首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Low soil phosphorus (P) availability is the primary limiting factor to soybean production in southern China. Field experiments with P-efficient (BX10 and BX11) and P-inefficient (BD2 and GD3) soybean genotypes were conducted to study the effects of soybean cultivation on P status and budget. The results showed that after four seasons of cultivation (2003–5), zero application of P resulted in a decrease of soil-available P and total P but high-P (80 kg ha?1) treatment resulted in an increase; there were no significant differences among genotypes. All genotypes had deficit of P under zero application of P, P-efficient genotypes had a larger deficit, and there was significant difference between BX10 and BD2. There was surplus P under high-P application, but there were no significant differences among soybean genotypes. These findings imply that it is necessary to apply P fertilizer for P-efficient genotypes although they can better adapt to low-P soil.  相似文献   

2.
Piedmont lands in Bangladesh, India, Nepal, and many other Asian countries are important rice-growing soils, but most of the soils are potentially phosphorus (P) deficient because of low pH. Phosphorus fractions of rice-growing acidic piedmont soils were determined. Soil samples were amended with 100 and 200 mg P kg?1 soil, and a control soil without P amendment was maintained. The samples were analyzed for the following fractions: solution P, labile pool [sodium bicarbonate (NaHCO3) P], alkali-extracted inorganic pool [sodium hydroxide (NaOH) Pi], organic pool (NaOH Po), acidic pool [sulfuric acid (H2SO4)?hydrochloric acid (HCl) P], and residual P. About 98% of the applied P in soils was extracted by the sequential extraction employed in the present experiment. The mean total P concentration in 10 acidic Piedmont soils was 247 ppm, of which only 0.12% was in solution, 8% labile (NaHCO3), 16% NaOH-extracted inorganic, 32% resistant organic, 18% relatively recalcitrant acidic, and 25% residual. Application of P fertilizer increased mainly the labile P fraction, which would be easily available to wetland rice. Solution P was positively and significantly correlated with pHKCl (r = 0.64, P < 0.05) and negatively correlated with clay (r = ?0.77, P < 0.01). A negative and significant correlation of NaHCO3-P was observed with pHH2O (r = ?0.62, P < 0.05). Solution P showed a negative and significant relationship with NaOH-Pi (r = ?0.63, P < 0.05). A significant and negative relationship of solution P was also observed with acid P (r = ?0.78, P < 0.01) and residual P (r = ?0.82, P < 0.01). The relationship of NaHCO3-P with NaOH-Pi was positive (r = 0.70, P < 0.05) and significant. Similarly, a positive and significant relationship (r = 0.89, P < 0.01) between NaOH-Pi and acid P was observed, and acid P was positively and significantly correlated with residual P (r = 0.84, P < 0.01).  相似文献   

3.
Two theories about the nature of phosphate in soil are current. One holds that soil phosphate is mostly present as particles of iron, aluminium and calcium phosphates: the precipitate-particulate theory. The other holds that phosphate is mostly adsorbed and penetrates heterogeneous, variable-charge particles: the adsorption-penetration theory. This is the only theory that is consistent with and can be deduced from observations. It is my contention that the persistence of the precipitate-particulate theory leads to: wasted research effort in trying to identify the supposed phosphate fractions; failure to recognize the long-term changes in soil phosphate due to repeated applications, and thus to over-fertilisation; and misapprehension about the effects of pH on phosphate availability.  相似文献   

4.
Phosphorus (P) is an essential nutrient required for plant development.Continuous population growth and rising global demand for food are expected to increase the demand for phosphate fertilizers.However,high-quality phosphate rock reserves are progressively becoming scarce.Part of the increased pressure on P resources could be alleviated by recycling P present in biosolids.Therefore,it is crucial to understand the dynamics of P in biosolid-amended soils,the effects of residual biosolid-borne P in soils,the way in which microorganisms may control P dynamics in biosolid-amended soils and the environmental implications of the use of biosolids as a source of P.Further research is needed to maximize biosolid-borne P uptake by crops and minimize its loss from biosolid-amended soils.The analysis of the microbiological control of P dynamics in biosolid-amended soils indicates interactions of biosolid P with other nutrients such as carbon (C) and nitrogen (N),suggesting that harmonization of the current regulation on the use of biosolids in agriculture,mainly based on total N and pollutant contents,is needed to better recycle P in agriculture.  相似文献   

