首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After single spikelet inoculation, the infection process of Fusarium culmorum and spread of fungal hyphae in the spike tissues were studied by scanning and transmission electron microscopy. While hyphal growth on outer surfaces of the spike was scanty and no successful penetration was observed, the fungus developed a dense mycelium on the inner surfaces and effectively invaded the lemma, glume, palea and ovary by penetration pegs. During the inter- and intracellular spreading of the fungus, marked alterations in the host tissues were observed, including degeneration of cytoplasm, cell organelles, and depositions of electron dense material between cell wall and plasmalemma. Ultrastructural studies revealed that host cell walls in proximity of the penetration peg and in contact with hyphae were less dense or transparent which suggested that cell wall degrading enzymes were involved in colonisation of host tissues by fungal hyphae. Enzyme- and immunogold-labelling investigations confirmed involvement of extracellular enzymes, that is cellulases, xylanases and pectinases, in degradation of cell wall components. Localization studies of trichothecenes indicated that toxins could be detected in host tissues at an early stage of infection.  相似文献   

2.
Cytological studies were carried out to elucidate the importance of cell wall degrading enzymes (CWDE) during infection of wheat spikes by Fusarium graminearum. Scanning electron micrographs revealed that at 6–24 hours after inoculation (hai) of single spikelets with macroconidia of F. graminearum, the fungus germinated by forming several germ tubes and developed a dense hyphal network in the cavity of the spikelet. At 24–36hai, the fungus formed infection hyphae which invaded the ovary and inner surface of the lemma and palea. Transmission electron microscopical studies revealed that the fungus extended inter- and intracellularly in the ovary, lemma and rachis and caused considerable damage and alterations to the host cell walls. In different tissues of healthy and F. graminearum-infected wheat spikes the cell wall components cellulose, xylan and pectin were localized by means of enzyme-gold and immuno-gold labelling techniques. Localization of cellulose, xylan and pectin showed that host cell walls which were in direct contact with the pathogen surface had reduced gold labelling compared to considerable higher labelling densities of walls distant from the pathogen–host interface or in non-colonized tissues. The reduced gold labelling densities in the infected host cell walls indicate that these polysaccharide degrading enzymes might be important pathogenicity factors of F. graminearum during infection of wheat spikes. The results revealed that, infection and colonization of wheat spikes by F. graminearum and reactions of infected host tissue were similar to those reported for F. culmorum.  相似文献   

3.
ABSTRACT The influence exerted by the mycoparasite Pythium oligandrum in triggering plant defense reactions was investigated using an experimental system in which tomato plants were infected with the crown and root rot pathogen Fusarium oxysporum f. sp. radicis-lycopersici. To assess the antagonistic potential of P. oligandrum against F. oxysporum f. sp. radicis-lycopersici, the interaction between the two fungi was studied by scanning and transmission electron microscopy (SEM and TEM, respectively). SEM investigations of the interaction region between the fungi demonstrated that collapse and loss of turgor of F. oxysporum f. sp. radicis-lycopersici hyphae began soon after close contact was established with P. oligandrum. Ultrastructural observations confirmed that intimate contact between hyphae of P. oligandrum and cells of the pathogen resulted in a series of disturbances, including generalized disorganization of the host cytoplasm, retraction of the plasmalemma, and, finally, complete loss of the protoplasm. Cytochemical labeling of chitin with wheat germ agglutinin (WGA)/ovomucoid-gold complex showed that, except in the area of hyphal penetration, the chitin component of the host cell walls was structurally preserved at a time when the host cytoplasm had undergone complete disorganization. Interestingly, the same antagonistic process was observed in planta. The specific labeling patterns obtained with the exoglucanase-gold and WGA-ovomucoid-gold complexes confirmed that P. oligandrum successfully penetrated invading cells of the pathogen without causing substantial cell wall alterations, shown by the intense labeling of chitin. Cytological investigations of samples from P. oligandrum-inoculated tomato roots revealed that the fungus was able to colonize root tissues without inducing extensive cell damage. However, there was a novel finding concerning the structural alteration of the invading hyphae, evidenced by the frequent occurrence of empty fungal shells in root tissues. Pythium ingress in root tissues was associated with host metabolic changes, culminating in the elaboration of structural barriers at sites of potential fungal penetration. Striking differences in the extent of F. oxysporum f. sp. radicis-lycopersici colonization were observed between P. oligandrum-inoculated and control tomato plants. In control roots, the pathogen multiplied abundantly through much of the tissues, whereas in P. oligandrum-colonized roots pathogen growth was restricted to the outermost root tissues. This restricted pattern of pathogen colonization was accompanied by deposition of newly formed barriers beyond the infection sites. These host reactions appeared to be amplified compared to those seen in nonchallenged P. oligandrum-infected plants. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. Wall appositions contained large amounts of callose, in addition to be infiltrated with phenolic compounds. The labeling pattern obtained with gold-complexed laccase showed that phenolics were widely distributed in Fusarium-challenged P. oligandrum-inoculated tomato roots. Such compounds accumulated in the host cell walls and intercellular spaces. The wall-bound chitin component in Fusarium hyphae colonizing P. oligandrum-inoculated roots was preserved at a time when hyphae had undergone substantial degradation. These observations provide the first convincing evidence that P. oligandrum has the potential to induce plant defense reactions in addition to acting as a mycoparasite.  相似文献   

