首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The results of the study are presented on the distribution and migration of radiocesium in mountainous (580–620 m a.s.l.) landscapes in the northeast of Honshu Island (Tohoku Region, Miyagi Prefecture) subjected to radioactive contamination after the nuclear accident at Fukushima-1 NPP. In July 2014, the average contamination density with radiocesium (134Сs and 137Сs) over the territory (150 km to the northwest from NPP) was equal to 16 kBq/m2. This contamination is estimated at the acceptable level according to both Japanese and Russian standards and legislation. Three years after the accident, radiocesium is found to be unevenly distributed by the biogeocenosis components, i.e. 45% in litter, 40% in plants, 10% in soil, and 5% in roots. As for the distribution of total radiocesium (Cs tot = 134Сs + 137Сs) by the profile of volcanic podzolic-ocherous soil (Dystric Aluandic Andosols), its maximal content (about 80%) was found in the surface layer (0–2.5 cm), with the specific activity ranging from 250 to 10070 Bq/kg and sharply decreasing with the depth. Radiocesium amount in the soils of forest ecosystems was on average by 20% higher than in meadow ecosystems. Accumulation of radionuclides in soils of lower and middle parts of a slope with an insignificant vertical migration was found to be the most general regularity. The air dose rate did not exceed the maximal permissible level, and the snow cover acted as an absorbing and scattering screen.  相似文献   

2.
Radioactive substances were released into the environment after the nuclear accident at the Fukushima Daiichi Nuclear Power Station; this led to the contamination of the soil at Fukushima Prefecture. Mixing of organic matter with soil during plowing is known to influence radiocesium (134Cs and 137Cs) absorption by crops. However, the effect of mixing organic matter polluted by radioactive substances during plowing on radiocesium absorption by plants is not yet known. The aim of this study was to investigate the effect on the radiocesium absorption by komatsuna (Brassica rapa L. var. perviridis) cultivated in a 45-L container containing Andosol (14,300 Bq kg?1) or Gray Lowland soil (33,500 Bq kg?1) mixed with polluted wheat (Triticum aestivum L. Thell.) straw (2080 Bq kg?1). The radiocesium concentration of the plants and the soil and the amount of exchangeable radiocesium in the soil were determined using a germanium semiconductor. The transfer of radiocesium from the soil to plants decreased by 53 and 27% in Andosol and Gray Lowland soil, respectively, after the application of 10 t ha?1 polluted wheat straw. This reduction in the level of radiocesium transfer might be attributed to potassium contained in the wheat straw, which might compete with cesium during membrane transport and thereby block the transport of cesium from the soil solution to the roots and from the roots to the shoots. Alternatively, the applied wheat straw probably absorbed radiocesium and decreased the amount of exchangeable radiocesium in the soil. Our findings suggest that the mixing of polluted wheat straw with contaminated soil might influence the absorption of radiocesium content by agricultural products. Further studies are warranted to determine the long-term effects of the application of polluted wheat straw on the rate of radiocesium transfer to crops.  相似文献   

3.
Field studies devoted to the transformation of the carbon cycle in agroecosystems on agro-gray soils (including soils contaminated with fluorides from aluminum smelters) in dependence on the changes in the hydrothermic conditions were performed for the first time within the framework of the long-term (1996–2010) soil monitoring in the forest-steppe zone of the Baikal region. The major attention was paid to the impact of the environmental factors on the synthesis and microbial destruction of organic carbon compounds. Certain differences in the fluxes and budget of carbon were found for the plots with cereal and row crops and for the permanent and annual fallow plots. The adverse effect of fluorides manifested itself in the enhanced C-CO2 emission under unfavorable water and temperature conditions. The long-term average C-CO2 emission from the soils contaminated with fluorides in agroecosystems with wheat after fallow was higher than that from the uncontaminated soil (179 and 198 g of C/m2, respectively) and higher than that in the agroecosystems with a potato monoculture (129 and 141 g of C/m2, respectively). At the same time, no significant variations in the content of the carbon of the microbial biomass (Cmicr) in dependence on the environmental factors were found. The utilization of carbon for respiration and for growth of the soil microorganisms on the contaminated soil were unbalanced in particular years and for the entire period of the observations. The ratio between the fluxes of the net mineralized and re-immobilized carbon was used for the integral assessment of the functioning regime of the agroecosystems and the loads on them. Independently from the soil contamination with fluorides, the loads on the agroecosystems with wheat were close to the maximum permissible value, and the loads on the agroecosystems with potatoes were permissible. It was shown that the carbon deficit in the uncontaminated soils was similar under the wheat and potatoes (?30 and ?28 g of C/m2, respectively). In the contaminated soils, it was higher under the potato monoculture and reached ?41 g of C/m2.  相似文献   

