首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distributions of eggs, larvae and juveniles of Pacific herring Clupea pallasii were surveyed in Lake Akkeshi and the connecting Akkeshi Bay on the Pacific coast of eastern Hokkaido. Eggs were found attached to seagrasses and seaweeds in the densely vegetated eastern inner lake. Larvae (7.1–34.9 mm total length) were distributed in the less densely vegetated inner lake during April and June. Juveniles (35.0–89.6 mm) were collected in the central and western parts of the lake. The sites containing juveniles were less densely vegetated with water temperatures lower than 20 °C from June to August. When the water temperature of the entire lake rose to 20 °C in late summer, juveniles appeared to move from the lake to the bottom layer of Akkeshi Bay, which has lower temperatures. Thus, in Akkeshi waters, C. pallasii successively used different habitats during its egg, larval and juvenile stages. A comparison of the current limited distribution of eggs and larvae with the distribution over the entire lake and bay areas in the 1950s and 1960s (periods of large catch size) indicates that the spawning grounds and larval habitats of C. pallasii have contracted to the lake area due to low spawning stock biomass in recent years.  相似文献   

2.
The harvest of bay scallops (Argopecten irradians) from Buzzards Bay, Massachusetts, U.S.A. undergoes large interannual fluctuations, varying by more than an order of magnitude in successive years. To investigate the extent to which these fluctuations may be due to yearly variations in the transport of scallop larvae from spawning areas to suitable juvenile habitat (settlement zones), a high‐resolution hydrodynamic model was used to drive an individual‐based model of scallop larval transport. Model results revealed that scallop spawning in Buzzards Bay occurs during a time when nearshore bay currents were principally directed up‐bay in response to a persistent southwesterly sea breeze. This nearshore flow results in the substantial transport of larvae from lower‐bay spawning areas to settlement zones further up‐bay. Averaged over the entire bay, the spawning‐to‐settlement zone connectivity exhibits little interannual variation. However, connectivities between individual spawning and settlement zones vary by up to an order of magnitude. The model results identified spawning areas that have the greatest probability of transporting larvae to juvenile habitat. Because managers may aim to increase scallop populations either locally or broadly, the high‐connectivity spawning areas were divided into: (i) high larval retention and relatively little larval transport to adjoining settlement areas, (ii) both significant larval retention and transport to more distant settlement areas, and (iii) little larval retention but significant transport to distant settlement areas.  相似文献   

3.
Southern bluefin tuna, Thunnus maccoyii, are cultured in Australia following collection of wild juveniles. Hatchery culture from egg is in the experimental stage. High early mortality has hindered the production of quality juveniles in the hatchery. This study investigated the visual capacity of T. maccoyii during early larval ontogeny in order to describe the best larval rearing conditions to produce high‐quality seed stock. Functional visual ability, determined through behavioural experimentation, identified the effect of light intensity, prey density, turbidity, tank colour and turbulence on the feeding response. Larvae were visually challenged to feed under a range of conditions in short‐duration (4 h) feeding experiments. Feeding performance was measured as the proportion of larvae feeding and the intensity of feeding. First‐feeding performance was positively affected by increasing prey density and lower turbidities and unaffected by light intensity, tank colour, turbulence, prey size and larval density. The key findings from feeding experiments on 6 and 9 dph larvae was that as T. maccoyii aged, lower light intensities and higher prey densities significantly increased feeding performance. In addition, the study has identified that high light intensity and high air‐driven turbulence induced significant mortality. The proficient first‐feeding response indicated that early mortality common in culture is unlikely to be associated with a failure to initiate feeding. Our findings show the use of low light intensity has the potential to significantly improve survival and feeding response during the first two critical weeks of culture, when the major bottleneck in hatchery production is currently experienced.  相似文献   

4.
The occurrence and density of Pacific saury Cololabis saira larvae and juveniles were examined in relation to environmental factors during the winter spawning season in the Kuroshio Current system, based on samples from extensive surveys off the Pacific coast of Japan in 2003–2012. Dense distributions of larvae and juveniles were observed in areas around and on the offshore side of the Kuroshio axis except during a large Kuroshio meander year (2005). The relationships of larval and juvenile occurrence and density given the occurrence to sea surface temperature (SST), salinity (SSS), and chlorophyll‐a concentration (CHL) were examined by generalized additive models for 10‐mm size classes up to 40 mm. In general, the optimal SST for larval and juvenile occurrence and density given the occurrence was consistently observed at 19–20°C. The patterns were more complex for SSS, but a peak in occurrence was observed at 34.75–34.80. In contrast, there were negative relationships of occurrence and density given the occurrence to CHL. These patterns tended to be consistent among different size classes, although the patterns differed for the smallest size class depending on environmental factors. Synthetically, the window for spawning and larval and juvenile occurrence and density seems to be largely determined by physical factors, in particular temperature. The environmental conditions which larvae and juveniles encounter would be maintained while they are transported. The survival success under the physically favorable but food‐poor conditions of the Kuroshio Current system could be key to their recruitment success.  相似文献   

