首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stimulation of Toll-like receptors (TLRs) triggers activation of a common MyD88-dependent signaling pathway as well as a MyD88-independent pathway that is unique to TLR3 and TLR4 signaling pathways leading to interferon (IFN)-beta production. Here we disrupted the gene encoding a Toll/IL-1 receptor (TIR) domain-containing adaptor, TRIF. TRIF-deficient mice were defective in both TLR3- and TLR4-mediated expression of IFN-beta and activation of IRF-3. Furthermore, inflammatory cytokine production in response to the TLR4 ligand, but not to other TLR ligands, was severely impaired in TRIF-deficient macrophages. Mice deficient in both MyD88 and TRIF showed complete loss of nuclear factor kappa B activation in response to TLR4 stimulation. These findings demonstrate that TRIF is essential for TLR3- and TLR4-mediated signaling pathways facilitating mammalian antiviral host defense.  相似文献   

2.
Toll-like receptor signaling pathways   总被引:2,自引:0,他引:2  
Members of the Toll-like receptor (TLR) family recognize conserved microbial structures, such as bacterial lipopolysaccharide and viral double-stranded RNA, and activate signaling pathways that result in immune responses against microbial infections. All TLRs activate MyD88-dependent pathways to induce a core set of stereotyped responses, such as inflammation. However, individual TLRs can also induce immune responses that are tailored to a given microbial infection. Thus, these receptors are involved in both innate and adaptive immune responses. The mechanisms and components of these varied responses are only partly understood. Given the importance of TLRs in host defense, dissection of the pathways they activate has become an important emerging research focus. TLRs and their pathways are numerous; Science's Signal Transduction Knowledge Environment's TLR Connections Map provides an immediate, clear overview of the known components and relations of this complex system.  相似文献   

3.
Members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily share an intracytoplasmic Toll-IL-1 receptor (TIR) domain, which mediates recruitment of the interleukin-1 receptor-associated kinase (IRAK) complex via TIR-containing adapter molecules. We describe three unrelated children with inherited IRAK-4 deficiency. Their blood and fibroblast cells did not activate nuclear factor kappaB and mitogen-activated protein kinase (MAPK) and failed to induce downstream cytokines in response to any of the known ligands of TIR-bearing receptors. The otherwise healthy children developed infections caused by pyogenic bacteria. These findings suggest that, in humans, the TIR-IRAK signaling pathway is crucial for protective immunity against specific bacteria but is redundant against most other microorganisms.  相似文献   

4.
Toll-like receptors (TLRs) are a group of highly conserved molecules which initiate the innate immune response to pathogens by recognizing structural motifs of microbes. Understanding the changes in chicken Toll-like receptors (ChTLRs) and signal adaptors expression that occur with Eimeria tenella infection will help to elucidate the molecular basis of immune control of coccidiosis caused by Eimeria. The present study detected the dynamic changes in the expression of ChTLRs and associated signal adaptors in the spleen and cecum ofE. tenella-infected chickens during the early stage of infection. The results showed that the expression peak for ChTLRs, MyD88 and TRIF occurred at 12 h post-infection (hpi), ChTLR3, ChTLRI 5 and MyD88 mRNA expression in the spleen ofE. tenella infected chickens were significantly higher (P〈0.05) than that of negative control chickens, and there were similar tendencies of these molecules expression in the cecum and spleen of E. tenella-infected chickens. The expression of MyD88 was upregnlated at four time points in the cecum of E. tenella-infected chickens. The results of this study indicate that ChTLR3, ChTLR15 and MyD88 play a role in young chickens infected with E. tenella.  相似文献   

5.
接头分子在Toll样受体(Toll like receptors,TLRs)识别病原相关分子模式或损伤相关分子模式、发动和调节先天与后天免疫反应的信号传导网络中发挥着重要的生物学作用,与Toll样受体相结合后,其下游激酶和转录因子传导信号,激活细胞内核转录因子调控作用元件。TLRs接头分子的共同特征是含有TIR结构域,不同TLRs家族成员可依赖于一个或多个接头分子传导信号。对目前已确认的MyD88、MAL/TIRAP、TRIF、TRAM和SARM 5种接头分子在TLRs信号传导途径中的调控作用进行综述,以期为研究接头分子在TLRs信号传导中的作用机制提供参考。  相似文献   