4.
Two carrot genotypes, cultivar Nanco and line 24, susceptible and partially- resistant respectively to cavity spot, were compared ultrastructurally and cytochemically 24 h, 48 h and 72 h after root inoculation with a virulent Pythium violae isolate. The extent of pathogen ingress and the response of the host differed markedly with the two genotypes. In cv Nanco, growth of fungal hyphae was predominantly intracellular and was accompanied by pronounced damage; by 48 h after inoculation, pericycle and the first cell layers of the phloem parenchyma were invaded, resulting in host wall dissolution and cytoplasm aggregation. The growth of P. violae in line 24 was limited to the pericycle, even up to 72 h after inoculation; fungal colonization was accompanied by retraction of cytoplasm and in the appearance of granular or fibrillar material in the host cell lumen. Some affected host cells were filled with structureless osmophilic material. In cultivar Nanco, invading fungal hyphae were unaffected; by contrast in line 24, the cytoplasm of invading hyphae, particularly those inside the cell host, was disorganised and structureless. Infection and host response in the two cultivars were studied with two specific labels: Aplysia gonad lectin (AGL), a polygalacturonic acid-binding lectin, and an exoglucanase complexed to colloidal gold were used to locate pectin and cellulosic -(1,4)-glucans respectively in infected tissues. The decrease of cytochemical labeling beyong fungal penetration showed clearly hydrolysis of pectin and cellulose in cell walls of the cv Nanco. By contrast, the cell wall of line 24 remained largely intact, although, unlabeled amorphous and electron-dense material was observed inside the wall. Fibrillar or electron dense material commonly observed in infected tissue of line 24 apparently did not contain pectic or cellulosic substances. Moreover, material observed in host cells or fungal hyphae was also free of labeling. The origin and the chemical composition of these compounds as well as their possible role in the defence mechanisms of carrot against P. violae are discussed.  相似文献   