5.
The behaviour of P in a range of English arable soils was examined by plotting the change in resin P in the topsoil (ΔPres) at the end of a 3‐ to 5‐year period, against the P balance over the same period (fertilizer P applied minus offtake in crops, estimated from farmers’ reported yields and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops are valid averages, 20–60% of ΔPres was explained by the balance. Applying excess P fertilizer increased Pres, and reducing P fertilizer use decreased it; typically 3–4 kg P ha?1 was required for each mg L?1ΔPres (6–8 kg ha?1 for each mg L?1 of Olsen P). About half the P balance seems to be resin extractable and this differed little between soil groups, except in cases of very low P (index 0) in which the P buffering was stronger, and on very high P soils (index 4/5) when buffering was less. However, on calcareous soils and red soils, when fertilizer was applied in accord with offtake, Pres fell by up to 4 mg L?1 year?1 (2 mg L?1 yr?1 olsen P) and to prevent this an extra 3–10 kg P ha?1 year?1 fertilizer was required. But on most non‐calcareous soils, replacing offtake maintained Pres, with perhaps slight rises on soils of low clay content or greater organic matter content. In soils under arable rotations, the apparent recovery of P from fertilizer was often around 100%, falling to 85% on Chalk soils and 75% on medium–heavy soils on limestone or Lower Chalk. The fate of the ‘missing’ P needs clarification. The case for corrections to current P fertilizer recommendations in the UK on certain soil types is discussed.  相似文献   

6.
The benefits of manure as a source of nutrients for plants and to improve soil quality are well-known. Monitoring of manure application is needed if environmental issues are to be prevented. In particular, the availability and accumulation of phosphorus (P) has to be subject to rigorous monitoring. This study aims to both evaluate the efficacy of the resin method in extracting inorganic labile P in soils under the long-term application of dairy liquid manure (DLM), and verify the influence of DLM on the recovery of applied P and soil legacy P. To realize our objectives, two long-term field experiments were established under a no-tillage system with annual DLM application on sandy clay loam (sandy Oxisol) and clayey (clayey Oxisol) soils. Treatment consisted of DLM applications (0, 60, 120, 180 m3 ha−1 year−1), independent of mineral fertilizer. Soil samples were taken from the 0–5, 5–10 and 10–15 cm layers after 10 years from the beginning of the trial. A single extraction with resin underestimated inorganic labile P; however, successive extractions were able to take up 43% and 26% of the total P in sandy and clayey Oxisols, respectively, whereas in a single extraction the take-up was 17% and 8% from the same soils, respectively. The resin method was more effective in extracting P from the sandy Oxisol. Thus, when interpreting soil P contents for fertilizer planning, the soil texture should be taken into account. DLM application decreased P recovered from applied P, ranging from 54% to 83% (sandy), and 43% to 67% (clayey), and substantially increased soil legacy P.  相似文献   

7.
It is crucial to know how management factors influence soil test phosphorus (P) since non-point P sources for surface waters are becoming recognized as a problem throughout the USA. Phosphorus fertilizer and crop residue can impact the cycling of P in soils. An eight-year crop residue removal and P fertilization (0, 7.3, 14.7 and 29.4 kg P/ha) as triple superphosphate (TSP) experiment were conducted to determine the effect of P applications on soil P fractions. Significant differences in Bray-l extractable P were observed after only one year of P applications. Extractable P at the highest P rate was significantly higher than all the other rates. For each 5.6 kg P/ha added or removed, Bray-l P changed by 1 mg/kg. Fertilizer P applications did not significantly change the organic P (Po) levels, microbial P (Pm) or soil pH, whereas residue treatments had effects on them except for soil pH. Residue-retained plots had significantly higher Pm in the last two years of study, and Po in the 8th year, compared with residue-removed plots.  相似文献   

