首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To compare the cardiopulmonary effects of anesthesia maintained by continuous infusion of ketamine and propofol with anesthesia maintained by inhalation of sevoflurane in goats undergoing magnetic resonance imaging. ANIMALS: 8 Saanen goats. PROCEDURES: Goats were anesthetized twice (1-month interval) following sedation with midazolam (0.4 mg/kg, IV). Anesthesia was induced via IV administration of ketamine (3 mg/kg) and propofol (1 mg/kg) and maintained with an IV infusion of ketamine (0.03 mg/kg/min) and propofol (0.3 mg/kg/min) and 100% inspired oxygen (K-P treatment) or induced via IV administration of propofol (4 mg/kg) and maintained via inhalation of sevoflurane in oxygen (end-expired concentration, 2.3%; 1X minimum alveolar concentration; SEVO treatment). Cardiopulmonary and blood gas variables were assessed at intervals after induction of anesthesia. RESULTS: Mean +/- SD end-expired sevoflurane was 2.24 +/- 0.2%; ketamine and propofol were infused at rates of 0.03 +/- 0.002 mg/kg/min and 0.29 +/- 0.02 mg/kg/min, respectively. Overall, administration of ketamine and propofol for total IV anesthesia was associated with a degree of immobility and effects on cardiopulmonary parameters that were comparable to those associated with anesthesia maintained by inhalation of sevoflurane. Compared with the K-P treatment group, mean and diastolic blood pressure values in the SEVO treatment group were significantly lower at most or all time points after induction of anesthesia. After both treatments, recovery from anesthesia was good or excellent. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that ketamine-propofol total IV anesthesia in goats breathing 100% oxygen is practical and safe for performance of magnetic resonance imaging procedures.  相似文献   

2.
The aim of the present study was to determine the effect of propofol on acid-base balance and ionic composition of arterial and venous blood in clinically healthy goats. The experiment was performed on ten adult goats. Propofol was administered intravenously at bolus dose of 6 mg/kg bw. The heart and breath rate, acid-base balance (pH, pCO2, pO2, HCO3-, BE, O2SAT, ctCO2) and ionic composition (Na+, K+, Cl-) of arterial and venous blood were measured before injection and 3, 6 and 15 min. after. The propofol infusion induced increase of heart rate, decrease of breath rate and compensated respiratory acidosis in venous and arterial blood. It was found that changes of acid-base balance parameters in arterial blood arose faster than in venous blood. The levels of sodium and chloride ions in both types of blood were similar, whereas the level of potassium ions was higher in venous blood during entire experiment.  相似文献   

3.
OBJECTIVE: To compare the effects of propofol and sevoflurane on the urethral pressure profile in female dogs. ANIMALS: 10 healthy female dogs. PROCEDURE: Urethral pressure profilometry was performed in awake dogs, during anesthesia with sevoflurane at 1.5, 2.0, and 3.0% end-tidal concentration, and during infusion of propofol at rates of 0.4, 0.8, and 1.2 mg/kg/min. A consistent plane of anesthesia was maintained for each anesthetic protocol. Maximum urethral pressure, maximum urethral closure pressure, functional profile length, and functional area were measured. RESULTS: Mean maximum urethral closure pressure of awake dogs was not significantly different than that of dogs anesthetized with propofol at all infusion rates or with sevoflurane at 1.5 and 2.0% end-tidal concentration. Functional area in awake dogs was significantly higher than in anesthetized dogs. Functional area of dogs during anesthesia with sevoflurane at 3.0% end-tidal concentration was significantly lower than functional area for other anesthetic protocols. Individual differences in the magnitude of effects of propofol and sevoflurane on urethral pressures were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane is an alternative to propofol for anesthesia in female dogs undergoing urethral pressure profilometry. Use of these anesthetics at appropriate administration rates should reliably distinguish normal from abnormal maximum urethral closure pressures and functional areas. Titration of anesthetic depth is a critical component of urodynamic testing.  相似文献   