4.
Penetration resistance, bulk density, soil water content and root growth of oats were intensively studied in a tilled and an untilled grey brown podzolic loess soil. Bulk density and penetration resistance were higher in the top layer of the untilled soil compared with the tilled soil. In the latter, however, a traffic pan existed in the 25–30 cm soil layer which had higher bulk density and penetration resistance than any layer of the untilled soil. Above the traffic pan, rooting density (cm root length per cm3 of soil) was higher but below the pan it was lower than at the same depth in the untilled soil. Root growth was linearly related to penetration resistance. The limiting penetration resistance for root growth was 3.6 MPa in the tilled Ap-horizon but 4.6-5.1 MPa in the untilled Ap-horizon and in the subsoil of both tillage treatments. This difference in the soil strength-root growth relationship is explained by the build up of a continuous pore system in untilled soil, created by earthworms and the roots from preceding crops. These biopores, which occupy < 1% of the soil volume, can be utilized by roots of subsequent crops as passages of comparatively low soil strength. The channeling of bulk soil may counteract the possible root restricting effect of an increased soil strength which is frequently observed in the zero tillage system.  相似文献   

5.
Total porosity and pore size distribution in untilled and tilled loess soils . Soil core samples were taken from untilled and tilled soils of a no-tillage experiment to determine total porosity and pore size distribution. The soil samples were collected at short time intervals during 1969–1971 from 2–6 cm depth of a Grey Brown Podzolic Soil (Typudalf) deriverd from loess. 1. Total porosity differed in untilled and tilled plots on the average by 4.7 vol.% (table 2). The seasonal changes are more pronounced on the tilled soil. Higher values of total porosity are observed during spring and fall, as compared to summer. Values are influenced by soil cultivation, rainfall and green manure crops (fig. 1a, b). 2. The changes of the fraction of large pores (> 30 μ), expressed on a volume basis, are similar to the changes in total porosity in direction but greater in extent. On the contrary the seasonal changes of the fractions of medium pores (3–30 μ), small pores (0,2–3,0 μ) and very small pores (< 0, 2 μ) appear to be independent from changes in total porosity (fig. la, b). 3. Fig. 2, showing the relation between total porosity and pore size distribution, may induce the wrong impression, that a decrease in total porosity results in an increase of the quantity of small and very small pores, accompanied with an excessive reduction of the quantity of large pores. If this relation is based on weight (100 g of solid soil particles) and not on volume (100 cm3 of soil particles and pores), it becomes clear, that compacting and loosening the soil investigated affect mainly the amount of large pores. 4. The seasonal changes of soil water content in the field influence pore size distribution. Under the condition of constant total porosity increasing water content at sampling date induces a pore size redistribution in favour of the pores > 300 μ and 1,5–3,0 μ (table 3). 5. A decrease in total porosity does not induce an increase in the homogeneity of the soil investigated (fig. 3). 6. The average total porosity of the untilled and tilled soil is near the lower and upper limit respectively of the range, which is considered to be the optimum for air capacity.  相似文献   

6.
Abstract. Changes in aggregate stability, density, and porosity as well as the water retention and nutrient contents of different aggregate size fractions due to intensive tillage were investigated. Three soils from Vicarello, Fagna and Gambassi in North Central Italy which had been under permanent vegetation, minimum or conventional tillage for more than seven years were studied. The aggregates on conventionally tilled plots were slightly denser and less porous than those on the untilled or minimum-tilled plots. The aggregates were less stable under conventional tillage on all soils. Conventional tillage reduced the proportion or macro-aggregates by 22% at Vicarello and 35% at Gambassi. There were no differences in macro-aggregate proportions between minimum- and conventionally tilled plots at Fagna. The potential of the dry aggregates to distintegrate upon contact with water was greatest in the conventionally tilled and least in the untilled treatments. The proportions of dry macro-aggregates (> 0.25 mm) in the untilled and tilled plots were 90 and 71%, respectively. The soil of the tilled plots contained less carbon and nitrogen than that of the untilled plots in all aggregate size fractions. The silt-plus-clay contents of the aggregates accounted for between 65 and 93% of variability in the water they retained at small potentials while organic carbon contents accounted for between 71 and 90% of variability in the stability of the aggregates irrespective of the tillage treatments.  相似文献   