8.
The distribution of phosphorus (P) along a loess–limestone soil transect were investigated to delineate the spatial variation of the nutrient vertically in the soil profiles and laterally in the landscape. We hypothesized that spatial P patterns result from translocation caused by P mobilization, although P fixation would be expected along the slope. To depict this, three P fractions clearly differing in solubility were determined. Soil samples were treated with 0.1 M hydrochloric acid (HCl), with 12.1 M HCl, and with aqua regia (AR). In the profiles the spatial P distribution slightly corresponds to the occurrence of different bedrocks and substrata. Thus, a native “P loading” might not primarily explain the spatial P patterns. Especially the strong enrichment of the toeslope with easily soluble P indicates P translocation and prior mobilization. The enrichment is detectable throughout the profiles. Thus, superficial translocation (e.g ., erosion) cannot sufficiently explain that pattern. Instead, underground processes must be the cause for this. They cause relatively high vertical and lateral variation in the spatial P distribution, e.g ., within soil horizons and substratum layers. Hence, mixed sampling of soil sections might not produce data accurate enough for some kinds of P research and for P management. Also, the lateral P distribution should be detected more precisely prior to fertilization of agricultural land.  相似文献   

9.
张伟  陈轩敬  马林  邓燕  曹宁  肖然  张福锁  陈新平 《土壤学报》2023,60(5):1389-1397
磷肥产业发展关乎我国粮食安全、资源利用和环境保护。近40年来由于化学磷肥的持续施用,我国农田土壤有效磷快速提升,在这一背景下基于农业绿色发展的要求,调整未来我国磷肥的需求预测十分必要。本文综合分析了我国农田土壤有效磷的变化,明确了在粮食作物上我国农田土壤有效磷平均已经达到或超出了作物生产的农学阈值(15~25 mg·kg-1),在蔬菜和果树等经济作物上土壤有效磷已经全面超过农学阈值。农业绿色发展要求在保障作物高产的同时,要充分发挥作物的根系/根际生物学潜力以提高磷资源利用效率、同时改善农产品营养品质和降低环境风险,为此,应将磷肥施用策略从培肥地力保增长调整到以农学阈值为目标的维持施磷保增产、升效率、提品质。同时,农业绿色发展需要从工艺和农艺两方面最大限度提高农业废弃物中磷资源的再利用效率。据此,考虑我国粮食和其他农产品需求,继2007年基于土壤磷肥力变化预测我国磷肥需求的基础上,本文对我国未来农业磷肥需求进行了再预测。结果表明,到2030和2050年,我国化学磷肥的需求量分别为1084万吨和742万吨。因此,在各项措施持续优化基础上,我国化肥磷的需求在短期(203...  相似文献   

10.
Phosphorus (P) from manure can become an environmental pollutant if applied to soil at rates in excess of plant uptake. This research examined the effects of composted beef cattle manures from two feeding regimens on soil P storage and forms. Composted manures were applied in the spring before planting (preplant) with incorporation, in spring after planting (postplant) without incorporation, or in winter without incorporation. Soils were sampled following 1 and 2 years of treatment at depths to 15.0 cm. All P fractions from both composted manures increased over pre-amended levels. High-P composted manure increased total P (TP) and inorganic P (IP) more than low-P composted manure. Total P and IP were greater in soils receiving low-P composted manure postplant than in those receiving manure preplant. Accumulation of TP and IP in uppermost depths was greater in the second year of composted manure application than in the first year. Appropriately managing composted manure requires integrating P concentration, time of application, and incorporation.  相似文献   

11.
After 50 years of differentiated P fertilization great differences in plant-available P contents between the treatments were measured. However, yield and P uptake varied marginally and only in few plant species these parameters changed significantly. Investigations of P availability, P release and P sorption in different soil depths should show, which phosphorus fractions are important for P supply of agricultural plants in a Luvic Phaeozem. This information can be used for the improvement of fertilization recommendations. A significant decrease in DL-soluble P content in P0 and P15 treatments down to a soil depth of 60cm was measured. Diffusible P content was substantially higher in the P45 treatment in comparison to P0 and P15. Subsoil seems to be an important additional P source. Plant species have a significant influence on phosphorus dynamic. High P sorption in the investigated Luvic Phaeozem, which could not be reduced by excessive P fertilization, may be one of the reasons for low fertilization efficiency in this trial.  相似文献   

12.
Although most of the research on phosphorus (P) in developed countries focuses on the environmental implications of excess P fertilizer use, the opposite occurs in developing countries. The northern Africa–western Asia region has low-input agriculture with limited P fertilizer use, and cropping is constrained by low rainfall. The evolution of P research in Syria is similar to that other countries of the region, but the approach adopted by the International Center for Agricultural Research in the Dry Areas is unique, with the research conducted being relevant to the whole region. This review identifies the various phases in P research in Syria, that is, initial diagnosis of the extent of P deficiency, fertilizer trials on station and in farmers’ fields, influence of rainfall and soil moisture on P behavior, soil studies elucidating the responses of applied P in soils, and laboratory standardization.  相似文献   

