首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
水力采收睡莲块茎工艺参数优化   总被引:1,自引:1,他引:0  
为研究睡莲水力采收工艺参数对采收的影响,根据高压水射流冲刷原理,研究高压水射流各个参数对水力采收睡莲块茎的影响。利用L9(34)正交表设计睡莲块茎水力采收工艺参数:水射流压力、喷嘴直径、前进速度、射流冲刷角度的试验,分析各相关因素对水力采收效果影响。结果表明4个参数都是影响水力采收的显著因素,其中射流的压力和射流流量是影响水力采收的主要因素。通过方差分析得出较优的参数组合:喷嘴直径D为15mm、前进速度V为0.71m/min、冲刷角度为0、射流压力为0.20MPa。射流压力和射流流量增加都能显著提高采收效果,其中提高流量比提高压力所消耗的功率显著,因此在功率一定的情况下应优先保证较高的射流压力。  相似文献   

2.
SSQ系列射流施肥器水力性能试验研究   总被引:3,自引:3,他引:0  
基于农业生产中水肥一体化技术的施肥要求,该研究对国内常用的SSQ系列射流施肥器进行了性能测试。以吸肥量、进出口压差等指标为研究目标进行了施肥器水力性能的分析和预测,推导了SSQ系列射流施肥器开始吸肥和吸肥效率最高时进出口压差与进口压力的关系公式。结果表明:在正常工作阶段,SSQ系列射流施肥器的吸肥量随进出口压差的增加而增大,在空化条件下达到极限工况;8种不同规格施肥器在进口压力超过0.20 MPa时才能充分发挥吸肥性能;正常工作阶段临界压差与进口压力关系公式的斜率与试验值的误差小于15%,斜率的大小主要受喉管截面和喷嘴出口截面的面积比影响;效率最高时压差与进口压力关系公式的斜率与试验值的平均相对误差为17%,验证了该关系公式的合理性。本文提出的SSQ系列射流施肥器水力性能预测公式可为同类产品的设计和应用提供参考。  相似文献   

3.
王莉 《农业工程学报》2007,23(6):130-135
该文介绍了淹没水射流蔬菜清洗机的基本结构特征;根据水力学原理,分析了淹没水射流对蔬菜清洗的作用原理及蔬菜在清洗过程中的运动状态;通过制作试验装置进行试验,验证了蔬菜在淹没水射流作用下的运动规律,为该类清洗机的设计提供了理论依据和试验基础。结果表明:在喷口尺寸、喷口位置等结构参数确定的情况下,喷口射水流速影响蔬菜的运动状态,在该试验装置的结构尺寸下,喷口射水流速达到4.5~5.5 m/s时,可使蔬菜处于良好的搅动清洗状态。  相似文献   

4.
淹没水射流方式清洗蔬菜的探索研究   总被引:3,自引:2,他引:3  
王莉  丁小明 《农业工程学报》2007,23(12):124-130
利用清洗试验装置对淹没水射流方式清洗蔬菜进行了研究。着重研究了淹没水射流方式清洗蔬菜的种类、清洗能力及限制因素;通过对菠菜、油菜的清洗试验,研究了清洗时间对清洗效果的影响;利用浊度指标,试验研究了清洗水水质随清洗蔬菜累计量的变化规律,并同时测试了浊度变化对蔬菜洗净率的影响。结果表明,淹没水射流方式清洗蔬菜适用广泛,不会对蔬菜造成损伤,并能获得良好的清洗效果。  相似文献   

5.
水射流剥离扇贝闭壳肌的试验与参数优化   总被引:1,自引:1,他引:0  
为了满足扇贝闭壳肌剥离的安全性、经济性和高效性要求,该文将水射流技术应用于海湾扇贝闭壳肌剥离中并进行试验研究。为了保证闭壳肌的剥离质量和效率,优化水射流喷射路径,对水射流喷射路径进行拟合,得到闭壳肌剥离时水射流的初始入射角。以闭壳肌剥离效果的感官评分为考核目标进行了剥离试验,通过单因素分析,确定了射流压力、入射角度和喷射距离的取值范围。应用Box-Behnken design进行试验设计,并应用响应面法对试验数据进行分析处理,建立了剥离效果评价标准和数学模型。通过对响应面图的分析,得出了适用于水射流剥离闭壳肌的优化工作参数组合。结果表明:射流压力应控制在2~4 MPa、射流入射角度控制在23°~33°、射流喷射距离控制在30~40 mm。当射流压力为3 MPa、射流入射角为23°、喷射距离控制在30 mm时,扇贝闭壳肌剥离效果最好。该文可为扇贝剥离设备的设计及优化提供借鉴和参考。  相似文献   