5.
We used modified Leslie matrix models to explore the life history of Atlantic menhaden ( Brevoortia tyrannus ). By examining the sensitivity of long-term population growth rates to changes in vital rates, we identified those life history components which can cause large population level responses. Our models subdivide the first year of life into five stages (eggs, early larvae, late larvae, juveniles, and 'peanuts' or subadults), and population growth rate responds most strongly to changes in juvenile and late larval stages. The relative ranking between these stages is dependent on the magnitude of mortality during the prejuvenile stages relative to juvenile mortality. An examination of low-level model parameters indicates that the population growth rate is influenced by the growth and mortality rates during the time when young-of-the-year menhaden are gaining access to and residing in the estuaries. Sensitivity to changes in many adult metrics, such as fishing mortality, were relatively low. We conclude that a better understanding of biotic and abiotic factors that influence the late larval and juvenile stages will further our understanding of population dynamics in this species.  相似文献   

6.
Multiyear periods of relatively cold temperatures (2007–2013) and warm temperatures (2001–2005 and 2014–2018) altered the eastern Bering Sea ecosystem, affecting ocean currents and wind patterns, plankton community, and spatial distribution of fishes. Yellowfin sole Limanda aspera larvae were collected from the inner domain (≤50 m depth) of the eastern Bering Sea among four warm years (2002, 2004, 2005, 2016), an average year (2006), and three cold years (2007, 2010, 2012). Spatial distribution and density of larvae among those years was analyzed using generalized additive models that included timing of sea-ice retreat, areal coverage of water ≤0°C, and water temperature as covariates. Analyses indicated a combination of temperature effects on the location and timing of spawning, and on egg and larval survival, may explain the variation in larval density and distribution among years. During warm years, higher density and wider spatial distribution of larvae may be due to earlier spawning, an expansion of the spawning area, and higher egg and larvae survival due to favorable temperatures. Larval distribution contracted shoreward, and density was lower during cold conditions and was likely due to fish spawning closer to shore to remain in preferred temperatures, later spawning, and increased mortality. Predicted drift trajectories from spawning areas showed that larvae would reach nursery grounds in most years. Years when the drift period was longer than the pelagic phase of the larvae occurred during both warm and cold conditions indicating that settlement outside of nursery areas could happen during either temperature condition.  相似文献   

7.
A previous study elucidated that an extreme hypoxia during somitogenesis induced the most frequent skeletal malformation centrum defects in red sea bream (RSB), Pagrus major. In this study, details of the hypoxic conditions to induce them in RSB, dissolved oxygen (DO) concentration and exposure time to hypoxia, were investigated. Fertilized eggs were exposed to seawater of six DO concentrations (0%, 10%, 25%, 50%, 75% and 100% of saturation) for seven different periods (5, 10, 30, 60, 120, 240 and 360 min) during somitogenesis. Somitic disturbances in newly hatched larvae were induced by exposure to 0% and 10% DO concentration for 10 and 120 min and longer respectively. Rearing eggs exposed to hypoxic condition of 10% DO for 240 min for 40 days post‐hatch showed that the location and the frequency of somitic disturbances in larvae and centrum defects in juveniles were significantly correlated (P<0.01). Dissolved oxygen concentration of the interstitial water in the egg high density layer formed at the water surface in a stationary state abruptly decreased to 3.7% within 7 min. Centrum defect induction by exposure of eggs to extreme low DO concentrations for a short period, which is the probable situation in the practical juvenile production, suggests that careful maintenance of DO concentration is important in the incubating water of fertilized eggs during egg sorting and transportation, where eggs are made into a pile and undergo hypoxia, for the prevention of centrum defects.  相似文献   

