首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
目前我国现存的半喂入花生联合收获机无法有效清选土壤板结严重或石块、泥块过多的地块。为解决该问题,设计一种总长1 683 mm,宽550 mm,高1 010 mm,由双层筛及传动装置组成的去石清选装置。根据测量的花生及石块、泥块的物理尺寸,花生品种选取等因素,对去石清选装置进行正交试验,确定该装置的网孔形状为方形,筛网安装角度为13°,筛体运动频率设定4.0 Hz,筛体前后行程为16 mm。通过优方案试验,得出该清选装置的含杂率为3.82%,损失率为1.28%。为进一步确定装置可靠性,将该装置与传统清选装置进行田间对比试验。试验结果表明:传统清选装置的含杂率为13.17%,损失率为1.96%,而该清选装置的含杂率为3.47%,损失率为1.21%,除杂率是传统清选装置的4倍左右,损失率减少0.75%。该装置可以为半喂入花生联合收获机面对土壤板结严重或石块、泥块过多地块时的清选指标提供参考。  相似文献   

2.
双吸风口振动式花生荚果清选装置设计与试验   总被引:7,自引:0,他引:7  
为改进花生摘果机、花生捡拾收获机的清选装置,提高花生清选性能,在花生摘果机清选物飘浮速度试验基础上,根据饱满花生荚果、空瘪果、碎茎秆、果柄和花生叶等各组分飘浮速度差异,提出了前、后2个吸风口(双吸风口)与振动筛组合式清选原理,进行了总体方案与关键部件设计并研制出5XT-2Z型花生摘果机,通过清选性能试验研究了振动筛振动频率、吸风口高度和风机转速对花生清选损失率和含杂率的影响。试验结果表明,3种饱满花生荚果飘浮速度为10.30~14.39 m/s,空瘪果、碎茎秆、花生果柄和花生飘浮速度分别为7.03~8.89 m/s、4.51~5.46 m/s、2.80~3.35 m/s、1.74~2.13 m/s;优化后的振动筛曲柄转速为200 r/min,吸风口高度为135 mm,风机转速为390 r/min,此参数下清选损失率为1.35%,含杂率为1.75%。  相似文献   

3.
燕麦弧形栅格筛复清选式圆筒筛清选装置设计与试验   总被引:3,自引:0,他引:3  
为了解决燕麦清选装置清选性能低的问题,根据燕麦的物理特性对单风机三圆筒筛清选装置进行了结构改进,设计了一种燕麦弧形栅格筛复清选式圆筒筛清选装置。在大圆筒筛上安装了能使物料跳起、充分分离的跳跃板结构,并且设计和加装了弧形栅格式挡板筛及复清选部件,对大圆筒筛的跳跃板及弧形栅格式挡板筛的清选原理及受力进行了理论分析。以离心风机转速、大圆筒筛转速、弧形栅格式挡板筛倾角为试验因素,燕麦籽粒含杂率和损失率为试验指标,进行了室内三元二次正交旋转组合试验。室内试验结果表明:当离心风机转速为1 500 r/min、大圆筒筛转速为110 r/min、弧形栅格式挡板筛倾角为41°时,本装置清选效果最好,含杂率为1. 96%,损失率为2. 64%。田间验证试验结果表明,在最优参数下,含杂率为1. 97%,损失率为2. 68%。  相似文献   

4.
针对长江流域油菜主产区普遍使用的履带式油菜联合收获机进行高密高产油菜收获时清选筛面脱出物易堆积,影响油菜籽粒透筛,导致清选损失率高和作业效率低的问题,通过分析清选过程中物料抛散运动规律,设计了筛面物料匀散导流装置,确定了影响清选系统作业性能的装置关键结构与作业参数。构建了清选系统CFD-DEM耦合仿真分析模型,采用二次回归正交组合试验方法,探究了导流杆摆动频率、导流杆转速、驱动关节滑槽倾角对清选损失率、清选含杂率的影响,确定了最优参数组合。仿真试验结果表明,各因素对损失率和含杂率均具有显著影响,其中以导流杆摆动频率影响最显著,最优参数组合为导流杆摆动频率12.5Hz、导流杆转速120r/min、滑槽倾角20°。基于优化后的参数进行台架试验,结果表明,在相同的大喂入量条件下,增设筛面匀散导流装置后清选损失率为3.97%,含杂率3.71%,对比原清选系统损失率降低49.8%,含杂率降低34.7%,能够满足高密高产油菜的低损高效清选作业要求。  相似文献   