6.
为分散喷头主射流,提高喷头的喷洒均匀度,使喷头适用于农业低压喷灌,该研究结合射流与撞击流提出了一种射流撞击式旋转喷头。首先对比了射流撞击喷头与射流不撞击喷头的水力性能,通过正交试验分析了各结构参数值对射程和组合均匀系数的影响,得到副喷嘴结构优化参数,最后将优化后的射流撞击喷头与改进前的传统15PY2喷头进行水力性能及水滴粒径分布对比。研究结果表明,射流撞击使射程末端水量高点降低,同时射程得到提升,射程平均提升4.39%,在相同压力及组合间距下覆盖范围更大。影响喷头工作性能的结构参数依次为副喷管长度、副喷嘴进口锥角、副喷管内径、副喷嘴仰角,而副喷嘴仰角对射程与组合均匀系数影响最大,15型射流撞击喷头最佳结构参数组合为:副喷管长度20 mm、副喷嘴进口锥角55°、副喷管内径6 mm、副喷嘴仰角33°。射流撞击喷头在压力150~300 kPa下组合均匀系数和综合评分均高过传统15PY2喷头,组合均匀系数平均提升4.84%,综合性能平均提升4%,证明了射流撞击应用于旋转式喷头具有优势。在射程前中段,150和250 kPa下射流撞击喷头水滴直径更大;在射程后段,150 kPa下射流撞击喷头水滴直径更大,但在250 kPa下水滴直径更小。研究所得到的喷头结构及结论可为后续研究射流撞击对水力性能的影响提供参考。  相似文献   

7.
该文采用试验的方法对淹没水射流方式清洗樱桃番茄进行了研究。通过改变清洗量与射水流量进行试验,探索两者间的相互关系。并且试验研究了清洗量和清洗时间对清洗效果的影响。结果表明,淹没水射流方式适合用于樱桃番茄的清洗,破损率低,可以获得比较好的清洗效果。  相似文献   

8.
为了研究苎麻纤维残留胶质的射流冲击分纤脱胶机理,设计试制了高温射流冲洗试验装置,开展了单喷嘴和双喷嘴开纤脱胶试验,数值模拟了单喷嘴和双喷嘴射流冲击壁面的表面温度场、压力场分布及有效的作用区域。结果表明,当喷嘴直径为2.0 mm,进口温度为373 K时,单喷嘴射流冲击试验的较佳组合参数喷距为30 mm,进口压强为1.2 MPa,时间为16 min,测得残胶率为3.1%;以单喷嘴相同设定参数模拟了双喷嘴较佳喷嘴间距为30 mm,冲击压力范围为0.2~0.3 MPa,温度范围为320~334 K,该试验测试的喷嘴间距与数值模拟相符合,测试残胶率为3.1%,单纤维断裂强力为51.71 c N。该技术为开发新型苎麻纤维分纤洗脱设备提供技术参数。  相似文献   

9.
针对免耕播种机开沟圆盘整体淬火后硬度不足且易翘曲变形的问题,该文提出一种水冲击射流淬火方法,利用DEFORM软件对开沟圆盘淬火过程中的硬度和翘曲变形量进行数值模拟,分析了射流阵列参数(喷嘴间距、喷嘴直径和射流速度)对淬火结果的影响,并对工艺参数的优选数值进行了试验验证,二者显示了较好的一致性。结果表明:喷嘴间距是关键工艺参数,当喷嘴间距取4~5 mm时,开沟圆盘可以整体淬透,硬度达到45~49 HRC。开沟圆盘的变形量与喷嘴间距呈抛物线关系,当喷嘴间距取5~6 mm时,变形量达到最大值1.80×10-2~3.30×10-2 mm,淬透后变形量较小。随射流速度的增大,开沟圆盘硬度及变形量均增加,当射流速度为1~6 m/s时,增幅较大,当射流速度6 m/s时,增幅趋缓。在喷嘴直径为4~12 mm范围内,开沟圆盘硬度及变形量均随喷嘴直径加大而增加。优化后的工艺参数为:喷嘴间距为4~5 mm,喷嘴直径为6~8 mm,射流速度为3~6 m/s;此时,开沟圆盘硬度可达45~49 HRC,变形量为1.28×10-2~2.49×10-2 mm。  相似文献   

