodium in shoots, suggesting that Na+ compartmentalization efficiently took place in vacuoles. Concentrations of Mg2+ and K+ in shoots were markedly lower in salt‐treated plants, while that of Ca2+ was less affected. Soluble‐sugar and chlorophyll concentrations were hardly affected by salinity, whereas proline concentration increased significantly in shoots of salt‐treated plants. Maximum quantum efficiency (Fv/Fm), quantum yield of PSII (ΦPSII), and electron‐transport rate (ETR) were maximal at 200–300 mM NaCl. Both nonphotochemical quenching (NPQ) and photochemical quenching (qP) were salt‐independent. Interestingly, transferring the plants previously challenged with supraoptimal salinities (400–1000 mM NaCl) to the optimal salinity (200 mM NaCl) substantially restored their growth activity. Altogether, our results indicate that B. maritima is an obligate halophyte, requiring high salt concentrations for optimal growth, and surviving long‐term extreme salinity. Such a performance could be ascribed to the plant capability to use sodium for osmotic adjustment, selective absorption of K+ over Na+ in concomitance with the stability of PSII functioning, and the absence of photosynthetic pigment degradation.  相似文献   

10.
Silicon (Si) is known to alleviate a number of abiotic stresses in higher plants including salinity stress. Two independent experiments were conducted to evaluate the role of Si in alleviating salinity stress in two contrasting wheat (Triticum aestivum L.) genotypes, Auqab-2000' (salt sensitive) and SARC-3 (salt tolerant). In the first experiment, genotypes were grown in hydroponics with two levels of salinity (0 and 60 mM NaCl) with and without 2 mM Si in a completely randomized design with four replications. Salinity stress significantly (P < 0.01) decreased all of the growth parameters, increased sodium (Na+) concentration, and decreased potassium (K+) concentration in shoots of both genotypes grown in hydroponics. Silicon significantly improved growth of both genotypes. The increase in growth was more prominent under salt stress (75%) than under normal condition (15%). In the second experiment, both genotypes were grown in normal [electrical conductivity (EC) = 1.23 d Sm–1] and natural saline field (EC = 11.92 d Sm–1) conditions with three levels of Si (0, 75, and 150 g g–1 Si) with three replications in a randomized complete block design. Silicon significantly (P < 0.05) decreased growth reduction in both genotypes caused by salinity stress. The grain yield under salt stress decreased from 62% to 33% and from 44% to 20% of the maximum potential in Auqab-2000 and SARC-3, respectively, when 150 g g–1 Si was used. Auqab-2000 performed better in normal field conditions, but SARC-3 produced more straw and grain yield in saline field conditions. Addition of Si significantly (P < 0.05) improved K uptake and reduced Na+ uptake in both of wheat genotypes and increased the K+/Na+ ratio in shoot. Enhanced salinity tolerance and improved growth in wheat by Si application was attributed to decreased Na+ uptake, its restricted translocation toward shoots, and enhanced K+ uptake.  相似文献   

11.
盐胁迫下柚实生苗生长、矿质营养及离子吸收特性研究   总被引:7,自引:1,他引:7  
以坪山柚为材料,对盐胁迫下实生苗生长、矿质营养及离子吸收特性进行了研究。结果表明,沙培30d,80~200mmol/L盐胁迫,随盐浓度提高,坪山柚实生苗株高、叶面积、地上部干重和根部干重明显降低。溶液培养8d,坪山柚实生苗地上部及根Na+、Cl-含量随盐浓度的增加而增加,根及地上部K+、Ca2+、Mg2+以及P和Mn含量下降,Fe、Zn、Cu含量的变化因器官而异。其中,地上部Fe含量对盐胁迫敏感,可作为柚耐盐性鉴定指标。40mmol/L盐胁迫,坪山柚地上部K+/Na+、Ca2+/Na+、Mg2+/Na+值均显著下降,且Mg2+/Na+值+/Na+值>1;浓度≥160mmol/L盐胁迫,K+/Na+值+吸收、运转效率比Cl-高。  相似文献   

12.
Soil management through the cultivation of salt-tolerant plants is a practical approach to combat soil salinization. In this study, salt tolerance of 35 barley (Hordeum vulgare L.) genotypes was tested at four salinity levels (0, 100, 200, and 300 mM NaCl in Hoagland nutrient solution) at two growth stages (germination and vegetative). The relationship between salinity tolerance and carbon isotope discrimination (CID) was also accessed. Results of the study carried out under laboratory conditions showed that a negative linear relationship was observed between salt concentration and germination as well as other growth parameters. Some genotypes showed good salt tolerance at germination but failed to survive at seedling stage. However, five genotypes, namely, Jau-83, Pk-30109, Pk-30118, 57/2D, and Akermanns Bavaria showed better tolerance to salinity (200 mM) both at germination and at vegetative growth stage. The salt tolerance of these barley genotypes was significantly correlated with minimum decrease in K+:Na+ ratio in plant tissue with increase in the root zone salinity. However, the case was reversed in sensitive genotypes. CID was decreased linearly with increase in root zone salinity. However, salt-tolerant genotypes maintained their turgor by osmotic adjustment and by minimum increase in diffusive resistance and showed minimum reduction in CID (Δ) with gradual increase in rooting medium salt concentration. Results suggested that the tolerant genotypes make osmotic adjustments by selective uptake of K+ and by maintaining a higher K+:Na+ ratio in leaves. Moreover, CID technique can also be good criteria for screening of salt-tolerant germplasm.  相似文献   

