首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
通过对美味牛肝菌多糖提取进行单因素试验和正交试验分析确定了最佳多糖提取工艺条件,即:浸提温度为100℃、浸提时间4h、料液比为1:40;进一步运用正交试验对多糖进行纯化条件探索,最后确定了多糖纯化条件为:Sevage试剂添加量为糖液体积的0.2倍,氯仿与正丁醇体积比6:1,蛋白脱除次数为4次,提取量为3.41%。  相似文献   

2.
以液体发酵生产的猴头菌菌丝为原料,对猴头菌丝多糖的提取工艺进行了优化研究;在基本提取方法的基础上,采取单因素试验结合正交试验的方法,通过热水提取法提取多糖。试验结果显示:1L液体发酵液可生产菌丝干粉29.17g;菌丝多糖提取的最佳工艺为:加水倍数为30倍、提取温度为80℃、提取3h、用无水乙醇沉淀多糖,此条件下的多糖得率为9.478%。  相似文献   

3.
本文采用三因素三水平响应面分析法,依据回归分析确定各工艺条件的影响因素,并对其清除自由基和超氧阴离子抗氧化活性进行测定。结果表明:枸杞粗多糖提取的最佳工艺条件为:料液比0.08g/v、提取温度83℃和提取时间为2h,在此条件下多糖提取率为3.403%。枸杞粗多糖质量浓度为4mg/mL时,羟自由基清除率清除率达到97.6%;在粗多糖浓度为2mg/mL时,对超阴离子自由基的清除率最大为18.6%。  相似文献   

4.
本文以金针菇为原料,研究超声波辅助提取金针菇多糖的工艺。在单因素试验的基础上,选定提取温度、提取时间和超声波提取功率3个因素实施中心组合试验设计,建立多糖提取率的二次回归方程,通过响应面分析得到优化组合条件。结果表明:在提取温度63.19℃、提取时间63.08min和超声波提取功率619.80W的条件下,金针菇多糖的提取率达到6.37%。为了检验模型预测的准确性,在优化的条件下进行提取试验,金针菇多糖提取率为6.62%。  相似文献   

5.
研究超声波法提取大豆多糖的工艺,利用响应面试验对影响大豆多糖提取率的关键因素及其相互作用进行探讨,得到的优化工艺参数为:浸泡时间16h、料液比1︰24、超声波功率90W、提取时间60min、提取温度65℃,在此条件下大豆多糖的提取率为11.86%。  相似文献   

6.
超声波法提取发菜多糖工艺研究   总被引:1,自引:0,他引:1  
研究超声波法提取发菜多糖的工艺。通过单因素试验研究料液比、提取温度、提取时间和超声波功率对提取工艺的影响,采用正交试验L9(34)优化超声波提取工艺。确定最佳提取条件为:以水为提取溶剂,料液比1∶50,超声波功率100 W,温度60℃,超声时间20 min,连续提取2次。此条件下发菜粗多糖的提取率为7.369%,证明超声波方法可以快速、大量提取发菜多糖。  相似文献   

7.
为优化黑玉米多糖的超声辅助提取工艺,应用SAS软件技术,采用响应面法对提取工艺条件进行优化,确定黑玉米粗多糖超声辅助提取工艺的最佳条件:超声功率180W、超声温度60℃、溶液pH值6.8、醇沉浓度75%,此条件下多糖得率达16.11%,所建立的数学回归模型能够较准确预测黑玉米多糖的得率。  相似文献   

8.
以美味牛肝菌为原料,在单因素试验的基础上,依据Box-Behnken的中心组合试验设计原理,选取浸提温度、浸提时间和料液比为影响因素,应用响应面法进行三因素三水平的试验设计,以牛肝菌多糖提取率作为响应值,对其提取条件做进一步优化。试验所得水浸提法提取牛肝菌多糖的最佳工艺条件为浸提温度90℃、浸提时间4h、料液比1:30,牛肝菌多糖提取率达3.91%。  相似文献   

9.
香菇多糖复合酶法提取及其脱色工艺优   总被引:8,自引:0,他引:8  
研究了复合酶法提取香菇多糖的最佳工艺条件以及香菇多糖的脱色工艺方法.采用木瓜蛋白酶、纤维素酶复合处理,通过正交试验确定了酶法提取香菇多糖的最佳工艺:木瓜蛋白酶与纤维素酶质量比为2,酶解反应的温度55℃,pH值6.5,反应时间3 h,提取率可达16.1%;采用正交试验方法确定了最佳脱色工艺条件为:活性炭用量2%、脱色温度30℃、酶解液pH值4.0、脱色时间90 min,多糖损失率和脱色率分别为8.09%和71.21%.  相似文献   

10.
为优化金针菇多糖的提取工艺,采用木瓜蛋白酶与纤维素酶复合处理,通过单因素试验研究了液料比、复合酶添加量、木瓜蛋白酶与纤维素酶质量比、酶解温度、pH值和提取时间对金针菇多糖得率的影响,在单因素试验的基础上,采用Box-Benhnken中心组合试验设计获得了复合酶法提取金针菇多糖的最佳工艺,即木瓜蛋白酶与纤维素酶质量比1.1、酶解温度49.2℃和酶解pH值4.4,在此条件下金针菇多糖得率可达2.56%。  相似文献   

11.
以银耳为原料,采用热水提取法提取银耳多糖。通过正交试验优选了银耳多糖的热水提取法工艺参数,并对银耳子实体硬度和提取液黏度与多糖得率的关系进行了分析。结果表明,银耳多糖的热水提取最佳工艺参数为液料比60∶1(v/w),提取温度90 ℃,提取时间4 h。同时通过Pearson相关性分析可得,热水提取的银耳多糖含量与溶液黏度呈显著的正相关性,而多糖含量与银耳子实体硬度无显著线性相关。   相似文献   