5.
The infection process of Fusarium avenaceum on wheat spikes and the alteration of cell wall components in the infected host tissue were examined by means of electron microscopy and cytochemical labelling techniques following spray inoculation at growth stage (GS) 65 (mid-flowering). Macroconidia of the pathogen germinated with one to several germ-tubes 6–12 h after inoculation (hai) on host surfaces. The germ-tubes did not penetrate host tissues immediately, but extended and branched on the host surfaces. Hyphal growth on abaxial surfaces of the glume, lemma and palea was scanty 3–4 days after inoculation (dai) and no direct penetration of the outer surfaces of the spikelet was observed. Dense mycelial networks formed on the inner surfaces of the glume, lemma, palea and ovary 36–48 hai. Penetration of the host tissue occurred 36 hai by infection hyphae only on the adaxial surfaces of the glume, lemma, palea and upper part of ovary. The fungus penetrated the cuticle and hyphae extended subcuticularly or between the epidermal wall layers. The subcuticular growth phase was followed by penetration of the epidermal wall, and hyphae spread rapidly inter- and intracellularly in the glume, lemma, palea and ovary. During this necrotrophic colonization phase of the wheat spike, a series of alterations occurred in the host tissues, such as degeneration of cytoplasm and cell organelles, collapse of host cells and disintegration of host cell walls. Immunogold labelling techniques showed that cell walls of spike tissues contained reduced amounts of cellulose, xylan and pectin near intercellular hyphae or infection pegs compared to walls of healthy host tissues. These studies suggest that cell wall degrading enzymes produced by F. avenaceum facilitated rapid colonization of wheat spikes. The different penetration properties of abaxial and adaxial surfaces of the spikelet tissues as well as the two distinct colonization strategies of host tissues by F. avenaceum are discussed. The penetration and colonization behaviour of F. avenaceum in wheat spikelets resembled that of F. culmorum and F. graminearum, although mycotoxins produced by F. avenaceum differed from those of the latter two Fusarium species.  相似文献   

6.
Two independent bioassays demonstrated an antifungal effect of a basic sugar beet chitinase on Cercospora beticola , the causal agent of leaf spot disease in sugar beet ( Beta vulgaris ). In one assay, the growth of submerged spore cultures of C. beticola in microtitre wells was followed by measuring the increase in absorbance at 620 nm. Addition of chitinase to the culture resulted in a delay in germination and a slower initial growth rate. A more detailed picture of the action of the chitinase on the fungal cell wall was provided by an autoradiographic study. An intense labelling was observed at the apex of fungal hyphae grown in medium containing [3H] N -acetylglucosamine, through incorporation of the radioactive chitin monomer into newly synthesized chitin in the cell wall. After fixation of the fungal specimen, the radioactive labelling could be removed by treatment with purified chitinase, i.e. nascent chitin chains were hydrolysed by the enzyme. When the fungal culture was subjected to a chase phase prior to fixation, the radioactive depositions were less accessible to hydrolysis by the chitinase. HPLC analysis of the radioactive hydrolysis products released from the apex of the fungal hyphae showed that the main products were small chito-oligosaccharides, mainly dimers, trimers and tetramers of chitin.  相似文献   

7.
Trichoderma koningii (strain Tr5) grew in the epidermal mucilage of onion roots without entering healthy epidermal tissue. When placed on the epidermis of Sclerotium cepivorum -infected roots, T. koningii colonized epidermal passage cells, with little colonization of other epidermal tissues, then branched and spread throughout the root cortical tissues damaged by enzymes and toxins which diffused ahead of S. cepivorum hyphae, and impeded the path of the infection. When T. koningii colonized infected tissue, many S. cepivorum hyphae became detached at septa, cell walls dissolved and many hyphal apices burst. Contact between hyphae was not necessary for lysis to occur. T. koningii produced two endochitinases ( R f 0·15 and 0·24) and two exo-acting chitinolytic enzymes ( R f 0·46 and 0·62) during degradation of crabshell chitin and S. cepivorum cell walls. The R f 0·24 and 0·46 proteins were detected when T. koningii colonized S. cepivorum -infected roots and are likely to be a component of the antagonism process.  相似文献   