10.
陈广银  吴佩  董金竹  王恩慧  郑嘉伟 《土壤》2023,55(3):587-595
为减少猪粪水贮存过程中氮素损失,提高还田安全性,采用酸化贮存技术,以磷酸为酸化剂,比较了不同初始pH对猪粪水酸化贮存过程及氮素损失的影响。结果表明:试验用猪粪水中重金属浓度大小顺序为:Cu>Pb>Zn>Cd>As,贮存后重金属浓度均降低,符合《农用沼液:GB/T 40750-2021》标准,但贮存180 d后猪粪水氮素损失率达68.55%,贮存后猪粪水中氮素以氨氮为主,占比达51.73%;酸化pH与酸化剂用量的相关性公式为:y=-3.3113x + 22.999,R2=0.985;酸化贮存大幅减少了猪粪水氮素损失,损失率较CK降低了5.98-62.77个百分点,且贮存后氨氮占总氮占比大幅提高24个百分点以上,保氮效果与pH呈反比;磷酸酸化提高了猪粪水总磷和水溶性磷浓度,增加幅度与磷酸用量呈正比;酸化贮存后猪粪水EC、Cd和Pb浓度偏高,抑制根和茎生长,其负面效应与贮存pH呈反比;酸化贮存降低了猪粪水Cu浓度,Cu浓度与pH呈正比,对As和Zn的作用无明显规律。综上所述,建议将猪粪水pH调至6.0后贮存,酸化剂成本为13.89元·吨-1。  相似文献   

11.
内充气吹式玉米精量排种器设计与试验   总被引:9,自引:7,他引:2  
针对内充机械气力组合式排种器工作压强范围窄,排种器在工作压强范围外工作时,合格指数低的问题,该文基于气吹式排种器气流清种及气压式排种器种子压附原理,设计了一种内充气吹式排种器,对清种-压种组合式气嘴的倾角和安装位置进行设计计算。对清种气嘴的截面倾角进行流体仿真分析,并对不同类型的玉米种子在不同工作压强下进行了排种器台架试验。结果表明:不同类型种子的合格指数呈现出大扁种子小扁种子小圆种子大圆种子的规律;工作压强为4.5和5.0 k Pa时,大扁种子和小扁种子的合格指数均达95%以上,该排种器适用于扁型种子的播种。  相似文献   

12.
【目的】 利用数学模拟方法研究了长周期有机肥与化肥配施对渭北旱塬苹果园产量和深层土壤水分利用的影响。 【方法】 采用WinEPIC模型定量模拟研究了1965—2009年期间洛川苹果园在6种有机肥与化肥配施处理下苹果产量、0—15 m土层土壤水分和有机碳含量的响应动态。在施肥总量均为N 360 kg/hm2、P2O5 180 kg/hm2的基础上,设置6种猪粪和氮磷化肥投入比例:M0 (单施化肥)、M1 (1/5腐熟猪粪)、M2 (2/5腐熟猪粪)、M3 (3/5腐熟猪粪)、M4 (4/5腐熟猪粪) 和M5 (单施腐熟猪粪)。调查了每年11月份果园各处理0—15 m土层土壤有机碳和有效水分含量以及果园产量,模拟值与观测值相一致,并利用数学模型进行了长周期变化动态模拟。 【结果】 通过模型数据库组建、生长参数修订和模拟精度验证,表明WinEPIC模型能够较准确地模拟洛川苹果园产量和土壤水分利用响应,可用于渭北旱塬不同施肥处理下苹果园水分生产力模拟研究;在1965~2009年模拟研究期间,各施肥处理下苹果园果品产量随树龄增长呈现出前期急速增加后期波动降低,土壤含水量波动性下降,土壤有机碳呈逐渐积累的趋势。与M0相比,施用有机肥处理M1、M2、M3、M4和M5分别增产5.2%、9.8%、10.3%、1.3%和–6.6%,M3处理产量最高,其42年年均产量为30.98 t/hm2;M1~M5果园土壤有效含水量分别较M0提高4.3%、6.2%、5.9%、9.0%和9.8%,其中M5处理保墒效果最优,0—15 m土层土壤有效含水量45年均值为1339 mm;M0~M5处理下苹果园0—15 m土层土壤湿度垂直变化剧烈,土壤干层出现时间分别为13年生、14年生、15年生、15年生、16年生和16年生,干层最大深度均达到11 m;6个施肥处理的0—500 cm土层土壤有机碳含量45年均值为6.43、7.68、7.97、8.67、8.71和8.78 g/kg,随着有机肥施用比例增加而提高,M1、M2、M3、M4和M5处理土壤有机碳含量分别较M0提高19.4%、24.0%、34.8%、35.4%和36.4%;不同施肥处理下,土壤含水量与果园利用年限间呈显著负相关,土壤有机碳含量与果园利用年限间呈正相关,随着有机肥施用比例的增加,这两个相关系数均增大。 【结论】 与单施化肥处理相比,5种有机肥施用处理均有利于提高土壤含水量和有机碳含量,且M1~M4 四种有机肥与化肥配施处理均能够不同程度增加苹果园产量,综合0—15 m土层土壤有效含水量和4~45年生苹果园产量模拟结果考虑,在折算纯氮360 kg/hm2用量条件下,洛川果园适宜有机肥与化肥配施比例为4∶6~6∶4。   相似文献   