5.
纵轴流联合收获机双层异向清选装置设计与试验   总被引:5,自引:0,他引:5  
针对传统纵轴流联合收获机清选系统单层筛架在作业过程中存在大喂入量下损失率和含杂率高等问题,设计了一种结构紧凑、清选能力强、清选效果好的双层振动清选装置,提出了双层异向独立振动的玉米籽粒清选方式,分析确定了筛面和物料的运动规律、清选筛和双风道的结构参数以及传动机构的运动参数。以籽粒含杂率、籽粒损失率和分布比例为评价指标,对曲柄转速进行单因素试验,确定最佳工作参数为上曲柄转速220r/min、下曲柄转速190r/min;选取上筛曲柄长度和下筛曲柄长度为试验因素,进行了两因素三水平正交试验,确定较优组合为:上、下筛曲柄长度分别为50mm与40mm。在较优水平组合下,以8kg/s的喂入量进行验证试验,试验结果表明籽粒损失率为0.45%,籽粒含杂率为0.76%,籽粒分布比例为1.92%,清选效果较好,能满足清选性能要求。  相似文献   

6.
针对花生全喂入捡拾收获过程捡拾率低、荚果损失率高、生产率低等问题,基于花生生物学特点、荚柄脱离特性及荚果破损机理,设计了一种轴流式花生捡拾收获机。整机采用自走式底盘驱动,配套动力120 kW,主要由捡拾装置、输送装置、摘果装置、清选装置、底盘系统、集果装置等组成,可一次完成对田间条铺花生植株的捡拾、输送、果蔓脱离、果杂清选、提升集果等功能。在分析整机工作原理的基础上,进行了关键部件结构设计及参数确定,通过动量守恒原理和赫兹接触理论建立捡拾过程的碰撞模型和摘果装置关键参数方程,并对荚果破损和荚柄分离力学模型进行了定量分析,确定以弹齿转速、摘果滚筒转速、机具前进速度为主要影响因素,并针对“开农61”品种花生进行试验研究。结果表明,最优参数组合为弹齿转速68 r/min、摘果滚筒转速447 r/min、机具前进速度1.4 m/s,对应的捡拾率为98.62%、荚果损失率为2.11%、生产率为0.61 hm^2/h,捡拾率、生产率比优化前分别提高了2.1、4.5个百分点,荚果损失率比优化前降低了0.9个百分点,综合性能明显提高。  相似文献   

7.
针对胡麻分离清选过程高损失率、高含杂率问题,设计了风筛式胡麻清选装置。利用EDEM-Fluent耦合方法,对胡麻清选装置清选过程进行仿真分析,探究清选装置作业参数对胡麻籽粒含杂率和清选损失率的影响规律,确定最优的组合参数。基于清选装置气流场胡麻脱粒物料的运动分析,建立了胡麻清选装置简化模型;对风机风速、气流倾角、清选筛振动频率和振幅4个参数进行单因素试验和正交试验。结果表明,风机风速、气流倾角、清选筛振动频率和振幅是影响清选装置清选性能的显著因素。应用Design-Expert软件建立了籽粒含杂率和清选损失率的数学回归模型,获得最佳工作参数组合:风机风速4.5 m/s、气流倾角4°、清选筛频率6 Hz、清选筛振幅9 mm,最优工作参数组合下胡麻籽粒含杂率为2.97%,清选损失率为2.39%。该研究结果可为胡麻清选装置的设计和优化提供参考。   相似文献   