8.
Roots of red clover seedlings grown on plates of water agar, or water agar containing benomyl or prochloraz, were inoculated with conidia of Trichocladium basicola and examined by light and transmission electron microscopy. Penetration of host epidermal cells occurred from about 16 h after inoculation of untreated or fungicide-treated seedlings. Intracellular hyphae were constricted at septa and had a beaded appearance. They invaginated the host plasmalemma, but had no obvious deleterious effect on the cytoplasm until they had grown to fill much of the lumen, when host cells degenerated and died. As colonization of the cortex progressed, straight, unconstricted hyphae were formed and from these reproductive hyphae developed, which produced endoconidiophores and chlamydospores on the root surface. Penetration of host cell walls appeared to involve localized action of fungal enzymes. Papillae were often found at sites of penetration, but these rarely obstructed fungal development. Seedlings treated with prochloraz had fewer sites of fungal penetration, and fewer cells in the beaded hyphae than untreated seedlings or those treated with benomyl. Both fungicides caused abnormalities in fungal ultrastructure. Hyphae treated with benomyl were often found to contain lomasomes, while those treated with prochloraz had thickened, fragmented walls, and disorganized cell contents.  相似文献   

9.
The aim of these studies is to develop a method for early detection ofRigidopoms lignosus (Basidiomycete, Polyporaceae), the causative agent of white root disease of rubber tree. Two polyclonal sera were produced against soluble mycelial proteins of twoR. lignosus isolates, one from Africa (FCI2), the other from Asia (FID2). The specificity of the antisera was tested using isoelectric focusing (IEF)/Western-blot and DAS-ELISA. The two sera recognized all 20R. lignosus isolates from various geographical origins. The banding patterns obtained by Western-blot enabled a distinction to be made between isolates from Africa and those from Asia. In DAS-ELISA and Western-blot analyses, strong cross reactions were observed withR. ulmarius. Only slight reactions were observed in Western-blot analysis toR. lineatus andP. noxius, both causative agents of root rot inHevea. These cross reactions were not observed under our DAS-ELISA analysis conditions. Finally, no cross reactions were obtained with 9 otherPolyporaceae orHevea root pathogen species. The sensitivity threshold of the DAS-ELISA method was 5 ng ml–1 ofR. lignosus protein. An initial approach to using the DAS-ELISA test for the detection ofR. lignosus in infected plants was carried out on artificially inoculated root samples. The DAS-ELISA protocol enabled detection ofR. lignosus in the root systems of diseased plants. Moreover, no cross reaction was observed with healthy plant extracts.  相似文献   

10.
Fusarium species are soil-borne fungal pathogens that produce a variety of disease symptoms when attacking crop plants. The mode of root colonization of Eucalyptus viminalis seedlings by a pathogenic F. oxyporum strain (Foeu1) at the ultrastructural level and changes in cell wall pectin during host pathogen interactions are described. Root systems of E. viminalis plants were inoculated with F. oxysporum in an in vitro model system. Hyphae of F. oxysporum adhered to the outer epidermal cell walls through fibrillar material, and after penetration they spread into the internal tissues. They developed intercellularly and intracellularly in the root cortex and invaded vascular tissues. Papillae were induced, and the host plasma membrane ruptured in colonized cells, causing rapid host tissue and cell damage. Changes in distribution and occurrence of nonesterified and methyl-esterified pectins were evaluated after root colonization by F. oxysporum using two monoclonal antibodies, JIM 5 and JIM 7, respectively. Nonesterified pectin in control roots was mainly localized in the epidermal cell walls and middle lamellae in parenchymal cortex, whereas methyl-esterified pectin accumulated more in primary cell walls of the cortex and phloem. Decreases in immunodetected nonesterified and methyl-esterified pectins were associated with extensive plant tissue degradation after root colonization by the pathogenic fungus.  相似文献   