6.
TLR11 activation of dendritic cells by a protozoan profilin-like protein   总被引:1,自引:0,他引:1  
Mammalian Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly involved in the detection of bacteria and viruses, relatively little is known about their function in the innate response to eukaryotic microorganisms. Here we identify a profilin-like molecule from the protozoan parasite Toxoplasma gondii that generates a potent interleukin-12 (IL-12) response in murine DCs that is dependent on myeloid differentiation factor 88. T. gondii profilin activates DCs through TLR11 and is the first chemically defined ligand for this TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production and optimal resistance to infection, thereby establishing a role for the receptor in host recognition of protozoan pathogens.  相似文献   

7.
Some Toll and Toll-like receptors (TLRs) provide immunity to experimental infections in animal models, but their contribution to host defense in natural ecosystems is unknown. We report a dominant-negative TLR3 allele in otherwise healthy children with herpes simplex virus 1 (HSV-1) encephalitis. TLR3 is expressed in the central nervous system (CNS), where it is required to control HSV-1, which spreads from the epithelium to the CNS via cranial nerves. TLR3 is also expressed in epithelial and dendritic cells, which apparently use TLR3-independent pathways to prevent further dissemination of HSV-1 and to provide resistance to other pathogens in TLR3-deficient patients. Human TLR3 appears to be redundant in host defense to most microbes but is vital for natural immunity to HSV-1 in the CNS, which suggests that neurotropic viruses have contributed to the evolutionary maintenance of TLR3.  相似文献   

8.
【目的】掌握SPOP和MyD88基因分子特征及其在鸡不同组织发育过程中的表达特征,为后续研究其调控鸡组织生长发育机理及开展抗病育种提供参考依据。【方法】通过RT-PCR克隆鸡SPOP和MyD88基因编码区(CDS)序列,运用ExPASy、SOPMA、SWISS-MODEL及PSORT II Prediction等在线软件进行生物信息学分析,并以实时荧光定量PCR检测这2个基因在鸡胚14胚龄(E14 d)及出壳后1 d(H1 d)、7 d(H7 d)和14 d(H14 d)各组织中的表达情况。【结果】鸡SPOP、MyD88基因CDS序列长为1125和900 bp,分别编码374和299个氨基酸残基。SPOP蛋白分子式为C1866H2926N496O559S28,相对分子量为42 kD,理论等电点(pI)为5.58,为相对不稳定蛋白;MyD88蛋白分子式为C1502H2394N410O438S18,相对分子量为33 kD,pI为5.93,为相对不稳定蛋白。鸡SPOP和MyD88蛋白二级结构以α-螺旋和无规则卷曲为主,主要定位于细胞质(占60.9%)。与人类和哺乳动物相比,鸡SPOP蛋白的3个功能结构域(MATH、BTB-POZ和BACK)较保守,而MyD88蛋白的2个功能结构域(Death和TIR)存在多处氨基酸位点变异。SPOP和MyD88基因在鸡不同发育阶段各组织中均有表达,但以肺脏中的相对表达量最高,且二者间的表达差异极显著(P<0.01,下同)。从E14 d发育至H14 d,SPOP基因在眼球和肺脏中的表达整体上呈上升趋势,且至H14 d时肺脏中的表达趋于稳定,在脑组织、心脏和肌胃中的表达呈先上升后下降的变化趋势,在肝脏中的表达呈先下降后上升再下降的变化趋势;MyD88基因在眼球、肝脏和肺脏中的表达均呈先上升后下降再上升的变化趋势,在肌胃和胸肌中的表达呈下降趋势,至H14 d时降至最低值。【结论】SPOP和MyD88基因在鸡胚不同发育阶段肺脏、眼球和肌胃中的表达相对较高,SPOP基因的表达水平均极显著高于MyD88基因,且二者的相对表达量呈负相关,即SPOP基因负调控MyD88基因的表达。  相似文献   