4.
The purpose of this report was to evaluate the clinical safety and efficacy of sevoflurane as an inhalant anesthetic in dogs. Subjective and objective data from 196 clinical cases utilizing sevoflurane as the maintenance anesthetic was collected at three sites. After preanesthetic evaluation, the attending anesthesiologist assigned the dogs to one of the following six anesthetic protocols: protocol 1, oxymorphone premedication and thiopental induction; protocol 2, oxymorphone/acetylpromazine premedication and thiopental induction; protocol 3, xylazine/butorphanol premedication and thiopental induction; protocol 4, opioid premedication and propofol induction; protocol 5, optional premedication and mask induction with sevoflurane in oxygen; and protocol 6, optional premedication and optional induction. The average quality of induction, maintenance, and recovery was good to excellent in all protocols. The three most common side effects during maintenance and recovery were hypotension, tachypnea, and apnea. Sevoflurane produces anesthesia in dogs comparable to the other inhalation anesthetics currently used (i.e., halothane and isoflurane) for diagnostic or therapeutic procedures.  相似文献   

5.
新型吸入麻醉剂七氟醚在犬、猫、马、鼠的 MAC分别为 2 .1 0~ 2 .36 ,2 .5 8,2 .31 ,2 .40~ 2 .5 0 Vol%。像异氟醚那样 ,七氟醚可降低脑血管阻力、脑代谢率、脑耗氧量、心肌收缩功能和血压。七氟醚可引起猫惊厥。虽然猪的心跳在七氟醚麻醉下维持稳定 ,但研究表明犬的心率则升高。七氟醚麻醉下引起心律失常的肾上腺素剂量与异氟醚相似 ,但大大高于氟烷或安氟醚。七氟醚对呼吸道的刺激性明显低于其他吸入麻醉剂。尚未见其肝肾毒性。七氟醚已向理想的吸入麻醉剂方向迈出了更进一步  相似文献   

6.
新型吸入麻醉剂七氟醚在犬、猫、马、鼠的MAC分别为2.10~2.36, 2.58, 2.31, 2.40~2.50 Vol%。像异氟醚那样,七氟醚可降低脑血管阻力、脑代谢率、脑耗氧量、心肌收缩功能和血压。七氟醚可引起猫惊厥。虽然猪的心跳在七氟醚麻醉下维持稳定,但研究表明犬的心率则升高。七氟醚麻醉下引起心律失常的肾上腺素剂量与异氟醚相似,但大大高于氟烷或安氟醚。七氟醚对呼吸道的刺激性明显低于其他吸入麻醉剂。尚未见其肝肾毒性。七氟醚已向理想的吸入麻醉剂方向迈出了更进一步。  相似文献   

7.
Reid, J., Nolan, A.M., Welsh, E. Propofol as an induction agent in the goat: a pharmacokinetic study. J. vet. Pharmacol. Therap. 16, 488–493.
The pharmacokinetics of propofol, 4 mg/kg, administered as a bolus dose intravenously (i.v.) prior to the maintenance of anaesthesia with halothane in oxygen, were determined in five goats, and a clinical impression of its use as an induction agent was made. Induction of anaesthesia was rapid and smooth, providing satisfactory conditions for intubation in all animals. Post-induction apnoea occurred in one goat and minimal regurgitation of ruminal contents was recorded in two animals. Recovery times were rapid with a mean time to standing after halothane inhalation ceased of 13.7 min. The blood propofol concentration time profile was best described by a bi-exponential decline in all five goats. The mean elimination half-life was short (15.5 min), the volume of distribution at steady state large (2,56 1/kg) and the clearance rapid (275 ml/min.kg). Propofol was shown to be a very satisfactory induction agent in the goat.  相似文献   