7.
A long‐term field experiment, conducted since 1962 in Gumpenstein (Austria) on a Dystric Cambisol, was used for the present investigation. We combined a physical fractionation procedure with the determination of natural abundance of 13C and FT‐IR spectroscopy to study the influence of fertilizer amendments (organic manure and mineral fertilizers) and management practices (fallow vs. cropped) on changes in organic carbon (OC) associated with different particle‐size fractions. The OC content in bulk soil decreased or was not affected by slurry+straw, PK, and NPK treatments in both fallow and cropped plots after 28 and 38 yr of treatment. However, OC in plots receiving organic manures increased depending on the quality of the organic manures applied. The ranking among the different treatments under both fallow and cropped plots was: animal manure (liquid) > animal manure (solid) > cattle slurry = slurry+straw = PK = NPK. Results showed that the two types of management practices, fallow (non‐tilled) vs. cropped (tilled) had effects on OC concentrations. Comparing the OC contribution of particle‐size fractions to the total OC amount revealed the following ranking: silt > clay > fine sand > coarse sand except in the plots receiving solid or liquid animal manure. Size fractions within treatments showed larger variations of 13C abundances than bulk samples between treatments. The natural abundances of 13C increased especially in cropped (and tilled) plots. It was shown by cluster analysis that FT‐IR spectra differentiated between the different treatments originating from different land management practices. The present study revealed that below‐ground C deposition by agricultural plants can hardly compensate the C losses due to tillage.  相似文献   

8.
No-tillage is generally assumed to increase infiltration and reduce runoff, but runoff from a claypan soil in Central Missouri, however, was greater from no-tillage plots than from moldboard plowed plots. The effect of simulated rainfall on infiltration and random roughness of tilled and untilled soil was measured. Four different tillage systems, each with and without surface cover were studied. An exponential decay function describes the change in random roughness for tilled soil exposed to rainfall kinetic energy. Although the differences were not statistically significant, among the uncovered tilled plots those with the highest random roughness had the highest infiltration. The bare no-tillage treatment had the lowest infiltration. Plots protected with shredded foam rubber infiltrated 88–248% more rainfall than similar bare plots.  相似文献   

9.
The methodology and procedure for cadastral valuation of land in the areas contaminated with radionuclides are presented. The efficiency of rehabilitation measures applied to decrease crop contamination to the levels satisfying sanitary-hygienic norms is discussed. The differentiation of cadastral value of radioactively contaminated agricultural lands for the particular farms and land plots is suggested. An example of cadastral valuation of agricultural land contaminated during the Chernobyl Nuclear Power Plant accident is given. It is shown that the use of sandy and loamy sandy soddy-podzolic soils with the 137Cs contamination of 37–185 and >185 kBq/m2 for crop growing is unfeasible. The growing of grain crops and potatoes on clay loamy soddy-podzolic soils with the 137Cs contamination of 555–740 kBq/m2 is unprofitable. The maximum cadastral value of radioactively contaminated lands is typical of leached chernozems.  相似文献   

10.
The larger the bulk density of the soil, the smaller the saturated hydraulic conductivity (Ks), however, the relationship between Ks and dry bulk density for tilled and untilled conditions is different. Ks is lower in tilled soil than in untilled soil with the same texture at the same bulk density. The purpose of this study was to compare different models for the prediction of Ks for two soil textures under both tilled and non-tilled conditions. We compred two models based on the non-similar media concept (NSMC-0, NSMC-1), a model based on the similar media concept (SMC) and a model based on the Kozeny equation and Poiseuille law for prediction of Ks (KC-1 and KC-2). This study was conducted at two areas with loam and silty clay loam soils under tilled and untilled conditions. It is concluded that the SMC model is not able to predict Ks under either tilled or untilled conditions. Further, the NSMC-0 model, along with an equation to estimate the shape factor, was able to predict Ks versus dry bulk density for tilled soils. According to our study, under untilled conditions, the KC-1 and NSMC-1 models, and under tilled conditions, the NSMC-1 and NSMC-0 models, predicted Ks accurately. It is concluded that the NSMC models together with the optimized Kozeny–Carman models could reliably be used to predict Ks in different soil textures.  相似文献   