13.
Crop species and their varieties vary in phosphorus (P) requirements for optimum production and response to P application. As crop recovery of added P often ranges from 10 to 40%, the rest accumulates in soil and may create potential for P leaching, depending upon the soil characteristics, duration of P applications, and cropping systems. Accumulation and distribution of Olsen P (plant-available labile P), total inorganic P, and total organic P were investigated in soil profiles of three field experiments differing in rate (9–44 kg P ha–1), frequency (applied once or twice annually), and duration (4–34 years) of fertilizer P applications, crop rotations, soil characteristics, and irrigation pattern (upland irrigated and flooded-rice crop) in a subtropical region. Profile samples were collected from soil depths of 0–15, 15–30, 30–60, 60–90, 90–120, and 120–150 cm of different treatments in these experiments and analyzed for different forms of P and soil characteristics. The results revealed that (i) annual applications of fertilizer P either to one crop (alternative-applied P) or to both crops (cumulative) led to the accumulation of residual fertilizer P in the form of Olsen P, varying from 44 to 148 kg P ha–1, and the magnitude of accumulation was proportional to applied fertilizer P rate, frequency, and duration; (ii) majority of residual fertilizer P accumulated as inorganic P (74–89%) followed by organic P (11–26%) and Olsen P (9–19%), illustrating that the inorganic P pool is a major sink for fertilizer P; (iii) application of fertilizer nitrogen (N) and potassium (K) alone or in combination with fertilizer P did not affect residual fertilizer P accumulation in soil profile; (iv) incorporation of farmyard manure enhanced the P enrichment of soil profile; (v) irrigation pattern, soil pH (7.1–7.7), and calcium carbonate (CaCO3) (trace–0.33%) did not influence P movement to deeper soil layers; silt, clay, and soil organic C (SOC) showed strong relationships with Olsen P (r = 0.827, 0.938, and 0.464, P < 0.01) and enhanced the retention of labile P in the plow layer; and (vi) only 6–29% total residual P moved beyond 30 cm deep in fine-textured soils under 22-year rice (Oryza sativa L.)–wheat (Triticum aestivum L.) and 34-year maize (Zea maize L.)–wheat rotations, whereas 41, 27, 20, 9, and 3% were located in soil layers 0–30, 30–60, 60–90, 90–120, and 120–150 cm deep, respectively, in coarse-textured soil profile under 4-year peanut (Arachis hypogaea L.)–sunflower (Helianthus annuus L.) field. These findings confirmed that interplay between the fertilizer P management (alternative vis-à-vis cumulative P application and optimal vis-à-vis excessive rates of fertilizer P in different crop rotations), amount of labile P accumulated in soil profile, and soil characteristics (silt, clay, and SOC) largely controlled the downward movement and resultant potential for P leaching in subtropical irrigated soils.  相似文献   

14.
在辽西碳酸盐褐土上进行的9年试验表明,平均每年每公顷施用相当或略低于作物收获产品中含磷量的化肥磷(P)14.4kg,既可持续地保持较高的作物产量,又可持续耕层土壤的总磷库贮量几乎不变,甚至有微小增长,其增长部分主要是有机磷;施用磷肥结合80%收获产品喂猪、猪粪回田,则既可保持作物丰产又可显著提高耕层土壤的有机磷含量;连续施氮肥而不施磷肥可使该贫磷土壤耕层总磷库贮备显著下降。与富磷土壤不同,9年中该  相似文献   