8.
针对小区联合收获机清选装置存在的籽粒损失率和含杂率偏高等问题,结合内外滚筒旋转式脱粒装置,搭建脱粒清选试验平台,仿真分析结果表明,该清选装置符合筛分要求。以脱出籽粒中含杂率及损失率作为试验指标,选取对清选性能影响较大的风机转速和振动筛曲柄转速为试验因素,分别进行单因素试验,得到风机转速为1 000 r/min时,含杂率与损失率分别为0.65%和1.06%;振动筛曲柄转速为275 r/min时,含杂率与损失率分别为0.55%和0.87%。最后运用Central Composite中心复合设计方法进行响应面试验,研究因素交互作用对试验指标的影响规律。试验结果表明,最佳匹配参数为风机转速900 r/min、振动筛曲柄转速300 r/min;在最佳参数组合下,对该装置进行多次验证试验,得到其含杂率和损失率的平均值分别为0.75%和0.62%,表明在该参数组合下此装置能够满足小区收获的清选性能要求。   相似文献   

9.
清选装置作为花生联合收获机的重要部件,其清选能力直接影响到花生联合收获机的作业效率。针对4HBL-2型花生联合收获机在收获过程中清选效率低、含杂率高及杂物容易堵塞筛网等问题,设计风动抛撒清选装置。并对清选装置进行结构设计与性能研究,确定该装置的最优结构设计和工作参数:清选装置抛料板安装角度15°,滚筛体转速40 r/min,聚风口的高度180 mm,风机出风口角度10°,大大提高了花生收获效率,降低花生收获成本。  相似文献   

10.
辊搓圆筒筛式谷子清选装置设计与试验   总被引:3,自引:0,他引:3  
为解决谷子初脱后因物料中残留谷码多、含水率高而导致清选含杂率和损失率较高的问题,设计了辊搓圆筒筛式谷子清选装置。该装置主要由谷码辊搓装置、圆筒筛装置、横流风机和离心风机等组成,实现了先脱谷码后清选的功能。选取离心风机转速及角度、横流风机转速、圆筒筛转速和谷码辊搓装置主动辊转速作为试验因素,籽粒含杂率和损失率作为试验指标进行了正交试验,试验表明:谷码辊搓装置主动辊转速250 r/min、离心风机角度3°、小圆筒筛转速60 r/min、离心风机转速700 r/min、中圆筒筛转速60 r/min、大圆筒筛转速70 r/min,横流风机转速600 r/min为该清选装置的最优组合。对该参数组合进行验证试验,并对该装置清选性能进行对比试验,结果表明,在最优组合条件下籽粒含杂率为1.64%、总损失率为0.86%,该装置籽粒含杂率与总损失率均低于传统型风机圆筒筛式和风机振动筛式清选装置。  相似文献   

11.
针对目前玉米籽粒收获机不能适应15kg/s以上的大喂入量清选需要,设计了一种具备预清选功能的清选装置。首先对玉米脱出物离开螺旋输送器到达预清选筛前的玉米籽粒进行受力分析,然后对曲柄连杆机构的运动模型加以简化。其次分析玉米籽粒在筛面上的运动状态;对离心风机叶轮、蜗壳进行设计计算。采用单因素试验确定风机转速、振动频率、上筛筛孔开度取值范围;以风机转速、振动频率、上筛筛孔开度为试验因素,以籽粒含杂率和清选损失率为评价指标,设计三因素三水平中心组合试验,建立各因素与指标之间的回归模型。通过响应曲面方法对试验结果进行分析,并采用Design-Expert12对回归模型进行多目标优化。玉米脱出物喂入量为16kg/s时,得出较优组合为:风机转速1202.50r/min、振动频率5.41Hz、上筛筛孔开度18mm,在此条件下籽粒含杂率为0.79%,清选损失率为1.10%;验证试验结果表明,当风机转速1200r/min、振动频率5Hz、上筛筛孔开度18mm时,籽粒含杂率为0.82%,清选损失率为1.14%,试验值与优化值相对误差小于5%,与传统双层往复振动筛清选装置相比籽粒含杂率降低2.07个百分点,清选损失率降低2.13个百分点,证明所设计合理。  相似文献   