8.
Objective—To determine the safety and efficacy of propofol, after detomidine-butorphanol premedication, for induction and anesthetic maintenance for carotid artery translocation and castration or ovariectomy in goats. Study Design—Case series. Animals—Nine 4-month-old Spanish goats (17.1 ± 2.6 kg) were used to evaluate propofol anesthesia for carotid artery translocation and castration or ovariectomy. Methods—Goats were premedicated with detomidine (10 μg/kg intramuscularly [IM]) and butorphanol (0.1 mg/kg IM) and induced with an initial bolus of propofol (3 to 4 mg/kg intravenously [IV]). If necessary for intubation, additional propofol was given in 5-mg (IV) increments. Propofol infusion (0.3 mg/kg/min IV) was used to maintain anesthesia, and oxygen was insufflated (5 L/min). The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by movement, muscle relaxation, ocular signs, response to surgery, and cardiopulmonary responses. Systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, heart rate (HR), ECG, respiratory rate (RR), Spo2, and rectal temperature (T) were recorded every 5 minutes postinduction; arterial blood gas samples were collected every 15 minutes. Normally distributed data are represented as mean ± SD; other data are medians (range). Results—Propofol (4.3 ± 0.9 mg/kg IV) produced smooth, rapid (15.2 ± 6 sec) sternal recumbency. Propofol infusion (0.52 ± 0.11 mg/kg/min IV) maintained anesthesia. Mean anesthesia time was 83 ± 15 minutes. Muscle relaxation was good; eye signs indicated surgical anesthesia; two goats moved before surgery began; one goat moved twice during laparotomy. Means are reported over the course of the data collection period. Means during the anesthesia for pHa (arterial PH), Paco2, Pao2, HCO3, and BE (base excess) ranged from 7.233 ± 0.067 to 7.319 ± 0.026, 54.1 ± 4.6 to 65.3 ± 12.0 mm Hg, 133.1 ± 45.4 to 183.8 ± 75.1 mm Hg, 26.9 ± 2.6 to 28.2 ± 2.1 mEq/L, and -0.8 ± 2.9 to 1.4 ± 2.2 mEq/L. Means over time for MAP were 53 ± 12 to 85 ± 21 mm Hg. Mean HR varied over time from 81 ± 6 to 91 ± 11 beats/minute; mean RR, from 9 ± 8 to 15 ± 5 breaths/minute; Spo2, from 97 ± 3% to 98 ± 3%; mean T, from 36.0 ± 0.6±C to 39.1 ± 0.7±C. Over time, Spo2 and Sao2 did not change significantly; HR, RR, T, and Paco2 decreased significantly; SAP, DAP, MAP, pHa, Pao2, and BE increased significantly. HCO3 concentrations increased significantly, peaking at 45 minutes. Recoveries were smooth and rapid; the time from the end of propofol infusion to extubation was 7.3 ± 3 minutes, to sternal was 9.2 ± 5 minutes, and to standing was 17.7 ± 4 minutes. Median number of attempts to stand was two (range of one to four). Postoperative pain was mild to moderate. Conclusions—Detomidine-butorphanol-propofol provided good anesthesia for carotid artery translocation and neutering in goats. Clinical Relevance—Detomidine-butorphanol-propofol anesthesia with oxygen insufflation may be safely used for surgical intervention in healthy goats.  相似文献   

9.
The objective of this study was to determine intraocular pressure (IOP) and cardiac changes in normocapnic dogs maintained under controlled ventilation and anesthetized using sevoflurane or desflurane. Sixteen healthy adult mixed-breed dogs, seven males and nine females, weighing 10-15 kg were used. The dogs were randomly assigned to one of two groups composed of eight animals anesthetized with sevoflurane (SEVO) or desflurane (DESF). In both groups, anesthesia was induced with propofol (10 mg/kg), and neuromuscular blockade was achieved with rocuronium (0.6 mg/kg/h i.v.). No premedication was given. Ventilation was adjusted to maintain end-tidal carbon dioxide partial pressure at 35 mmHg. Anesthesia was maintained with 1.5 minimum alveolar concentration (MAC) of sevoflurane or desflurane. In both groups IOP was measured by applanation tonometry (Tono-Pen) before induction of anesthesia. IOP, mean arterial pressure (MAP), heart rate (HR), cardiac index (CI) and central venous pressure (CVP) were also measured 45 min after the beginning of inhalant anesthesia and then every 20 min for 60 min. A one-way repeated measures anova was used to compare data within the same group and Student's t-test was used to assess differences between groups. P < 0.05 was considered statistically significant. Measurements showed normal IOP values in both groups, even though IOP increased significantly from baseline during the use of desflurane. IOP did not differ between groups. CI in the desflurane group was significantly greater than in the sevoflurane group. Sevoflurane and desflurane have no clinically significant effects on IOP, MAP, HR, CI or VCP in the dog.  相似文献   