13.
A pot experiment was conducted to elucidate the effects of inoculating five exopolysaccharide- (EPS-) producing bacterial strains on the dry matter yield and the uptake of K+, Na+, and Ca2+ by wheat seedlings grown in a moderately saline soil. The bacteria were isolated from the rhizosphere soil (RS) of wheat grown in a salt-affected soil and included Aeromonas hydrophila/caviae (strain MAS-765), Bacillus insolitus (strain MAS17), and Bacillus sp. (strains MAS617, MAS620 and MAS820). The inoculation substantially increased the dry matter yield of roots (149–527% increase) and shoots (85–281% increase), and the mass of RS (176–790% increase). All the strains, except MAS617, also increased the RS mass/root mass ratio as well as the population density of EPS bacteria on the rhizoplane, and both these parameters were significantly correlated with the content of water-insoluble saccharides in the RS. Inoculation restricted Na+ uptake by roots, which was not attributable to the binding of Na+ by the RS, or to the ameliorative effects of Ca2+ under salinity. The decreased Na+ uptake by roots of inoculated than uninoculated plants was probably caused by a reduced passive (apoplasmic) flow of Na+ into the stele due to the higher proportion of the root zones covered with soil sheaths in inoculated treatments. Among the strains tested, MAS820 was the most efficient in all respects, whereas MAS617 was the least effective. Results suggested that inoculating selected EPS-producing bacteria could serve as a useful tool for alleviating salinity stress in salt-sensitive plants.  相似文献   

14.
An experiment with factorial arrangement of treatments on a randomized complete block (RCB) design basis with three replications was conducted in a greenhouse during Spring 2010 to investigate changes in sodium ion (Na+), potassium ion (K+), Na+/K+ and to determine proline, protein content, and superoxide dismutase (SOD) of four wheat and four barley cultivars. Three salt levels {1, control (no salt), 7, and 13 dS m?1 [2.5 and 5 g salt [sodium chloride (NaCl) and sodium sulfate (Na2SO4) in 1:1 ratio] per kg of soil, respectively]} were used in this investigation. Salt stress treatments were applied 4 weeks after planting (at 2 leaf stage). Leaf samples were taken four weeks after imposition of salt treatment. The results showed that salinity caused an increased in proline and protein content, and SOD in all wheat and barley cultivars. The highest proline and protein content of barley and wheat cultivars at all salinity levels were observed in ‘Nimrooz’ and ‘Bam’ cultivars, respectively. At all salinity levels, wheat and barley cultivars ‘Kavir’ and ‘Nimrooz’, respectively, had the lowest Na+ content. Barley cultivar ‘Kavir’ and wheat cultivar ‘Bam’ had higher K+ and K+:Na+ ratios. This might be related to salt tolerance in these two cultivars. Wheat and barley cultivars showed differences with regard to proline, protein, and SOD content, Na+, K+, and K+:Na+ ratio, indicating existence of genetic diversity among the cultivars. These findings indicated that higher K+, K+:Na+ ratio, proline, protein, and SOD content could be the key factors, which offer advantage to barley over wheat for superior performance under saline conditions.  相似文献   

15.
A short-term experiment was conducted to investigate whether the effect of rootstock on plant response to salinity depends on the solanaceous species used as scion. Tomato cv. ‘Ikram’ and eggplant cv. ‘Black Bell’ were grafted onto two tomato interspecific hybrids (‘Beaufort’ and ‘He-Man’). Plants were grown in an open soilless cultivation system and supplied with two nutrient solutions: non-saline control and a saline solution (adding 15 mM Na2SO4, 3.7 dS m?1). Plant dry biomass production and partitioning were influenced by salinity, but its effect was depending on the rootstock/scion combination. ‘Beaufort’ eliminated the deleterious effect of salinity when tomato was used as scion, but reduced (?29.6%) the shoot biomass of eggplant. ‘He-Man’ had a different effect on scion growth under saline conditions: shoot biomass was less reduced in eggplant (?20.6%) than in tomato (?26.8%). Under salt stress, ‘Beaufort’ reduced the accumulation of Na+ in tomato leaves more than in eggplant, whereas no differences were observed between tomato and eggplant grafted onto ‘He-Man’. Stem Na+ accumulation followed a different pattern. The increase of Na+ in the stems was similar for tomato and eggplant grafted onto ‘Beaufort’, whereas stems of tomato accumulated more Na+ compared to eggplant grafted onto ‘He-Man’. The opposite response of the tested rootstocks to salt stress when the scion was either tomato or eggplant seems to be partially related to the capacity of the rootstock and scion to exclude Na+ from the shoot. However, the results of nutrient accumulation within plant tissues imply that other mechanisms in addition to ion competition are involved in the salt resistance of grafted plants.  相似文献   