8.
In order to understand better the recruitment variability in European anchovy in the Bay of Biscay, it is important to investigate the processes that affect survival during the early life stages. Anchovy juvenile growth trajectories and hatch‐date distributions were inferred over a 3‐year period based on otolith microstructure analysis. Otolith growth trajectories showed a characteristic shape depending on their hatch‐date timing. Earlier‐born juveniles had notably broader maximum increments than later born conspecifics, resulting in higher growth rates. This observation suggests that early hatching would be beneficial for larval and juvenile growth, and, therefore, survival. The estimated juvenile hatch‐date distributions were relatively narrow compared with the extended anchovy spawning season (March–August) in the Bay of Biscay and indicated that only individuals originated mainly from the summer months (June–August) survived until autumn. Hatch‐date distributions were markedly different among years and seemed to influence the interannual recruitment strength of anchovy. We conclude that years characterized by juvenile survivors originating from the peak spawning period (May and June) would lead to considerable recruitment success. Downwelling events during the peak spawning period seem to affect larval survival. Furthermore, size‐dependent overwinter mortality would be an additional process that regulates recruitment strength in the anchovy population in the Bay of Biscay.  相似文献   

9.
ABSTRACT:   We investigated changes in the reproductive patterns of mantis shrimp Oratosquilla oratoria concurrent with stock-abundance decline in Tokyo Bay, Japan. Stock abundance was high in the mid to late 1980s but decreased abruptly in the early 1990s. The yearly change in annual mean larval abundance was similar to that of stock abundance. Mantis shrimp in the bay have two spawning seasons, an early season (May–June) for ≥1-year-old individuals and a late season (July–September) for 0–1-year-old individuals. This general reproductive pattern does not differ among different stock-abundance levels. However, the monthly pattern in larval abundance has changed with stock-abundance decline; larval abundance from the early spawning season was highest in the high-stock-abundance period, and it decreased significantly in the low-stock-abundance period, probably as a result of decreased spawning-stock abundance of large female mantis shrimp ≥1-year-old. Correlation analysis on the egg production index and larval abundance suggested that during this low-stock-abundance period the population is supported mostly by late-hatched larvae spawned by small, 0–1-year-old female mantis shrimp. Considering the reproductive pattern and the present status of the fishery, the stock of small female mantis shrimp should be conserved to enhance reproduction of the population for stock recovery.  相似文献   

10.
Most juveniles of Haliotis discus hannai have been found to be descendants of wild individuals, although most adults were artificially produced (released) individuals as a result of restocking inside the refugium located near the head of Oshoro Bay, Hokkaido, Japan. To estimate the larval supply from released and wild individuals into the refugium and to compare the suitability of locations as larval sources, we simulated larval dispersal using a coupled hydrodynamic and particle-tracking model. The simulation results indicated that more larvae may be supplied from the wild adults inside the bay to the refugium than from the released adults. These results are consistent with the observed high abundance of wild juveniles in the refugium. Most larvae from the refugium were predicted to disperse out of the bay. We found that larval retention in the bay was at least one order of magnitude higher than that in the refugium. Thus, it may be more effective in terms of self-replenishment and reproduction if the refugium were to be expanded to the bay scale. There were only minor differences among the compared sites at the head of the bay in terms of their suitability as larval sources. Consequently, the establishment of new refugia in this area could be expected to provide an effectiveness equal to that of the current refugium.  相似文献   

11.
In order to clarify mechanisms influencing the reproductive success of Baltic cod (Gadus morhua L.), a modelling exercise was performed to examine the effects of the wind‐driven circulation on the transport of early life stages between the western and eastern Baltic. Because the different stocks spawn in different areas and environments at different times of the year, the occurrence of variable age/length distributions of juveniles within the different potential nursery areas can be explained by the circulation pattern. A three‐dimensional circulation model of the Baltic was utilized to investigate the temporal evolution of egg and larval distributions of the western Baltic cod stock, which spawns preferentially in the Danish Straits, in Kiel Bay as well as in Mecklenburg Bay. For different scenarios (1988 and 1993), within‐ and between‐year variability of egg and larval transport showed large differences, primarily due to variations in wind forcing. In 1988, relatively low and variable wind forcing prevailed, whereas, due to sustained strong, mainly westerly, winds, in January 1993, the recent major Baltic inflow to the Baltic Sea occurred. Differences in contributions of early life stages from the western to the eastern cod stocks, depending on the physical forcing conditions, suggest that this process can be controlled by variations of atmospheric forcing conditions. The potential for early life stages from the western Baltic cod stock to drift into the Arkona Basin and the Bornholm Basin, and to contribute there to the juvenile population, has been recognized as being mainly due to strong westerly winds. During cold winters, retention of eggs, larvae and juveniles within their original spawning grounds may predominate. Transport of cod early life stages from the Øresund, as well as from the Great Belt, can occur only during periods of strong westerly winds, but significant eastwards orientated drift from Kiel Bay and Mecklenburg Bay was also evident during periods of minor westerly wind influence.  相似文献   