10.
ObjectiveTo evaluate the heart rate (HR) and systemic arterial pressure (sAP) effects, and propofol induction dose requirements in healthy dogs administered propofol with or without guaifenesin for the induction of anesthesia.Study designProspective blinded crossover experimental study.AnimalsA total of 10 healthy adult female Beagle dogs.MethodsDogs were premedicated with intravenous (IV) butorphanol (0.4 mg kg–1) and administered guaifenesin 5% at 50 mg kg–1 (treatment G50), 100 mg kg–1 (treatment G100) or saline (treatment saline) IV prior to anesthetic induction with propofol. HR, invasive sAP and respiratory rate (fR) were recorded after butorphanol administration, after guaifenesin administration and after propofol and endotracheal intubation. Propofol doses for intubation were recorded. Repeated measures analysis of variance (anova) was used to determine differences in propofol dose requirements among treatments, and differences in cardiopulmonary values over time and among treatments with p < 0.05 considered statistically significant.ResultsPropofol doses (mean ± standard deviation) for treatments saline, G50 and G100 were 3.3 ± 1.0, 2.7 ± 0.7 and 2.1 ± 0.8 mg kg–1, respectively. Propofol administered was significantly lower in treatment G100 than in treatment saline (p = 0.04). In treatments G50 and G100, HR increased following induction of anesthesia and intubation compared with baseline measurements. HR was higher in treatment G100 than in treatments G50 and saline following induction of anesthesia. In all treatments, sAP decreased following intubation compared with baseline values. There were no significant differences in sAP among treatments. fR was lower following intubation than baseline and post co-induction values and did not differ significantly among treatments.Conclusions and clinical relevanceWhen administered as a co-induction agent in dogs, guaifenesin reduced propofol requirements for tracheal intubation. HR increased and sAP and fR decreased, but mean values remained clinically acceptable.  相似文献   

11.
Pigs are important animal models in veterinary and medical research and have been widely used in experiments requiring surgical anesthesia. Sevoflurane is an inhalant anesthetic with unique properties that make it an ideal anesthetic for mask induction and anesthesia maintenance. However, there are relatively few studies reporting the anesthetic requirements for sevoflurane in juvenile swine, an age group that is commonly used in research experiments. Therefore the objective of this study was to determine the Minimum Alveolar Concentration (MAC) for sevoflurane in juvenile swine. Sevoflurane anesthesia was induced in six Yorkshire-cross pigs of approximately 9 weeks-of-age and MAC for sevoflurane was determined. The sevoflurane MAC value was determined to be 3.5+/-0.1% which is notably higher than values reported in the literature for pigs. This discrepancy in MAC values may represent changes in anesthetic requirements between different age groups of pigs and differences in the type of stimulus used to determine MAC.  相似文献   

12.
Propofol is an injectable anaesthetic that is currently used both in veterinary and human medicine for the induction and maintenance of anaesthesia. Although little is known about the pharmacokinetics of propofol in fetuses, it is widely used in obstetric procedures, particularly in caesarean section. This study determines the pharmacokinetics of propofol in pregnant ewes in the last third of pregnancy, and placental transfer and pharmacokinetics in fetuses after the administration of a 6 mg/kg intravenous (i.v.) bolus (phase 1) or a 6 mg/kg i.v. bolus followed by continued infusion of 0.4 mg/kg/min. In ewes, the area under the blood concentration-time curve (AUC) and C(max) (8.6 mgh/mL and 9.5mg/mL, respectively) was higher than those of the fetus (1.6 mgh/mL and 1.19 mg/mL, respectively). The mean half-life was 0.5h in the dam and 1.1h in the fetus.  相似文献   