9.
Hepatocellular carcinoma (HCC), the most common liver cancer, occurs mainly in men. Similar gender disparity is seen in mice given a chemical carcinogen, diethylnitrosamine (DEN). DEN administration caused greater increases in serum interleukin-6 (IL-6) concentration in males than it did in females. Furthermore, ablation of IL-6 abolished the gender differences in hepatocarcinogenesis in mice. DEN exposure promoted production of IL-6 in Kupffer cells (KCs) in a manner dependent on the Toll-like receptor adaptor protein MyD88, ablation of which also protected male mice from DEN-induced hepatocarcinogenesis. Estrogen inhibited secretion of IL-6 from KCs exposed to necrotic hepatocytes and reduced circulating concentrations of IL-6 in DEN-treated male mice. We propose that estrogen-mediated inhibition of IL-6 production by KCs reduces liver cancer risk in females, and these findings may be used to prevent HCC in males.  相似文献   

10.
Toll样受体(toll like receptors, TLRs)作为模式识别受体,不仅能够对机体特异性配体进行识别,并通过多种信号传导通路(由髓样分化蛋白88或由β-干扰素TLR结构域衔接蛋白介导)启动信号传导继而引发特异性的免疫应答,同时还在一些由支原体、病毒、细菌等感染引起的免疫应答过程中发挥了重要的调控功能。因为其重要的免疫调控作用,Toll样受体家族已成为近些年研究的热点,对畜禽抗病育种工作也具有重要的科学意义和应用前景。文章综述了猪源TLRs的种类、功能、遗传变异以及介导的信号通路,并重点介绍了猪源TLRs在抗病育种中的应用,旨在为猪Toll样受体家族基因功能研究及有效遗传标记的筛选提供参考依据。  相似文献   

11.
Chronic mucocutaneous candidiasis disease (CMCD) is characterized by recurrent or persistent infections of the skin, nails, and oral and genital mucosae caused by Candida albicans and, to a lesser extent, Staphylococcus aureus, in patients with no other infectious or autoimmune manifestations. We report two genetic etiologies of CMCD: autosomal recessive deficiency in the cytokine receptor, interleukin-17 receptor A (IL-17RA), and autosomal dominant deficiency of the cytokine interleukin-17F (IL-17F). IL-17RA deficiency is complete, abolishing cellular responses to IL-17A and IL-17F homo- and heterodimers. By contrast, IL-17F deficiency is partial, with mutant IL-17F-containing homo- and heterodimers displaying impaired, but not abolished, activity. These experiments of nature indicate that human IL-17A and IL-17F are essential for mucocutaneous immunity against C. albicans, but otherwise largely redundant.  相似文献   

12.
The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.  相似文献   

13.
Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.  相似文献   

14.
旨在探明发酵饲料对肉鸡抗沙门氏菌感染的影响。将50只1日龄中速黄羽肉鸡随机分为5个处理组,对照组、模型对照组饲喂基础饲粮(基础日粮+10%未发酵饲料),抗生素对照组在基础饲粮中添加20 mg·kg-1硫酸粘杆菌素,5%发酵组、10%发酵组分别用5%、10%发酵饲料替代基础饲粮中的未发酵饲料。肉鸡13日龄时,对照组连续2 d口腔灌服400 μL无菌水,其他组连续2 d口腔灌服400 μL沙门氏菌液(1×109 CFU·mL-1)。肉鸡15日龄时进行屠宰,取血清测定促炎因子(IL-1β、IL-6、TNF-α)、内毒素(LPS)、D-乳酸(D-LA)水平,取结肠进行HE染色观察结肠形态,取结肠黏膜测定TLR4路径关键信号分子的基因表达量。结果表明,沙门氏菌感染导致肉鸡血清促炎因子(IL-1β、IL-6、TNF-α)水平显著上升,TLR4信号通路中的关键信号分子(TLR4、MyD88、TRAF6、NF-κB)mRNA相对表达量显著上升,血清LPS、D-LA水平显著上升,而抗生素组、5%发酵组、10%发酵组的这些指标均有不同程度的改善,表明多菌种联合发酵饲料能够改善沙门氏菌感染导致的炎症反应和肠道屏障受损,效果接近20 mg·kg-1硫酸粘杆菌素。  相似文献   