12.
Despite the large progress obtained in recent years, Senegalese sole (Solea senegalensis) production of high quality juveniles is still a bottleneck. This paper examines the effect of larval and post-larval lipid nutrition on juvenile performance and quality. Four dietary treatments were tested: A—enriched Artemia spp. (EA); B—non-enriched Artemia spp. (NEA); C—EA during the pelagic larval period and NEA after larval settlement; D—50% EA and 50% NEA. Juvenile fatty acid profile at 60 days after hatching (DAH) clearly reflected the larval and post-larval diet composition. Feeding sole larvae on NEA (poor in lipids and essential fatty acids-EFA) had a negative effect, reducing growth (total length and dry weight) after 30 DAH and decreasing digestive enzyme activity at the end of the rearing period (60 DAH). However, relatively good performance compared to the EFA-richest treatment (A) was obtained when larvae were fed 50% EA and 50% NEA (D) or even EA only during the pelagic larval period followed by NEA after larval settlement (C). Malpigmentation was not affected by the dietary regimes and its incidence was very low. However, skeletal deformities were prevalent, particularly in the caudal complex, independently of diet. The results confirm that Senegalese sole appear to have lower larval EFA requirements than most cultured marine species and potentially even lower requirements during the post-larval stage. The importance of studying the impact of early nutrition on later juvenile stages was clearly highlighted in this study.  相似文献   

13.
Recent findings suggest that recruitment of Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus) depends on survival during not only the first feeding larval stage in the Japanese coastal waters and the Kuroshio front but also during the post‐larval and juvenile stages in the Kuroshio Extension. Spatial distributions of juvenile anchovy and sardine around the Shatsky Rise area in the Kuroshio Extension region and the Kuroshio–Oyashio transition region are described, based on a field survey in the late spring using a newly developed mid‐water trawl for sampling juveniles. All stages of anchovy from post‐larvae to juveniles were obtained in the northern Shatsky Rise area. The Kuroshio Extension bifurcates west of the Shatsky Rise area and eddies are generated, leading to higher chlorophyll concentrations than in the surrounding regions in April and May. When Japanese anchovy and sardine spawn near the Kuroshio front or the coastal waters south‐east of Japan, their larvae are transported by the Kuroshio Extension and are retained in the Shatsky Rise area, which forms an important offshore nursery ground, especially during periods of high stock abundance.  相似文献   

14.
Growth traits of juvenile Japanese jack mackerel (Trachurus japonicus) were estimated based on otolith daily increments in spring during 2011–2016 in the southwestern part of the Sea of Japan (SWSJ). Spatial variability in growth traits was examined between the western and eastern areas of the study area. Back-calculated body length at 50 days post hatch varied among areas and years between 26 and 40 mm. Body lengths at age in the eastern area were significantly smaller than those in the western area. Slower growth rate in the eastern area was associated with the lower ambient temperature in the eastern area than in the western area. In the eastern area, interannual variations in the instantaneous growth rate positively correlated with ambient temperature. Furthermore, interannual variations in back-calculated body length during the late larval and early juvenile stages positively correlated with the juvenile abundance. These results suggest that the thermal conditions in the eastern area are indicative of the growth rate and abundance of juvenile T. japonicus in SWSJ. We further examined relationships between juvenile abundance and thermal conditions during 2003–2019 using archived data of this survey and found that the ambient temperature in the eastern area positively correlated with the juvenile abundance and also the strength of the Tsushima Warm Current. Thus, higher temperatures derived from the Tsushima Warm Current result in a faster growth rate during the late larval and early juvenile stages and subsequently higher abundance of T. japonicus juveniles in SWSJ.  相似文献   

15.
The development of sustainable methods for sea urchin juvenile production is currently constrained by high mortality rates during larval growth and the high costs of larval rearing systems management. With the aim of developing a method for the production of juveniles of the purple sea urchin Paracentrotus lividus in a medium‐scale recirculating system, the present study focused on the effects of high stocking densities on larval growth. Plutei larvae were reared at three different densities (up to 7 ind/ml) in a semi‐static culture system. Larval survival and metamorphosis success were evaluated in order to identify the most effective density range. The highest metamorphosis rates (80%–95%) were obtained at 4 and 7 larvae/ml. These results are comparable with (and in some cases higher than) those reported for the same species at much lower larval densities. In conclusion, the rearing conditions tested here show for the first time that a significantly higher (4 ind/ml) stocking density than those of traditional P. lividus rearing methods (based on large volumes and low densities) can be adopted, thus supporting the feasibility of an increase in the final output of competent larvae with no increase in rearing volumes.  相似文献   