13.
OBJECTIVE: To evaluate bispectral index (BIS) values in pigs during anesthesia maintained with sevoflurane-fentanyl or propofol-fentanyl as a predictor of changes in hemodynamic parameters and duration of recovery from anesthesia. ANIMALS: 12 pigs. PROCEDURE: Pigs were randomly allocated to undergo 1 of 2 anesthetic regimens. Anesthesia was induced with propofol (2 mg/kg, i.v.); 6 pigs were administered sevoflurane via inhalation (1 minimum alveolar concentration [MAC] at a fresh gas flow rate of 3 L/min; group I), and 6 were administered propofol (11 mg/kg/h, i.v.; group II). All pigs received fentanyl (2.5 mg/kg, i.v., q 30 min). After abdominal surgery, pigs were allowed to recover from anesthesia. Cardiovascular variables and BIS values were recorded at intervals throughout the procedure; duration of recovery from anesthesia was noted. RESULTS: No correlation was established between arterial blood pressure and BIS and between heart rate and BIS. Mean BIS at discontinuation of administration of the anesthetic agent was greater in group-II pigs (65.2 +/- 10.6 minutes) than in group-I pigs (55.8 +/- 2.9 minutes). However, recovery from anesthesia was significantly longer in group II (59.80 +/- 2.52 minutes) than in group I (9.80 +/- 2.35 minutes). CONCLUSIONS AND CLINICAL RELEVANCE: In swine anesthetized with sevoflurane or propofol and undergoing abdominal surgery, the BIS value derived from an electroencephalogram at the end of anesthesia was not useful for predicting the speed of recovery from anesthesia. Moreover, BIS was not useful as a predictor of clinically important changes in arterial blood pressure and heart rate in those anesthetized pigs.  相似文献   

14.
The cardiopulmonary effects of desflurane and sevoflurane anesthesia were compared in cats breathing spontaneously. Heart (HR) and respiratory (RR) rates; systolic (SAP), diastolic (DAP) and mean arterial (MAP) pressures; partial pressure of end tidal carbon dioxide (PETCO2), arterial blood pH (pH), arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2); base deficit (BD), arterial oxygen saturation (SaO2) and bicarbonate ion concentration (HCO3) were measured. Anesthesia was induced with propofol (8+/-2.3mg/kg IV) and maintained with desflurane (GD) or sevoflurane (GS), both at 1.3 MAC. Data were analyzed by analysis of variance (ANOVA), followed by the Tukey test (P<0.05). Both anesthetics showed similar effects. HR and RR decreased when compared to the basal values, but remained constant during inhalant anesthesia and PETCO2 increased with time. Both anesthetics caused acidemia and hypercapnia, but BD stayed within normal limits. Therefore, despite reducing HR and SAP (GD) when compared to the basal values, desflurane and sevoflurane provide good stability of the cardiovascular parameters during a short period of inhalant anesthesia (T20-T60). However, both volatile anesthetics cause acute respiratory acidosis in cats breathing spontaneously.  相似文献   

15.
The purpose of this study was to compare the effects of inhaled isoflurane and a constant infusion of propofol on maternal haemodynamics and uterine arterial and umbilical venous flows in pregnant ewes. Late term pregnant ewes ( n  = 5) were randomly assigned to receive either inhaled isoflurane or an intravenous infusion of propofol for 1 h, each on separate occasions. Maternal systemic arterial, right atrial and pulmonary arterial blood pressures, cardiac index, systemic vascular resistance index, stroke volume index, heart rate, and uterine arterial and umbilical venous flows were determined over the 1 h period of each treatment. Data were analysed using an univariate analysis of variance for repeated measures performed on the ranks of the data. Propofol anaesthetized ewes had significantly higher heart rate ( P  = 0.0040), mean arterial pressure ( P  = 0.0003) and cardiac index ( P  = 0.0475) compared to isoflurane anaesthetized ewes. There were no significant differences in uterine arterial flows, umbilical venous flows, or other measured variables. Continuous propofol infusions maintain maternal haemodynamics at significantly higher levels than does inhaled isoflurane, while uterine arterial and umbilical venous flows do not differ significantly.  相似文献   