12.
为确定平菇灌肠的最佳配方和工艺,通过L18(37)正交试验研究平菇添加量、猪肉肥瘦比、煮制温度等因素对平菇灌肠品质的影响。通过试验确定平菇灌肠的最佳工艺为:平菇添加量15%、猪肉肥瘦比3︰7,淀粉添加量8%,大豆蛋白添加量5%,煮制温度90℃,斩拌温度5℃,猪肉鸡肉配比3︰1。  相似文献   

13.
杏鲍菇是珍稀的食用菌品种之一,具有很高的营养价值和开发前景,栽培杏鲍菇可以获得较高的经济收益。总结杏鲍菇栽培技术要点,详细介绍出菇前后各阶段管理及采收的方法,以期为杏鲍菇的规模化生产提供技术上的支持。  相似文献   

14.
采用药食兼用的栀子、山楂为主要原料,根据食疗验方,以栀子与山楂质量比2∶3进行配伍,经浸提、蒸馏、调配和杀菌等加工工艺,制成一种橙红色,清亮透明,酸甜适口,具有栀子、山楂干果特有的风味和降压、降脂功能的保健饮料。研究以感官评定平均分值为指标,通过正交试验,取得产品最佳配方:栀子、山楂浸提液混合物99.39%,阿斯巴甜0.5%,柠檬酸0.02%,CMC-Na 0.09%。根据调配后混合物pH值为3.53,经试验所得85 ℃,10 min的杀菌工艺较为合理。成品经检测,黄酮含量为146.4 mg100 mL,多糖含量为301.1 mg100 mL,可溶性固形物含量为3.3%,pH值为3.52。   相似文献   

15.
采用超声波辅助浸提方法分别对栀子多糖和山楂黄酮进行浸提。通过单因素试验和正交试验,分别取得栀子多糖浸提最佳工艺条件:浸提温度50 ℃,浸提时间60 min,料水比1∶15;山楂黄酮浸提最佳工艺条件:乙醇溶液体积分数80%,浸提温度60 ℃,浸提时间45 min,料液比1∶25。所得山楂黄酮浸提液经40 ℃,0.1 MPa的减压蒸馏,除去乙醇。   相似文献   

16.
提出了一种基于计算机图像处理技术的畸形秀珍菇识别方法。研究根据正常和畸形秀珍菇的形状特征,通过统计性分析,提取了分形维数、相对位移、菌盖圆形度、菌盖形状因子、菌盖凸性率、菌盖偏心率、菌柄弯曲度等7个特征参数。通过逐步回归筛选出分形维数、相对位移、菌盖偏心率、菌柄弯曲度等4个特征变量,并将这4个特征变量作为输入向量,采用支持向量机模式识别方法建立畸形秀珍菇判别模型,模型的独立样本预测集实测值识别率达96.67%。研究表明,利用机器视觉技术能很好地识别畸形秀珍菇,研究方法和结果为实现秀珍菇的在线分选提供技术支  相似文献   

17.
以木棉花多糖提取率为考察指标,通过单因素与响应面分析相结合方法,探讨超声-微波辅助提取木棉花中多糖的影响因素及最佳工艺。结果表明:影响超声-微波辅助提取木棉花中多糖提取率的因素顺序为微波功率>提取时间>料液比;最佳提取工艺条件为料液比1∶40 g/mL,提取时间16 min,微波功率202 W,木棉花多糖提取率为0.953%±0.015%。此外,与传统水浴浸提法相比,超声-微波辅助提取法提高木棉花多糖的提取率,缩短提取时间,具有广泛的应用前景。   相似文献   

18.
以金针菇为研究材料,通过液体发酵技术获得富锗金针菇菌丝体,对富锗金针菇菌丝体多糖进行了分离和纯化,通过体外抗氧化试验测定了富锗金针菇多糖对自由基的清除能力。试验表明:富锗金针菇菌丝体经提取纯化后得到单一组分多糖,纯度为99.78%,不含蛋白质;富锗金针菇菌丝体锗含量为7.42 mgg,有机锗的转化率为6.25%;富锗金针菇多糖经纯化后抗氧化性显著增强,对氧自由基、羟自由基和DPPH自由基均具有较好的清除作用,与空白对照相比均具有显著差异,自由基清除率随富锗多糖的浓度增加而增强。在试验范围内当富锗多糖浓度为900 μgmL时,对氧自由基、羟自由基和DPPH自由基的清除率最高分别达68.16%、64.26%和64.3%。该富锗多糖具备开发为天然抗氧化剂、功能性食品或药品的潜力。   相似文献   

19.
To identify the problems and suggest solutions for onion production under brackish water irrigation in a desert environment, a series of trials with brackish water (electrical conductivity, ECi = 4.4 dS/m) and fresh water (ECi = 1.2 dS/m) was conducted, using both sprinkler and drip irrigation systems.Under sprinkler irrigation with brackish water the mean electrical conductivity of the saturated soil extract (ECe) was about 6.0 dS/m and the yield reduction was 60%. With drip irrigation, the ECe under the drippers was about 5.0 dS/m and the yield reduction was 30%. Sprinkler irrigation affected yield through a reduction in both bulb size and bulb number per unit area. Drip irrigation affected the bulb number only. In the latter system seedling death occurred during the first 40 days following field emergence. Yield reduction was completely prevented by germinating and establishing the field with freshwater irrigation before transferring to brackish water irrigation, 45 days after sowing.With the sprinkler system, onion yield with brackish water irrigation could be increased by either increasing the sowing density or by alternating between brackish and fresh water irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号