11.
The effects of tebuconazole, a systemic fungicide, on the morphology, structure, cell wall components and toxin production of Fusarium culmorum were investigated in vitro. Treatment was by application of four filter paper strips (0.75 cm × 5.0 cm) soaked in 20 µg ml ?1 fungicide placed around a point inoculum in Petri dishes. Mycelial growth was strongly inhibited by fungicide treatment. Scanning electron microscopic observations showed that the fungicide caused irregular swelling and excessive branching of hyphae. The morphological changes induced by the fungicide at the ultrastructural level included considerable thickening of the hyphal cell walls, excessive septation, the formation of the incomplete septa, extensive vacuolisation, accumulation of lipid bodies and progressing necrosis or degeneration of the hyphal cytoplasm. Non‐membrane inclusion bodies were often detected in the hyphal cytoplasm. Furthermore, the formation of new hyphae (daughter hyphae) inside collapsed hyphal cells was common following treatment. The daughter hyphae also displayed severe alterations such as irregular thickening of the cell walls and necrosis of the cytoplasm. Using cytochemical techniques, the labelling densities of chitin and β‐1,3‐glucan in the cell walls of the fungicide‐treated hyphae were more pronounced than in those of the control hyphae. Moreover, immunogold labelling with antiserum against deoxynivalenol (DON) revealed that Fusarium toxin DON was localized in the cell walls, cytoplasm, mitochondria and vacuoles of the hyphae from the control and the fungicide treatment, but the labelling density in the fungicide‐treated hyphae decreased dramatically compared with the control hyphae, indicating that tebuconazole reduced Fusarium toxin production of the fungus. © 2001 Society of Chemical Industry  相似文献   

12.
Tomato cultivar Moneymaker was independently inoculated with Alternaria alternata, Cunninghamella elegans, Fusarium culmorum, F. oxysporum f.sp. lycopersici, F. oxysporum f.sp. pisi and Stromatinia gladioli and analysed ultrastructurally. The extent and amount of superficial fungal growth on tomato roots was similar but C. elegans , a saprophyte, was exceptional in that hyphae were not closely appressed to plant surfaces and did not adhere to plant cell walls.
In general, the type of plant responses to fungal colonization and infection were similar in all of the interactions studied, with the exception of C. elegans which did not infect tomato root tissue. The failure to penetrate tomato roots by C. elegans may have been associated with the lack of hyphal adhesion to plant cell walls. Migration of cytoplasm and wall apposition/penetration papilla formation were regularly observed in tomato root tissue beneath appressed hyphae and at sites of fungal infection. Specific cellular reactions in the exodermis, namely the formation of wall 'inclusions' and appearance of 'sensitive' cells, indicated that exodermal cells were particularly responsive to fungal challenge.
Fusarium oxysporum f.sp. lycopersici , a pathogen of tomato, invaded tomato root tissue more extensively than the other fungi inoculated onto tomato roots. Infection of tomato by the other fungi studied was variable, and the extent and success of fungal invasion was tentatively associated with their necrotrophic capability and typical host range.  相似文献   

13.
Proliferation and collapse of subcuticular hyphae of Venturia nashicola race 1 were studied ultrastructurally, after inoculation of susceptible Japanese pear cv. Kousui, resistant Japanese pear cv. Kinchaku, resistant Asian pear strain Mamenashi 12 and nonhost European pear cv. Flemish Beauty leaves, to understand the nature of the resistance mechanism. After cuticle penetration by the pathogen, the hyphae were observed at lower frequency in epidermal pectin layers and middle lamellae of leaves of the three resistant plants than in those of susceptible ones. This result suggested that fungal growth was suppressed in the incompatible interaction between pear and V. nashicola race 1. In the pectin layers of all inoculated plants, some hyphae had modifications such as breaks in the plasmalemma with plasmolysis, necrotic cytoplasm and degraded cell walls. More hyphae had collapsed in the leaves of the three resistant plants than in those of the susceptible cv. Kousui. In collapsed hyphae, the polymerized cell walls broke into numerous fibrous and amorphous pieces, showing that the scab resistance might be associated with cell wall-degrading enzymes from pear plants.  相似文献   