16.
为探讨丙泊酚静脉麻醉与安氟醚吸入麻醉在巴马小型猪体外循环(CPB)中的麻醉效果,本研究选用巴马小型猪10头,平均分成2组,分别进行丙泊酚静脉麻醉和安氟醚吸入麻醉;开胸后进行全血肝素化处理,分别于升主动脉、上腔静脉和下腔静脉插管,连接体外循环机进行CPB;观察并记录麻醉诱导前(T0)、麻醉诱导后(T1)、CPB前即刻(T2)、降温至30 ℃(T3)、阻断主动脉前即刻(T4)、阻断主动脉后4 min(T5)、开始复温即刻(T6)、停CPB即刻(T7)、关胸后即刻(T8)及手术结束拔管后10 min(T9)10个时间点各组试验猪的生命体征、鼻温(NT)、心率(HR)、平均动脉压(MAP)、pH及血氧饱和度(SPO2)指标。结果2组试验猪于CPB实施前后的基本情况如体重、手术时间和麻醉时间等指标均无显著性差异(P>0.05);安氟醚组恢复自主呼吸的时间显著短于丙泊酚组(P<0.05);与T0和T1相比,各组试验猪在CPB进行时其NT、HR和MAP值均显著降低(P<0.05);但各组间及组内SPO2和pH差异不显著(P>0.05)。由此可见,丙泊酚静脉麻醉与安氟醚吸入麻醉均可用于巴马小型猪CPB中的麻醉。选用丙泊酚时,应根据手术过程中试验动物的反应情况适当调整用量;而安氟醚麻醉过程相对平稳,麻醉效果好,术后苏醒快,适合情况复杂且时间较长的手术。  相似文献   

17.
OBJECTIVE: To determine the minimum infusion rate (MIR50) for propofol alone and in combination with ketamine required to attenuate reflexes commonly used in the assessment of anesthetic depth in cats. ANIMALS: 6 cats. PROCEDURE: Propofol infusion started at 0.05 to 0.1 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine (low-dose ILD] constant rate infusion [CRI] of 23 microg/kg/min or high-dose [HD] CRI of 46 microg/kg/min), and after 15 minutes, responses of different reflexes were tested. Following a response, the propofol dose was increased by 0.05 mg/kg/min for propofol alone or 0.025 mg/kg/min for propofol and ketamine, and after 15 minutes, reflexes were retested. RESULTS: The MIR50 for propofol alone required to attenuate blinking in response to touching the medial canthus or eyelashes; swallowing in response to placement of a finger or laryngoscope in the pharynx; and to toe pinch, tetanus, and tail-clamp stimuli were determined. Addition of LD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, finger, toe pinch, and tetanus stimuli but did not change those for laryngoscope or tail-clamp stimuli. Addition of HD ketamine to propofol significantly decreased MIR50, compared with propofol alone, for medial canthus, eyelash, toe pinch, tetanus, and tail-clamp stimuli but did not change finger or laryngoscope responses. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol alone or combined with ketamine may be used for total IV anesthesia in healthy cats at the infusion rates determined in this study for attenuation of specific reflex activity.  相似文献   