12.
为了提高花生联合收获机的清选性能,在测量分析花生摘果脱出物清选特性参数的基础上,设计了一种主要由轻杂物清理装置和断秆分离装置组成的花生荚果清选系统,前者采用横流风机以吸气方式清理待清选物料中的轻杂物,后者则根据荚果与断秆的径向几何尺寸差异将断秆分离出去。利用解析作图法对断秆分离装置进行受力和运动分析,得出了断秆顺利分离满足的力学关系,并通过理论计算得出了分离辊的结构参数。进行了室内变参数清选试验,研究了各结构运动参数对花生清选损失率和含杂率的影响,结果表明:在最佳工作状态下,该清选装置的清洁率可以达到99.38%,清选性能良好。  相似文献   

13.
根据花生机械化摘果作业要求,结合当前花生种植区域情况及摘果过程中存在的摘净率低、破损率高等问题,研制了与拖拉机配套的小型弯头杆齿式全喂入花生摘果机,可灵活移动、坚固耐用、操作便利。花生摘果机主要由摘果滚筒、凹板筛、振动清选装置、荚果运送及传动部分等组成,能够有效实现花生摘果、清选工作。田间性能试验表明:其摘净率98.16%、含杂率1.93%、破损率1.41%、清选损失率0.75%,各指标均满足花生摘果作业要求。  相似文献   

14.
针对油莎豆机械化收获过程中块茎(果)与土壤草团(杂质)分离不彻底导致收获损失率与含杂率较高的问题,设计了一种双层滚筒筛式果杂分离装置,通过理论分析确定了该装置的主要结构参数与工作参数。建立了分离装置-收获物料互作的EDEM-MBD耦合仿真模型,以双层滚筒筛转速、分离螺旋输送器转速、柔性齿段长度为试验因素,以块茎分离率和含杂率为试验指标,依据Box-Behnken试验原理开展三因素三水平仿真试验。对试验结果进行方差分析,建立了分离率、含杂率与各显著因素之间的回归模型,利用回归模型进行参数寻优,结果表明:当双层滚筒筛转速为24.9 r/min、分离螺旋输送器转速为148.5 r/min、柔性齿段长度为1 277.8 mm时,分离率最大,为96.23%,含杂率最小,为25.55%。田间验证试验结果表明:最优参数组合下的果杂分离装置平均分离率为93.19%,平均含杂率为26.65%,与回归模型寻优结果基本一致;果杂分离装置与清选装置联合使用时,分离率增加1.05个百分点,含杂率降低9.97个百分点,可满足油莎豆收获生产需求。  相似文献   

15.
为了减少谷子联合收获的清选损失,对谷子收获机风筛式清选装置进行了试验分析。运用参数可调的风筛式谷子清选装置,以清选风速、风向、筛分振幅和曲柄转速为试验因素,以籽粒损失率和含杂率为试验指标,对谷子联合收获机脱出物进行了清选试验。试验结果表明:籽粒损失率随清选风速、筛分振幅、曲柄转速的增大而增大,随清选风向角度的增大呈先增大后减小再增大趋势;含杂率随清选风速、筛分振幅、曲柄转速的增大而减小,随清选风向角度的增大呈先减小后增大再减小趋势;最优清选工作参数为清选风速4.19 m/s、清选风向30.3°、筛分振幅22 mm和曲柄转速218 r/min,籽粒损失率为2.02 %,含杂率为8.01 %。该研究为谷子联合收获机清选装置结构与工作参数设计提供参考。   相似文献   

16.
为提高统收式采棉机清选装置的分选性能,针对棉花含杂率较高、损失率较大等问题,设计了一种统收式采棉机清选装置.首先,阐述了该机的整体结构和工作原理;然后,根据理论分析及前期试验确定以喂入量、钉齿滚筒转速转速、栅条间距为试验因素,棉花含杂率与损失率为目标值,利用SPSS数据处理软件对其目标值进行极差和方差分析.结果表明:较...  相似文献   