14.
ABSTRACT In an attempt to better understand the mode of action of the antagonistic fungus Microsphaeropsis sp., the interaction between this fungus and Venturia inaequalis was studied, using both light and electron microscopy. Cytological observations indicated that the antagonistic interaction between the two fungi likely involves a sequence of events, including (i) attachment and local penetration of Microsphaeropsis sp. into V. inaequalis hyphae; (ii) induction of host structural response at sites of potential antagonist entry; (iii) alteration of host cytoplasm; and (iv) active multiplication of antagonistic cells in pathogen hyphae, leading to host cell breakdown and release of the antagonist. The interaction was investigated further by gold cytochemistry. The use of gold-complexed beta-1,4-exoglucanase and wheat germ agglutinin/ovomucoid-gold complex to localize cellulosic beta-1,4-glucans and chitin monomers, respectively, resulted in regular labeling of V. inaequalis cell walls. This finding supports other studies refuting the classification of ascomycetes as only a glucan-chitin group. At an advanced state of parasitism, the labeling pattern of cellulose and chitin, which clearly showed that the level of integrity of these compounds was affected, suggested the production of cellulolytic and chitinolytic enzymes by Microsphaeropsis sp. Wall appositions formed in V. inaequalis in response to the antagonist's attack contained both cellulose and chitin. However, penetration of this newly formed material frequently succeeded. This study provides the first detailed picture of the cytological events associated with mycoparasitism in V. inaequalis.  相似文献   

15.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

16.
Sclerotinia sclerotiorum is a necrotrophic fungus that causes a devastating disease called white mould, infecting more than 450 plant species worldwide. Control of this disease with fungicides is limited, so host plant resistance is the preferred alternative for disease management. However, due to the nature of the disease, breeding programmes have had limited success. A potential alternative to developing necrotrophic fungal resistance is the use of host‐induced gene silencing (HIGS) methods, which involves host expression of dsRNA‐generating constructs directed against genes in the pathogen. In this study, the target gene chosen was chitin synthase (chs), which commands the synthesis of chitin, the polysaccharide that is a crucial structural component of the cell walls of many fungi. Tobacco plants were transformed with an interfering intron‐containing hairpin RNA construct for silencing the fungal chs gene. Seventy‐two hours after inoculation, five transgenic lines showed a reduction in disease severity ranging from 55·5 to 86·7% compared with the non‐transgenic lines. The lesion area did not show extensive progress over this time (up to 120 h). Disease resistance and silencing of the fungal chs gene was positively correlated with the presence of detectable siRNA in the transgenic lines. It was demonstrated that expression of endogenous genes from the very aggressive necrotrophic fungus S. sclerotiorum could be prevented by host induced silencing. HIGS of the fungal chitin synthase gene can generate white mould‐tolerant plants. From a biotechnological perspective, these results open new prospects for the development of transgenic plants resistant to necrotrophic fungal pathogens.  相似文献   

17.
Flufenoxuron (“Cascade”) is a novel acylurea with acaricidal and insecticidal properties. It acts in a similar manner to diflubenzuron (DFB) by impairing chitin incorporation into insect cuticle. Chitin can be localised cytochemically using the lectin, wheat germ agglutinin (WGA), which binds specifically to N-acetylglucosamine-containing polymers. WGA adsorbed to monodisperse colloidal gold (WGA-gold) was used as an electron-dense marker for localising chitin in the cuticle of sixth-instar Spodoptera littoralis. In the cuticle of control insects, the deposition zone and endocuticle were heavily labelled. In flufenoxuron- and DFB-treated insects, only the endocuticle (formed before treatment) was labelled, the deposition zone being devoid of label. These results show that flufenoxuron and DFB act in similar manner in reducing chitin incorporation in the cuticle of S. littoralis.  相似文献   