13.
黑水虻处理的猪粪有机肥离散元仿真模型参数标定   总被引:3,自引:0,他引:3  
为准确快速获取黑水虻处理的猪粪有机肥颗粒的离散元仿真模型参数,该研究采用圆筒提升堆积物理试验与EDEM仿真结合的方法,选取"Hertz-MindlinwithJKR"作为接触模型,以堆积角为响应值,基于响应面法优化标定了黑水虻处理的含水率为43.6%的猪粪有机肥仿真参数。采用Design-Expert8.0.6设计Plackett-Burman试验,筛选出对堆积角有显著影响的参数,即有机肥泊松比、有机肥颗粒密度、有机肥-有机肥滚动摩擦系数。通过最陡爬坡试验确定了显著参数的最优值区间,进一步以有机肥堆积角为响应值,基于Box-Behnken试验获得堆积角与显著性参数的二阶回归模型,以物理试验测得的堆积角为响应目标,针对显著性参数进行寻优,得到最佳组合:有机肥泊松比0.11、有机肥颗粒密度1 703 kg/m~3、有机肥-有机肥滚动摩擦系数0.13。运用最佳参数组合进行仿真分析,得到堆积角均值为38.61°,与物理试验测得的堆积角相对误差为1.88%,且堆积形状具有较高相似性,无明显差异,表明标定的参数准确,研究结果可为黑水虻处理猪粪后的有机肥相关收集与筛分机械的设计提供理论参考。  相似文献   

14.
基于EDEM的猪粪接触参数标定   总被引:3,自引:2,他引:1  
为准确快速获得畜禽粪便的接触参数,该研究通过物理堆积试验与仿真方法对猪粪接触参数进行了标定。测定了不同含水率下猪粪的堆积角,建立了含水率与堆积角的回归方程;基于Hertz-Mindlin with JKR球体粘结模型,进行了离散元仿真模拟;采用筛选试验设计(Plackett-BurmanDesign,P-BD)对10个初始参数进行了筛选,发现JKR(Johnso-Kendall-Roberts)表面能、颗粒间滚动摩擦系数、颗粒间碰撞恢复系数对猪粪堆积角影响显著;并根据响应曲面试验设计(Box-BehnkenDesign,B-BD)建立了堆积角与显著性参数的二阶回归模型,得到了3个显著性参数值分别为JKR表面能0.03J/m~2、颗粒间滚动摩擦系数0.27、颗粒间碰撞恢复系数0.54;将仿真所得堆积角与物理试验值进行对比验证,相对误差为4.27%。结果表明,该研究提出的标定方法能准确模拟物理堆积试验,可为畜禽粪便接触参数的标定提供参考。  相似文献   

15.
锥形改流体下部孔径对筒仓卸料流态的影响   总被引:3,自引:3,他引:0  
为了获取锥形改流体(cone-in-cone)下部孔径对筒仓内卸料流态和仓壁压力的影响,实现中心流筒仓内物料流态从中心流到整体流的转变,改善筒仓内物料流动环境,建立模型,用试验验证模型是正确的,该文采用离散元法对三维筒仓中ABS球卸料过程进行了数值模拟。数值模拟结果表明:筒仓卸料口尺寸不变时,减小锥形改流体下部孔径,整体流系数增大,筒仓内物料流态能够从中心流转变为整体流,筒仓壁峰值压力减小且峰值压力位置上移。改流体倾角为120°、135°时,当锥形改流体距筒仓锥形壁面的距离与锥形改流体下部孔径的比值大于等于1时,能实现从中心流到整体流的转变。该研究基于数值模拟结果提出了锥形改流体的设计标准,可为工程上确定改流体结构、位置参数提供参考。  相似文献   