11.
The present study evaluated the effect of fertilizer amendments (organic manure and mineral fertilizers), management practices (fallow and untilled vs. cropped and tilled) on changes of N in bulk soil and N associated with different particle‐size fractions. The long‐term field experiment was conducted since 1962 in Gumpenstein, Austria, on a Dystric Cambisol. The N content of the topsoils changed distinctively during 28 and 38 yr of treatments under both fallow and cropped management practices. Highest increase in total N content was found in animal‐manure (liquid)‐treated plots. The remaining ranking was: animal manure (solid) > cattle slurry > half cattle slurry + straw = PK = NPK. Quite short N‐half‐life values of around 2 yr were found for the cattle‐slurry application, while animal manure exhibited longer N‐half‐lives of around 8 yr. Crop removal of N and mineralization losses in cropped plots obviously were higher than N losses from the bare soil plots lacking a plant cover to keep N in the system. This was confirmed by a consistent shift in the natural 15N abundances. Comparing the mean N contribution of particle‐size fractions to the total N amounts revealed the following ranking after 28 and 38 yr of different treatments: silt > clay > fine sand > coarse sand, with small exceptions. Particle‐size separates showed more significant responses to changes in the N dynamics of the system due to the various treatments than the bulk soil and can be regarded as the better indicators in this respect.  相似文献   

12.
Protected cultivation, mainly represented by plastic-film mulching, has greatly improved crop production worldwide since the 1950s. However, despite its widespread use in tropical USA, Europe and China, its use in sub-Saharan Africa is not widespread. A field experiment was conducted using cocoyam (Colocasia esculenta L. Schott) to evaluate the effects of two tillage systems (tilled and no-till) and plastic-film mulch (black and clear plastic-film mulch) on soil properties and cocoyam growth and yield in 2003 and 2004 planting seasons on a Typic paleudult in southeastern Nigeria. The experiment comprised six treatments and was laid out in the field using randomized complete block design replicated three times. Results showed that 70–80% of the corms emerged 7–8 days (21 days after planting [DAP]) earlier in both tilled and no-till plastic-film mulched plots when compared to the unmulched plots. At later stages of crop development, the plants in the tilled black plastic-film mulched plots were taller by 61–67% than those in the unmulched no-till plots, which had the lowest plant height (27–30 cm). At 98 DAP, there were no significant treatment differences in leaf area index (LAI) between tilled and no-till mulched plots with LAI of 15.5–19.8. However, LAI was reduced in both unmulched plots by 35–54% when compared to the mulched plots. On the average soil temperature was higher in plastic-film mulched plots than that under plots without mulch by about 2 °C. Results show significantly lower soil bulk density (between 1.10 and 1.26 Mg m−3) in both tilled clear and black plastic-film mulched plots when compared to the corresponding no-till clear or black plastic-film mulched plots (1.40–1.45 Mg m−3). For the two seasons studied volumetric water content (VWC) in tilled black plastic-film mulched plots were significantly higher than VWC in other mulched plots by between 10 and 38% in 2003 and between 17 and 30% in 2004. At harvest (270 DAP) the highest corm yield was obtained in tilled black plastic mulched plots (29.1 Mg ha−1). This was higher (P = 0.05) than yields obtained in no-till, no mulch plots by 72%. Yields were also higher in tilled black plastic mulched plots when compared to tilled clear plastic mulched plots, no-till black plastic mulched plots and no-till clear plastic mulched plots by 29, 47 and 59%, respectively. These findings suggest that plastic mulched plots provide a better soil environment for cocoyam than unmulched plots and that tilled mulched plots especially tilled black plastic mulched plots provide superior edaphic environment for cocoyam when compared to other treatments used.  相似文献   

13.
The specificity of contamination of permafrost-affected soils with radionuclides derived from an accidental underground nuclear explosion at the Kraton-3 polygon located in the northern taiga subzone has been studied in northwestern Yakutia. It is shown that the high density of the radioactive contamination is preserved in the soils 23 years after the nuclear accident. The concentrations of 137Cs and 90Sr vary from 34 to 1025 and from 57 to 781 kBq/m2, respectively, which is 30–1000 times higher than the global fallout of these radionuclides.  相似文献   