18.
多堆柄锈菌侵染玉米的细胞学及超微结构特征   总被引:2,自引:1,他引:1  
为明确玉米对多堆柄锈菌Puccinia polysora侵染后病理反应的细胞学特征,利用扫描和透射电镜技术分析了玉米自交系与多堆柄锈菌互作中二者的细胞变化过程。多堆柄锈菌对玉米的侵染主要以直接穿透叶片表皮侵入为主,少量可从气孔和细胞间隙侵入。接种后,病菌夏孢子在感病自交系叶片上快速并大量萌发,在叶表生长蔓延并侵入表皮组织细胞,7 d后形成夏孢子堆;在抗病自交系上,病菌萌发、菌丝生长均受到明显抑制,少量入侵的病菌也由于寄主细胞死亡而导致菌丝和夏孢子干瘪死亡。侵染早期在感病寄主细胞间隙出现菌丝并穿透细胞壁,在胞内产生分枝菌丝,此时寄主细胞结构正常;随着菌丝进一步扩展,叶绿体等结构发生紊乱,被侵染细胞逐渐死亡。在抗病自交系上,接菌24 h后寄主即出现过敏性坏死反应,侵入位点与周围细胞快速坏死,抑制菌丝生长蔓延;叶绿体中清晰可见深色颗粒状物质;72 h后细胞壁外侧产生大量致密的深色结晶体,应为与抗病反应相关的酚类物质。表明抗多堆柄锈菌的玉米材料可能存在2种抗病途径,即寄主与病菌互作中由分子识别引起的免疫反应和病菌侵入后的系统防卫反应。  相似文献   

19.
玉米感染肿囊腐霉后寄主-病原物互作的超微结构研究   总被引:5,自引:0,他引:5  
 本文利用透射电镜,首次对玉米不同抗性寄主与肿囊腐霉(Pythium inflatum)相互作用中的寄主反应及菌丝在寄主内的发展进行了系统研究。结果表明:玉米苗期根部接种后,孢子迅速萌发成菌丝在根表蔓延,随即穿透根表皮,进入表皮细胞、皮层甚至感病寄主的维管束组织。与此同时,寄主相应的反应迅速,寄主反应采取如下方式:细胞壁的沉积物及乳突在真菌的入侵处形成,各种无定形物质或纤丝构成的质网包围入侵菌丝。沉积在寄主细胞壁上并在受侵染细胞内聚集的化合物可能是酚类物质,这些嗜锇酸的电子致密物是用来机械地加强细胞壁的强度及产生抗真菌的环境。寄主反应的早晚及程度的强弱决定着菌丝在寄主体内发展繁殖的程度及寄主抗性的强弱。抗病玉米自交系的反应程度及速度显著强于感病玉米。  相似文献   

20.
We observed that an antagonistic rhizoplane bacterium Pseudomonas sp. strain EC-S101 induces excessive lateral and apical branching in the hyphae of a root rot phytopathogen Aphanomyces cochlioides AC-5 resulting in radial growth inhibition of hyphae in a dual culture assay. Confocal laser scanning microscopic observations using fluorescent stains indicated an increased quantity of nuclei and lipid bodies in the affected hyphae during the early stage (less affected hyphae) at day 3 of interaction. At a more advanced stage (severely affected hyphae) at day 3, nuclei became smaller and round-shaped compared with the oval shape in AC-5 control hyphae. After 7 days, nuclei disintegrated, and the nuclear materials were released into the disorganized cytoplasm. With transmission electron microscopy at 5 days of interaction, we found that the cell walls of AC-5 hyphae were considerably thicker than those of the control. Enlarged vacuoles, lipid bodies sunk into vacuoles, and vacuoles filled with electron-dense material, followed by an invagination of the AC-5 hyphal cell wall, were commonly observed. Nonmembranous electron-transparent inclusion bodies irregular in size were often distributed in the affected hyphae. By integrating our observations, we conclude that antagonistic effects evoked by strain EC-S101 resulted in the death of AC-5 hyphae, which might contribute to the suppression of A. cochlioides AC-5-linked damping-off disease in its host plants. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB190286  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号