15.
Isotopically exchangeable P (IEP) is usually considered to be completely plant‐available and the major source of P for plant uptake. The aim of the present study is to test whether plants can, besides IEP, also use non‐IEP and if part of the IEP has an equilibrium concentration in soil solution which is below the minimum concentration, CLmin, and can therefore not be taken up by plants. A pot experiment was carried out with maize for two years on two soils, an acid sandy and a neutral loamy soil, either without P fertilizer or fertilized with ten P sources of different solubility. Throughout both years of the study, pots were kept moist either without plants or planted twice with maize (Zea mays L., cv. Athletico). At the end of the experiment, plant P uptake, P concentration in the soil solution (CL), and P accessible to isotopic exchange within 5 d (E5d) were measured. Plant growth decreased the E5d which was about equal to P uptake by maize for most treatments in the acid soil. But for some treatments, i.e., five in the acid and eight in the neutral soil, P uptake was up to 50% larger than the decrease of E5d, indicating that plants had, besides IEP, also used P from non‐IEP sources. At adequate P supply, both soils had an E5d of about 100 mg P (kg soil)–1, but about 30 to 40 mg kg–1 of this IEP had an equilibrium P concentration in the soil solution below CLmin of 0.1 μmol L–1 at which P would actually not be plant‐available. This study shows that plants take up P mainly from IEP, but not the whole IEP is plant‐available. Furthermore, plants may also use P from non‐IEP sources.  相似文献   

16.
Reactive (RP) and organic phosphorus (OP) losses from grazed paddocks were determined on a volcanic soil during 2004 and 2005. Paddocks were grazed by Holstein Friesian steers (3.5 steers ha?1) and received N (67.5 kg ha?1) and P fertilizer (30 kg P ha?1). Total losses ranged between 4 and 15 g P ha?1 year?1 and were greatly affected by incidental P losses associated with spring P fertilizer application. Reactive P constituted 90% of the total losses on average. Due to the high water infiltration capacity of the soil, run‐off was <1% of total drainage, therefore, phosphorus losses in run‐off were small.  相似文献   

17.
Abstract

The quality of phosphate rock (PR) is declining and the use of lower quality PR results In lower water‐soluble and higher citrate‐soluble P in the fertilizer product. A greenhouse study was conducted to evaluate the plant availability of P in commercial superphosphate fertilizers having various levels of water‐soluble P. Seven commercial fertilizers, Including 6 granular concentrated superphosphates and one normal superphosphate, were evaluated. Reagent grade monocalcium phosphate served as a control. The fertilizers were manufactured from PR deposits located in the United States (Florida, Idaho and North Carolina) and Morocco. Water‐soluble P ranged from 77 to 92 X of the total fertilizer P. Citrate‐soluble, water‐insoluble P ranged from 7 to 20 % of the total fertilizer P. Four of the 5 American fertilizers had a lower percentage of water‐soluble P as compared to the concentrated superphosphate from Morocco. Fertilizers manufactured from U.S. phosphate deposits contained an average of 6 times more Fe and 4 times more Al than the Moroccan concentrated superphosphate.

Each source was added to a Mountvlew slit loam soil (pH = 6.5) at rates to supply 0, 10, 20, 30, 40 and 50 mg P kg‐1soil (0, 22.9, 45.8, 68.7, 91.6, and 114.5 ppm P2O5, respectively). Sorghum‐sudangrass (Sorghum bicolor) was harvested at 28 and 56 days after planting in the treated soil. Herbage yields and the P concentration in harvested forage were not affected by the source of added P. The effect of the rate of added P on forage yield and P concentration was described by polynomial regression. The granular concentrated superphosphate fertilizers used in this study contained ≥ 80 % of their plant available P in a water‐soluble form and were as effective as reagent grade monocalcium phosphate. Thus the level of water‐soluble P that will be required to reduce the performance of a fertilizer is lower than the levels currently found in American commercial concentrated superphosphates  相似文献   

18.
The Hedley sequential‐phosphorus (P)‐fractionation method has been used in many countries to study the effects of land‐use and management systems on soil P. Many data sets have been obtained but collectively never have been considered or to goal topic reviewed. Therefore, the objectives of this review were to compile and systematically evaluate these data. The data generated over many years were grouped into temperate, and subtropical and tropical soils of different land use and duration of soil‐management studies. In natural ecosystems, vegetation types and composition and percent of vegetation covers substantially affected all P fractions with pronounced impacts on the labile and moderately labile P. In short‐term studies (≤ 10 y), changes in the labile and moderately labile inorganic P (Pi) fractions were detected when more P (e.g., by factor 5) was applied than commonly recommended for agricultural crops. However, without P application the changes in all P fractions were subtle in temperate soils, but declines were significant in labile and moderately labile P in subtropical and tropical soils. In both temperate and tropical climates, medium (10–25 y) and long‐term (>25 y) cultivation without P application depleted all P fractions, whereas most of P fractions increased with continuous P application, regardless of the amount and source of P. Synthesis of data resulted in multiple‐regression functions which described differences in labile and moderately labile P fractions as function of differences in amount of P application and duration of the experiments. Moreover, the correlation analysis also showed strong association among most of the P fractions. Current limitations in data interpretation of Hedley fractionation can be overcome by the application of 31P nuclear–magnetic resonance (NMR) and X‐ray absorption near‐edge fine‐structure (XANES) spectroscopy.  相似文献   