16.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

17.
Phytoremediation is a promising approach for reclamation of salt-affected soil. Phytoextraction is the most commonly used process, which exploits plants to absorb, immobilize, and accumulate salt in their shoots. In this study, halotolerant plant growth-promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wild grasses growing naturally in salt-affected areas of Lucknow, Uttar Pradesh (India) and were tested for their efficacies of salt-tolerance and plant growth-promoting (PGP) abilities. Based on 16S rRNA sequences, the most efficient halotolerant isolates possessing PGP traits were identified as Pseudomonas plecoglossicida (KM233646), Acinetobacter calcoaceticus (KM233647), Bacillus flexus (KM233648), and Bacillus safensis (KM233652). Application of these isolates as bio-inoculants significantly (P < 0.05) increased the growth and bacoside A yield of a medicinal plant, Bacopa monnieri (L.) Nash, grown on natural salt-affected soil. The phytoremediation of salt-affected soil was evident by the substantial increase in shoot Na+:K+ ratio of bio-inoculant-treated plants. When compared to un-inoculated control plants, the soil physico-chemical properties of bio-inoculant-treated plants were improved. The shoot and root biomass (fresh and dry weights), soil enzymes, and soil nutrient parameters showed significant positive correlations with the shoot Na+:K+ ratio. Consequently, the halotolerant PGPR screened in this study could be useful for the reclamation of saline soils concomitant with improved plant growth and bacoside A yield.  相似文献   

18.
To investigate the influence of potassium (K+) on the salinity tolerance of Chinese cabbage (Brassica pekinensis Rupr.) seedlings, the plants were cultured at three K+ levels (0, 5, or 10?mM), under normal (0?mM NaCl) and high-salt (100?mM NaCl) conditions. The results indicated that the dry weight of Chinese cabbage increased with the application of K+ under salt stress. Addition of K+ increased K+ concentrations and suppressed sodium (Na+) concentration, which eventually increased the K+/Na+ ratios in roots or shoots. Application of K+ enhanced the uptake of K+ and suppressed the uptake of Na+. Moreover, the ratios of shoot-K+/root-K+ increased considerably, but the ratios of shoot-Na+/root-Na+ decreased in response to K+ application. It was concluded that the application of K+ could enhance the salt stress tolerance in Chinese cabbage because more K+ than Na+ was absorbed and translocated from roots to shoots.  相似文献   

19.
为探究不同微咸水水质对土壤盐分和作物生长的影响,在日光温室条件下,以生菜为供试对象开展盆栽试验,以CaSO4的饱和溶液为对照(CK),向去离子水中添加氯化盐形成不同阳离子组成的微咸水处理(Na+,TNa;Na+/K+比为1 ∶ 1,TNa-K;K+,TK),各处理添加盐分总摩尔量相同,研究灌溉水中不同阳离子组成对土壤盐...  相似文献   

20.
About 7% of the total land around the globe is salt‐affected causing a great loss to agriculture. Salt stress refers to the excessive amount of soluble salts in the root zone which induce osmotic stress and ion toxicity in the growing plant. Among toxic ions, sodium (Na+) has the most adverse effects on plant growth by its detrimental influence on plant metabolism in inhibiting enzyme activities. An optimal potassium (K+) : Na+ ratio is vital to activate enzymatic reactions in the cytoplasm necessary for maintenance of plant growth and yield development. Although most soils have adequate amounts of K+, in many soils available K+ has become insufficient because of large amounts of K+ removal by high‐yielding crops. This problem is exacerbated under sodic or saline‐sodic soil conditions as a consequence of K+‐Na+ antagonism. Here K+ uptake by plants is severely affected by the presence of Na+ in the nutrient medium. Due to its similar physicochemical properties, Na+ competes with K+ in plant uptake specifically through high‐affinity potassium transporters (HKTs) and nonselective cation channels (NSCCs). Membrane depolarization caused by Na+ makes it difficult for K+ to be taken up by K+ inward‐rectifying channels (KIRs) and increases K+ leakage from the cell by activating potassium outward‐rectifying channels (KORs). Minimizing Na+ uptake and preventing K+ losses from the cell may help to maintain a K+ : Na+ ratio optimum for plant metabolism in the cytoplasm under salt‐stress conditions. It would seem a reasonable assumption therefore that an increase in the concentration of K+ in salt‐affected soils may support enhanced K+ uptake and reduce Na+ influx via HKTs and NCCSs. Although very useful information is available regarding K+‐Na+ homeostasis indicating their antagonistic effect in plants, current knowledge in applied research is still inadequate to recommend application of potassium fertilizers to alleviate Na+ stress in plants under sodic and saline‐sodic conditions. Nevertheless some encouraging results regarding alleviation of Na+ stress by potassium fertilization provide the motivation for conducting further studies to improve our understanding and perspectives for potassium fertilization in sodic and saline‐sodic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号