15.
Host protection from infection relies on the recognition of pathogens by innate pattern-recognition receptors such as Toll-like receptors (TLRs). Here, we show that the orphan receptor TLR13 in mice recognizes a conserved 23S ribosomal RNA (rRNA) sequence that is the binding site of macrolide, lincosamide, and streptogramin group (MLS) antibiotics (including erythromycin) in bacteria. Notably, 23S rRNA from clinical isolates of erythromycin-resistant Staphylococcus aureus and synthetic oligoribonucleotides carrying methylated adenosine or a guanosine mimicking a MLS resistance-causing modification failed to stimulate TLR13. Thus, our results reveal both a natural TLR13 ligand and specific mechanisms of antibiotic resistance as potent bacterial immune evasion strategy, avoiding recognition via TLR13.  相似文献   

16.
In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis. We also observed that sera from African-American individuals, known to have increased susceptibility to tuberculosis, had low 25-hydroxyvitamin D and were inefficient in supporting cathelicidin messenger RNA induction. These data support a link between TLRs and vitamin D-mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.  相似文献   

17.
【目的】研究猪圆环病毒2型(porcine circovirus type2,PCV2)感染PK-15细胞后调控β-干扰素(interferon-β,IFN-β)生成的信号通路,为猪圆环病毒病的发生机理和防治提供理论基础。【方法】将PK-15细胞随机分成5组:对照组、PCV2组、BX795(TBK1/IKKε抑制剂)组、BAY 11-7082(NF-κB抑制剂)组和BX795+BAY11-7082(混合抑制剂)组。BX795组、BAY 11-7082组、BX795+BAY 11-7082组分别用0.5μmol BX795、5μmol BAY11-7082、0.5μmol BX795+5μmol BAY 11-7082预先处理1 h,然后感染PCV2。于感染后3、12、24、48和72 h收集细胞,提取RNA。用荧光定量PCR检测IFN-β、模式识别受体(TLR3、TLR9、RIG-1、MDA-5、DAI)、接头蛋白(TRIF、MyD88、Sting、MAVS、IRF3)的mRNA 含量。【结果】PCV2感染PK-15细胞后,IFN-β的mRNA 含量在48、72 h显著升高(P0.01),表明PCV2感染可以诱导PK-15细胞生成IFN-β;TLR3的mRNA 含量在48 h显著升高(P0.01),TLR9的表达量在48、72 h显著升高(P0.01);TLR3和TLR9下游的接头蛋白MyD88和TRIF的mRNA 含量在48 h显著升高(P0.01),表明PCV2激活了Toll样受体介导的NF-κB信号途径;MDA-5的mRNA 含量在48、72 h显著升高(P0.01),RIG-1的mRNA 含量在72 h显著升高(P0.01),MDA-5和RIG-1下游的接头蛋白MAVS、Sting、IRF3的mRNA 含量在48 h显著升高(P0.01),表明PCV2激活了RIG-1样受体介导的IRF3信号途径;DAI的mRNA 含量在48、72 h显著升高(P0.01),表明PCV2亦激活了DNA模式识别受体介导的IRF3信号途径;分别用BX795和BAY 11-7082抑制IRF3和NF-κB介导的信号通路,结果显示NF-κB抑制剂组的IFN-β的mRNA 含量与PCV2组相比无显著性差异(P0.05),TBK1/IKKε抑制剂组的IFN-β的mRNA 含量与PCV2组相比明显下降(P0.05),表明PCV2诱导IFN-β的产生主要由IRF3信号途径调控。【结论】PCV2感染可以诱导PK-15细胞中IFN-β表达量的上调,其上调主要与IRF3信号通路有关。  相似文献   

18.
19.
20.
Lysosomal glycosphingolipid recognition by NKT cells   总被引:2,自引:0,他引:2  
NKT cells represent a distinct lineage of T cells that coexpress a conserved alphabeta T cell receptor (TCR) and natural killer (NK) receptors. Although the TCR of NKT cells is characteristically autoreactive to CD1d, a lipid-presenting molecule, endogenous ligands for these cells have not been identified. We show that a lysosomal glycosphingolipid of previously unknown function, isoglobotrihexosylceramide (iGb3), is recognized both by mouse and human NKT cells. Impaired generation of lysosomal iGb3 in mice lacking beta-hexosaminidase b results in severe NKT cell deficiency, suggesting that this lipid also mediates development of NKT cells in the mouse. We suggest that expression of iGb3 in peripheral tissues may be involved in controlling NKT cell responses to infections and malignancy and in autoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号