17.
为进一步提升胡麻脱粒物料分离清选作业机的工作性能,采用数值模拟仿真试验方法分析确定获得的单因素参数,以喂料装置振幅、物料层调节厚度和吸杂风机转速为自变量,以籽粒含杂率和清选损失率为响应值,依照Box-Behnken试验设计原理,采用三因素三水平响应面分析方法,分别建立了各因素与籽粒含杂率和清选损失率之间的数学模型,并对各因素及其交互作用进行分析。结果表明:3个因素对籽粒含杂率影响的主次顺序为吸杂风机转速、喂料装置振幅和物料层调节厚度,对清选损失率影响的主次顺序为吸杂风机转速、物料层调节厚度和喂料装置振幅;作业机最佳工作参数为:喂料装置振幅16.5 mm、物料层调节厚度7.0 mm、吸杂风机转速1 775 r/min(即对应的吸杂风机转速变频频率为59.2 Hz)。验证试验表明,籽粒含杂率和清选损失率均值分别为7.86%和1.58%,说明在最优工作参数下作业机能够降低胡麻脱粒物料在机械化分离清选过程中的含杂与损失程度。  相似文献   

18.
为了降低荞麦机械收获中清选环节的含杂率及损失率,提高机械收获性能及效率,在谷物清选试验台上进行了曲柄长度、曲柄转速、上筛面倾角、下筛面倾角、筛面摆动角、风机风向及风机转速的单因素试验,并对这7个因素分别取3水平进行了正交试验和分析。试验结果表明:上筛面倾角、曲柄转速、曲柄长度和风机转速对清选损失率影响显著且影响程度依次降低,风机转速、风机风向角、上筛面倾角、下筛面倾角对籽粒含杂率影响显著,对清选时间影响显著的因素由主及次分别为曲柄转速、曲柄长度、上筛面倾角和风机风速。建立了含杂率、损失率和清选时间的回归模型,并应用遗传算法对该模型进行了优化,得到最佳参数组合,即曲柄长度30mm,曲柄转速和风机转速分别为231、600r/min,风机风向角、上下筛面倾角及基本筛面振动方向角依次为30°、-3.8°、-1°、 5°,此时,清选损失率、含杂率和清选时间分别为1.59%、1.91%、7.93s。经试验验证,在最优参数下,各评价指标的试验值与理论值相对误差分别为3.14%、1.22%、3.24%,且优化所得结果与极差方差分析结果高度一致,说明采用遗传算法对清选回归模型进行优化是可行的,优化结果可...  相似文献   

19.
油葵联合收获机清选装置结构优化与试验   总被引:2,自引:0,他引:2  
针对油葵联合收获作业过程中存在籽粒含杂率及损失率偏高的问题,测定油葵脱粒后脱出物的尺寸特征和悬浮特性,通过机构的运动学分析与物料的受力分析,确定了油葵联合收获机清选装置主要结构参数与工作参数。以风机转速、振动频率和分风板倾角为影响因素,油葵籽粒含杂率和籽粒损失率为评价指标,开展工作参数优化试验,单因素试验结果表明,清选装置较优工作区间为:风机转速1100~1300r/min、振动频率3~5Hz、分风板倾角20°~40°;设计Box-Behnken试验,建立了响应面回归模型,并进行参数优化,结果表明:各试验因素对含杂率和损失率影响显著性大小顺序均为风机转速、振动频率、分风板倾角;当风机转速1200r/min、振动频率4Hz、分风板倾角27°时,试验结果表明平均油葵籽粒含杂率为4.25%,平均籽粒损失率为1.82%,满足油葵联合收获机清选的国家标准要求。  相似文献   

20.
纵轴流联合收获机清选装置结构优化与试验   总被引:4,自引:0,他引:4  
通过物料在气流作用下的运动方程从而找出影响物料运动状态的主要因素,利用正交试验分析风机转速、鱼鳞筛开度、分风板I角度、分风板II角度4个参数对清选性能(损失率及含杂率)的影响,从而得出单纵轴流联合收割机清选装置最佳的工作参数。为解决滚筒中后部落下的物料含杂率较高,籽粒容易随茎秆被抛出机外,造成谷物损失的问题,设计一种回程筛板(由回程板及编织筛组成)。田间试验发现:当回程筛板安装角度为3 0°、风机转速为1 4 0 0 r/min、第I导风板倾角为3 0°、第II导风板倾角为1 5°、鱼鳞筛开度为2 4.5 mm时,清选性能较佳,损失率为0.20%,含杂率为0.17%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号