19.
An incubation study with fresh, frozen, and dried clover and rye-grass shoots gathered in autumn was performed in the laboratory (43 days). The aim was to study inorganic and organic phosphorus (P) release from plant material during decomposition without soil. Plant materials (2?cm size) were mixed with small glass beads and placed in large syringes for consecutive water extractions on 7 occasions. Leachates were analysed for inorganic and total P. At the first leaching event, 8% of total crop P was released from fresh, 24% from frozen and 27% from dried plant material. During decomposition, both inorganic and organic P was released following first order kinetics, with grass releasing mostly inorganic P and clover mostly organic P. After 43 days, 42%–50% of total crop P from fresh, 49%–51% from frozen and 57%–69% from dried material was released, with significant differences between treatments. Using the results in calculations on field scale showed that P released from overwintering crops under cold climate conditions can amount to several kg P ha?1. Thus, senescence of overwintering aboveground biomass can be a significant source for P leaching from soils.  相似文献   

20.
不同类型有机物料的有机磷组成及生物有效性   总被引:2,自引:1,他引:1  
  【目的】  研究不同有机物料的有机磷组成及其作为磷源施用后的供磷能力,为化肥磷的有机替代奠定理论基础。  【方法】  供试有机物料包括粪肥类 (猪粪、羊粪)、绿肥类 (豌豆、苜蓿和绿豆)、秸秆类 (小麦秸秆、玉米秸秆和油菜秸秆)。分析了8种有机物料的全磷、有机磷含量和C/P值,采用Bowman-Cole方法测定了有机磷中的活性 (LOP)、中活性 (MLOP)、中稳性 (MROP) 和高稳性有机磷 (HROP) 4个组分的含量。用供试的8种有机物料进行了小麦盆栽试验,分析了土壤速效磷含量、小麦吸磷量与不同有机物料的有机磷组成、碳/磷 (C/P) 值之间的关系。  【结果】  粪肥、绿肥和秸秆中的全磷含量分别为5.49~5.52、1.19~2.59、0.57~1.07 g/kg,有机物料中有机磷含量占全磷的比例在31.3%~55.2%,除绿豆秸秆外,有机磷含量小于无机磷。有机磷中LOP、MLOP、MROP和HROP的平均比例分别为8.5%、45.2%、41.5%和4.9%。LOP平均含量以粪肥类 (175.5 mg/kg) > 绿肥类 (67.03 mg/kg) > 秸秆类 (25.8 mg/kg);以猪粪、绿豆秸秆的MLOP含量相对较高;MROP含量羊粪 > 猪粪 > 苜蓿秸秆 > 绿豆秸秆 > 豌豆秸秆 > 玉米秸秆 > 油菜秸秆 > 小麦秸秆;HROP在粪肥中的含量显著高于其他类型物料。施用绿肥和粪肥显著增加了小麦的吸磷量和生物学产量,而施用秸秆则不同程度降低了小麦的吸磷量和生物学产量。小麦吸磷量与土壤速效磷含量呈线性正相关关系,与有机物料C/P值呈极显著负相关关系,与LOP、MLOP、MROP呈极显著正相关关系,与HROP相关性不显著;土壤速效磷与有机物料C/P值呈负相关关系。  【结论】  供试有机物料中的全磷含量以粪肥类 > 绿肥类 > 秸秆类,无机磷含量均大于有机磷含量 (绿豆秸秆除外),有机磷以中活性和中稳性有机磷为主。绿肥类和粪肥类物料中含磷量高、且C/P值较低,作为肥料使用能显著增加土壤速效磷含量、小麦生物学产量和吸磷量,可以有效替代一定比例的磷肥。而秸秆类有机物料含磷量较低,且C/P值较高,不适宜作为化肥磷的有机替代物料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号