14.
Abstract

Within Amaranthaceae, 33 different varieties, including local varieties from Japan, were grown in 2012 in a field in the town of Iino in the Fukushima prefecture, which is located approximately 51 km north of Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP). The contamination level of the soil was 2770 ± 140 Bq kg?1 dry weight (134Cesium (Cs) + 137Cs, average ± SE), and the field was also cultivated in 2011. There was a significant varietal difference in the dry weight production, radiocesium accumulation and transfer factor (TF) of radiocesium from the soil to the plant. The ratio of the lowest TF to the highest TF was approximately 3. Because the ratio of 137Cs to 133Cs was significantly positive, radiocesium seems to be absorbed in a manner similar to that of 133Cs. It is suggested that the varietal difference in the behavior of radiocesium uptake mainly depends on its genetic background rather than on environmental factors.  相似文献   

15.
Following the accident at the Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP), radiocesium (134Cs + 137Cs) concentrations in deciduous mature fruits were determined in orchards in the northern area of Fukushima Prefecture. At the time of the nuclear accident, most deciduous fruit trees were in the dormant stage prior to bud burst. To evaluate the relationship between radiocesium deposition in the soil and fruit contamination, radiocesium concentrations were measured from the 5-cm topsoil and from six fruit species across 17 orchards in 2011. The vertical distribution of radiocesium in the topsoil (0–30 cm in depth) and its spatial distribution in the 5-cm topsoil underlying the tree canopy of a peach, Prunus persica (L.) Batsh, orchard (“Akatsuki” cultivar) were also investigated. Significant correlations between the radiocesium concentration in the mature fruit and that in the 5-cm topsoil layer were observed for the 17 orchards as well as for the trees of the peach orchard. However, 93% of the 137Cs found in the 30-cm soil core was retained within the top 3 cm of the soil in the peach orchard. Considering the profile of the root of this deciduous fruit tree, we assumed a negligible level of radiocesium uptake via the roots. However, the possibility of inward migration via the bark was undeniable, because some radiocesium adhered to the tree canopy before bud burst while depositing on the soil surface. Additionally, transfer factors for peach and grape, hybrid of Vitis labrusca L. and Vitis vinifera L., from young, uncontaminated trees cultivated with contaminated soil were lower than those previously reported.  相似文献   

16.
The Fukushima Daiichi nuclear power plant accident caused radioactive pollution in northeastern Honshu Island, Japan. This study examined the influence of snowmelt and rainfall on soil erosion processes and siltation of small lakes in Miyagi Prefecture (150 km northwest of the power plant). Two sets of slopes and lakes, respectively in pasture and forest catchments, were examined. Snowpack thickness, soil infiltration, surface runoff volume, soil and sediment physicochemical properties, Cs concentration of precipitation, meltwater, and rainwater, and lake siltation rates were determined. The total radioactive Cs content in precipitation was 0.7–7.4 BqˑL−1 and was below the Japanese standard (10 BqˑL−1). Total radioactive Cs was at the allowable level in water flowing down the pasture catchment slope (0.1–9.2 BqˑL−1) during snowmelt and rainfall, as well as in pasture (0.9–8.8 BqˑL−1) and forest (0.7–5.2 BqˑL−1) catchment lake water. There was no soil erosion (surface runoff) in the forest catchment. Soil losses in the pasture catchment were 23 due to rainfall and 9 kg ha−1 yr−1 following spring snowmelt. After snowmelt, a 0.5 and 0.2 mm thick layer of silt was deposited in pasture and forest catchment lakes, respectively, and 1.4 and 0.6 mm were deposited during the rainfall period. Average siltation rates were 1.9 and 0.8 mmˑyr−1 for pasture and forest catchment lakes, respectively. The upper layer of lake bottom sediments is represented mainly by silt fractions (2–50 μm), with high organic matter (4.0–5.7%) and radiocesium (1100–1600 kgˑha−1) contents.  相似文献   