16.
The suitability of the harpacticoid copepodTisbe holothuriae as a diet for larval and juvenile Dover sole (Solea solea) was assessed by rearing groups of sole for 42 days under a range of dietary regimes. Larval sole, approximately 1 week old, were reared onTisbe, Artemia, or a mixedTisbe-Artemia diet for 13 days. No significant differences in length between sole larvae from any diet were found after this time, but larvae offeredArtemia alone showed a significantly higher frequency of malpigmentation than those offered the other diets. After metamorphosis (day 16), survivors of this experiment were reared for a further 29 days on various diets to give the following dietary sequences:Tisbe-fed larvae, fed onArtemia as juveniles (Tis.-Art.);Artemia-fed larvae, fed onArtemia as juveniles (Art.-Art.);Artemia-fed larvae, fed onTisbe as juveniles (Art.-Tis.) and mixed diet fed larvae, fed on a mixed diet as juveniles (AT-AT). At the end of this period AT-AT and Tis.-Art.-fed juveniles were significantly larger than those on the Art.-Art. dietary regime. Juveniles from the Tis.-Art. dietary regime consumed more prey items than the Art.-Art group. AT-AT juveniles consumed similar amounts of food to Art.-Art. juveniles but were significantly larger after 29 days culture. This was attributed to the presence ofTisbe in their diet. Overall, the best larval and juvenile diet appeared to be a mixed diet throughout the culture period.  相似文献   

17.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

18.
Evidence in the course of experiments under controlled conditions proved that the egg and juvenile characteristics of the edible Chilean sea urchin, erizo (Loxechinus albus) influence the cultivation efficiency. Mortalities among larvae originating from eggs with a diameter <110 m were higher than among those originating from eggs with a diameter >100 m. On the other hand, the initial size of the egg did not produce any variation in the percentage of larvae which metamorphosed. The initial size of the late metamorphosing juveniles modified early growth. A direct relationship was established between the size of the juveniles and the growth rate. In conclusion, biological aspects are determinant factors in any consideration of options available for the mass production of larvae and juveniles of this sea urchin.  相似文献   

19.
The diel feeding rhythm and ontogenesis during early life stage of loach Misgurnus anguillicaudatus were investigated under experimental conditions (light: L 06:00–18:00, D 18:00–06:00 h). Morphological and behavioral developments of loach from newly hatched to 40 days after hatching were observed. Larvae were able to prey on daphnia 3–4 days after hatching at 23 ± 0.5°C. As the larvae grew, they showed an increasing feeding capacity and a distinct feeding rhythm. Feeding intensity and incidence for day-4 larvae were highest at 10:00 and 16:00 h. The highest levels of feeding intensity for day-12 larvae occurred at 08:00, 12:00, and 18:00 h as did feeding incidence. By day 20, when the larvae metamorphosed, the highest levels of feeding intensity occurred at 06:00, 18:00, and 24:00 h and were concurrent with the highest feeding incidence. After metamorphosis, feeding capacity had again increased considerably and, in contrast to the earlier stages before day 20, feeding intensity for day-30 juveniles peaked at 05:00 and 20:00 h, about 1–2 h after the maximum feeding incidence. The feeding rhythm of loach juveniles at day 40 was almost the same as the day-30 juveniles. The estimated maximum daily feeding rates were 43.1%, 33.4%, 19.0%, 12.8%, and 5.8% of body weight on days 4, 12, 20, 30, and 40, respectively. Thus, loach was found to have different feeding rhythms in the pre- and post-metamorphosis stages, with the highest feeding activity in daytime during the larval planktonic stage before metamorphosis, and intensely nocturnal feeding behavior during the juvenile benthic stage after metamorphosis.  相似文献   

20.
An individual‐based model (IBM) for the simulation of year‐to‐year survival during the early life‐history stages of the north‐east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf‐Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post‐larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post‐larvae, are compared with field data as recruit (age‐0/age‐1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter‐annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north‐east Atlantic stock of mackerel, these being Porcupine Bank and the south‐eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号