18.
OBJECTIVE: To determine the effect of sevoflurane on cardiac energetic and hemodynamic parameters in ferrets. ANIMALS: 7 healthy domesticated ferrets. PROCEDURE: Sevoflurane was used as the sole anesthetic agent for general anesthesia in ferrets. Standard midline laparotomy and median sternotomy were performed to permit instrumentation. Myocardial blood flow was determined by use of colored microsphere technology. Measurements and blood samples were obtained at 1.25%, 2.5%, and 3.75% expired concentration of sevoflurane. RESULTS: A dose-dependent decrease in arterial blood pressure, left ventricular pressure, systemic vascular resistance, aortic flow, and dp/dt (an index of contractility) was detected as expired concentration of sevoflurane increased. Heart rate, central venous pressure, coronary vascular resistance, myocardial oxygen extraction ratio, and tau (the time constant of relaxation) were unchanged. Cardiac external work decreased, as did myocardial oxygen consumption, causing increased cardiac efficiency at higher concentrations of sevoflurane. CONCLUSIONS AND CLINICAL RELEVANCE: Sevoflurane caused minimal and predictable cardiovascular effects in ferrets without increasing myocardial metabolic demands. Data obtained from this study have not been previously reported for a species that is being commonly used in cardiovascular research. These findings also support use of sevoflurane as a safe inhalant anesthetic in ferrets for clinical and research settings.  相似文献   

19.
OBJECTIVE: To compare the anesthetic index of sevoflurane with that of isoflurane in unpremedicated dogs. DESIGN: Randomized complete-block crossover design. ANIMALS: 8 healthy adult dogs. PROCEDURE: Anesthesia was induced by administering sevoflurane or isoflurane through a face mask. Time to intubation was recorded. After induction of anesthesia, minimal alveolar concentration (MAC) was determined with a tail clamp method while dogs were mechanically ventilated. Apneic concentration was determined while dogs were breathing spontaneously by increasing the anesthetic concentration until dogs became apneic. Anesthetic index was calculated as apneic concentration divided by MAC. RESULTS: Anesthetic index of sevoflurane (mean +/- SEM, 3.45 +/- 0.22) was significantly higher than that of isoflurane (2.61 +/- 0.14). No clinically important differences in heart rate; systolic, mean, and diastolic blood pressures; oxygen saturation; and respiratory rate were detected when dogs were anesthetized with sevoflurane versus isoflurane. There was a significant linear trend toward lower values for end-tidal partial pressure of carbon dioxide during anesthesia with sevoflurane, compared with isoflurane, at increasing equipotent anesthetic doses. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that sevoflurane has a higher anesthetic index in dogs than isoflurane. Sevoflurane and isoflurane caused similar dose-related cardiovascular depression, but although both agents caused dose-related respiratory depression, sevoflurane caused less respiratory depression at higher equipotent anesthetic doses.  相似文献   

20.
OBJECTIVE: To evaluate effects of infusion of guaifenesin, ketamine, and medetomidine in combination with inhalation of sevoflurane versus inhalation of sevoflurane alone for anesthesia of horses. DESIGN: Randomized clinical trial. ANIMALS: 40 horses. PROCEDURE: Horses were premedicated with xylazine and anesthetized with diazepam and ketamine. Anesthesia was maintained by infusion of guaifenesin, ketamine, and medetomidine and inhalation of sevoflurane (20 horses) or by inhalation of sevoflurane (20 horses). A surgical plane of anesthesia was maintained by controlling the inhaled concentration of sevoflurane. Sodium pentothal was administered as necessary to prevent movement in response to surgical stimulation. Hypotension was treated with dobutamine; hypoxemia and hypercarbia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. RESULTS: The delivered concentration of sevoflurane (ie, the vaporizer dial setting) was significantly lower and the quality of transition to inhalation anesthesia and of anesthetic maintenance were significantly better in horses that received the guaifenesin-ketamine-medetomidine infusion than in horses that did not. Five horses, all of which received sevoflurane alone, required administration of pentothal. Recovery time and quality of recovery were not significantly different between groups, but horses that received the guaifenesin-ketamine-medetomidine infusion required fewer attempts to stand. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in horses, the combination of a guaifenesin-ketamine-medetomidine infusion and inhalation of sevoflurane resulted in better transition and maintenance phases while improving cardiovascular function and reducing the number of attempts needed to stand after the completion of anesthesia, compared with inhalation of sevoflurane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号