17.
Soil changes induced by crop rotations and soil management need to be quantified to clarify their impact on yield and soil quality. The objective of this study was to investigate the effect of continuous oat (Avena sativa L.) and a lupin (Lupinus albus L.)‐oat rotation with and without tillage on soil enzymes, crop biomass and other soil properties In year 1, oat and lupin were grown in undisturbed plots or in plots subjected to disc tillage. Crop residues were incorporated before oat was sown in year 2 in the disc‐tilled plots or remained on the soil surface of untilled plots. Soil samples were collected regularly and analysed for pH, organic C, Kjeldahl‐N, mineral N, extractable P, and the enzyme activities of β‐glucosidase, cellulases, acid phosphatase, proteases, urease, and culturable bacteria and fungi. The main crop and tillage effects on soil parameters were: β‐glucosidase activity was greater after lupin than after oat, and the opposite was true for the number of culturable fungi. Organic carbon, phosphatase, cellulase and protease were greater in tilled soil than in the absence of tillage. Associations between variables that were stable over the 2 yr were those for mineral N and urease activity, cellulase activity and pH, and that of phosphatase activity and organic C. Our results contrast with most of the previous information on the effect of tillage on soil enzymes, where the activities were reported to be unchanged or decreased following tillage. This difference may be related to the small organic C content of the soil and to the fact that it was under fallow prior to the start of the experiment. In consequence, incorporation of residues would provide new sources of labile organic C for soil microbes, and result in increased enzymatic activity. The results obtained suggest that in coarse‐textured soils poor in organic matter, tillage with residue conservation after a period of fallow rapidly improves several soil characteristics and should be carried out even if it were to be followed by a no‐till system in the following years. This should be taken into consideration by land managers and technical advisers.  相似文献   

18.
The effects of different management practices on the physical properties of a sandy loam soil in Southern Nigeria were studied for two cropping seasons. The bulk densities of the top 0–10-cm soil depths were significantly reduced in plots under 13 years of Panicum maximum and Centrosema pubescens covers. Pores of equivalent cylindrical diameter > 0.05 mm were increased significantly under the two covers. Up to 33% of the saturation water content was released between tensions of 0 and 0.06 bar in the sandy loam soil of all the treatment plots. Furthermore an average of 24% of this water was released between tensions of 0.06 and 0.33 bar. Infiltration rates, measured at the end of the growing season, ranged from 240 mm h−1 under the bare fallow treatment to 1326 mm h−1 under the Centrosema cover. There was no significant difference between the tilled and no-tillage plots. Saturated hydraulic conductivities were significantly higher under the Panicum and Centrosema covers. The effect of tillage on conductivity was not appreciable. The highest weekly 5-cm depth, 1.30 p.m. soil temperature (32°C) was obtained under the bare fallow treatment and the lowest (23.5°) under the Panicum cover. Tillage had no significant effect on the soil temperature. Thirteen years of continuous Centrosema and Panicum covers had a significant effect on the physical properties of the tropical sandy loam soil. Tillage effects were not significant after 2 years of cropping.  相似文献   

19.
A silage corn crop was grown on field plots entering their 2nd-year cycle of zero tillage, and on control plots representing traditional tillage practices. Concurrent measurements of soil matric suction and water content were made under transient conditions of a draining profile without evaporation. The results indicated some similarity in the soil moisture characteristics of the untilled soils which produced high crop yields. The time rate of change of soil water content, the root extraction rate and the unsaturated hydraulic conductivity were always smaller in the zero-tilled plots than in the conventionally tilled plots.  相似文献   

20.
Soil water evaporation, redistribution of surface applied salts and unsaturated hydraulic conductivity were determined in field plots of a silt loam soil kept either untilled or tilled to a depth of 5 cm 2–3 days following irrigation. The hydraulic gradients measured were comparatively steeper and the zone of zero flux during drying occurred at greater depths in untilled than tilled soil. Tillage induced soil mulch reduced evaporation losses; its effectiveness, however, decreased during high external evaporative demand conditions. Some empirical relations to determine evaporation utilizing more easily accesible parameters, such as surface soil water content or suction and U.S. open-pan evaporation, were established for predictive purposes. Due to reduction in upward movement of water, shallow tillage resulted in decrease in upward movement of salts and thus, increased the efficiency of leaching during intermittent ponding. The empirical relationship describing the leaching process showed a net saving of 12.7% in water required to attain 70% removal of surface accumulated salts. Increase in unsaturated hydraulic conductivity of soil due to salinization was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号