16.
旋转式喷头空间流道设计及低压水力性能试验   总被引:1,自引:1,他引:0  
喷头在低压工况下存在均匀性较差、射程变短及工作不稳定等问题。为了扩宽喷头的工作压力范围,该研究设计了旋转式喷头空间流道结构。以空间流道仰角、中间截面偏置角、出口截面偏置角为因素,以喷头空间流道出口平均速度和旋转驱动力为指标,采用CFD数值模拟正交设计,分析了空间流道结构参数对喷头水力性能的影响,并对旋转式喷头与相同规格的NelsonR33喷头在不同压力工况下进行水力性能对比试验。结果表明:空间流道各参数对喷头出口平均速度影响顺序依次为:空间流道仰角、中间截面偏置角、出口截面偏置角;对喷头旋转驱动力的影响顺序依次为:中间截面偏置角、空间流道仰角、出口截面偏置角。空间流道结构最佳参数组合为:出口截面偏置角为3°、中间截面偏置角为3.5°和空间流道仰角为30°。在工作压力为150及200 kPa下,旋转式喷头的水量分布更为均匀,组合均匀性系数更高。为扩宽喷头工作压力范围以及提高喷头低压下水力性能提供依据。  相似文献   

17.
猪舍内粪污废弃物和有害气体减量化工程技术研究   总被引:11,自引:4,他引:7  
源头减量和过程控制是猪场废弃物综合治理的关键环节,而猪舍是废弃物产生的源头场所,该文针对猪舍内部污水和有害气体等养殖废弃物,从饮水系统、圈栏设计和清粪方式等3个方面,介绍分析了当前国内外在舍内废弃物减量化工程技术领域的研究进展。其中减少猪只饮水浪费水量是舍内污水减量的首要环节,通过优化饮水器选型、调整饮水器安装方式、选择适当水流速度等可以降低饮水浪费水量;合理的圈栏布置和地面类型可以促进猪只定点排泄,从而降低圈栏污染程度以及舍内有害气体浓度,配合适当的圈舍冲洗方式可以减少大量圈舍冲洗用水;不同的清粪方式会影响舍内空气环境、污水产生量及污染物浓度,与干清粪相比,水冲粪和水泡粪都存在耗水量大、污水产生量大及其污染物浓度高、舍内有害气体含量高等问题,从清洁生产的角度考虑,干清粪工艺是规模化猪场的必然选择。该文旨在为减少猪场废弃物总量、降低处理利用成本和实现清洁健康养殖提供工程技术支撑,促进中国生猪养殖业绿色转型升级。  相似文献   

18.
基于EDEM-Fluent仿真的自旋射流式挖藕机的设计与试验   总被引:1,自引:1,他引:0  
为解决藕农人工挖藕劳动强度大,效率低,易损伤莲藕的难题,针对现有挖藕设备成本较高,操作过程繁琐,需要一定经验技术才能掌握的缺陷,设计了一种自旋射流式挖藕机。阐述了该机的结构和工作原理,通过离散元法和流体动力学耦合仿真分析了泥土-射流之间的相互作用机理,明确了关键部件喷头的结构参数对试验指标的影响规律,即挖掘深度随着喷射角度30?至60?范围内的增加而减小,随着射流速度10至20 m/s范围内的增加而增加。通过分析仿真射流过程发现,当喷射角度为30?时,会出现泥土回填的情况。台架试验和田间试验表明:自旋射流式挖藕机喷头直径为17 mm,喷射角度30?时,可以以0.2 s的速度前进,完全挖出埋于泥土深度400 mm内的莲藕,莲藕无损伤,且表面无泥土粘结,挖掘幅宽约为1.2 m。该文提出了EDEM-Fluent耦合仿真的运用将有利于莲藕采挖设备的作用机理研究,为莲藕采挖设备的设计与优化提供理论依据。该耦合仿真方法还能应用于江河湖泊清淤、管道清理等其他水力作业领域的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号