首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Waxy wheat flour (WWF) was substituted for 10% regular wheat flour (RWF) in frozen doughs and the physicochemical properties of starch and protein isolated from the frozen doughs stored for different time intervals (0, 1, 2, 4 and 8 weeks) were determined to establish the underlying reasons leading to the effects observed in WWF addition on frozen dough quality. Using Nuclear Magnetic Resonance (NMR), Differential Scanning Calorimeter (DSC) and X-ray Diffraction (XRD) among others, the gluten content, water molecular state, glutenin macropolymer content, damaged starch content, starch swelling power, gelatinization properties, starch crystallinity and bread specific volume were measured. Compared to RWF dough at the same frozen storage condition, 10% WWF addition decreased dry gluten and glutenin macropolymer contents and T23 proton density of frozen dough, but increased the wet gluten content, T21 and T22 proton density. 10% WWF addition also decreased damaged starch content, but increased starch swelling power, gelatinization temperature and enthalpy, crystallinity of starch and bread specific volume of frozen dough. Results in the present study showed that the improvement observed due to WWF addition in frozen dough bread quality might be attributed to its inhibition of redistribution of water molecules bound to proteins, increase in damaged starch content and decrease in starch swelling power.  相似文献   

2.
The aim of this work was to study the influences of three types of inulin with different degree of polymerization on the water state of steamed bread during production and storage. The addition of inulin reduced the moisture content of the dough and facilitated the migration of free water to bound water. In the fermentation process, inulin had little impact on the bound water content in the dough, but could speed up the fermentation process. During the storage time, the freezable water content in steamed bread crumb decreased faster in the presence of inulin. The weaker interaction of freezable water with starch and protein chains became stronger, while the stronger interaction of tightly bound water with starch and protein chains decreased compared to the control. The changes of melting and vaporization enthalpies suggested that inulin could accelerate water migration of steamed bread from the inside to the outside.  相似文献   

3.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

4.
Surface properties of gluten proteins were measured in a dilation test and in compression and expansion tests. The results showed that monomeric gliadin was highly surface active, but polymer glutenin had almost no surface activity. The locations of those proteins in bread dough were investigated using confocal scanning laser microscopy and compared with polar and nonpolar lipids. Added gluten proteins participated in the formation of the film or the matrix, surrounding and separating individual gas cells in bread dough. Gliadin was found in the bulk of dough and gas ‘cell walls’. Glutenin was found only in the bulk dough. Polar lipids were present in the protein matrix and in gas ‘cell walls’, as well as at the surface of some particles, which appeared to be starch granules. However, nonpolar lipid mainly occurred on the surface of particles, which may be starch granules and small lipid droplets. It is suggested that the locations of gluten proteins in bread dough depends on their surface properties. Polar lipid participates the formation of gluten protein matrix and gas ‘cell walls’. Nonpolar lipids may have an effect on the rheological properties by associating with starch granule surfaces and may form lipid droplets.  相似文献   

5.
Partly baked (PB) and fully baked (FB) breads were frozen at −18 °C for 7, 21, 63, 92, 126 and 188 d and were analysed after its thawing (FB) or thawing and final baking (PB). The starch retrogradation, the moisture content and the firmness were measured as properties closely related to the aging of bread. The temperature of glass transition of the maximally freeze-concentrated state, Tg′, was also measured and established in (−18 ± 0.8) °C. This value cannot ensure molecular immobility in both types of bread during its frozen storage at (−18 ± 2) °C. Consequently, the rearrangements of starch component molecules, needed for its recrystallization and for the diffusion of water during frozen storage, could take place and could justify the changes observed in the bread. PB bread showed a significant decrease in firmness with frozen storage, while the firmness of the FB bread did not change significantly, although an increase when compared with the control, not frozen bread, was detected. A regression study led to the conclusion that the combined effect of starch component crystallization and water loss could explain the firming evolution and that both variables exerted an effect of similar intensity on crumb firmness.  相似文献   

6.
Reduced glutathione (GSH), released from lysed yeast cells, is well-known for weakening dough structure. However, its influence on bread texture and staling has not yet been completely elucidated. Herein, this study aims at assessing the effects of GSH on dough properties and bread quality, especially bread staling, using Rheofermentometer analysis, texture profile analysis (TPA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and low-field nuclear magnetic resonance (LF-NMR). The results revealed that GSH substantially decreased the dough height and gas-retention capacity during fermentation. The weakened dough structure was attributed to GSH-induced disulfide bond cleavage in gluten proteins and the depolymerization of glutenin polymers. The addition of 0.005%–0.01% GSH resulted in acceptable bread quality. However, bread supplemented with 0.015%–0.03% of GSH exhibited a coarser and more open crumb microstructure, as well as high level of hardness and low resilience during aging. GSH promoted crumb water loss and drove the water shift from the immobilized to the bound state. The DSC and XRD analyses further confirmed that GSH promoted starch retrogradation and recrystallization. These results suggest that apart from the gluten structure, GSH also altered gluten−starch interactions and water redistribution, ultimately decreasing bread quality and accelerating bread staling.  相似文献   

7.
Bread with 48.5% soy ingredients was assessed for quality during frozen storage of the dough. Soy protein was hypothesized to prevent water migration during frozen storage, thereby producing dough that would exhibit fewer structural changes than traditional wheat bread. Wheat and soy bread were baked from dough that was fresh or frozen (−20 °C, 2 or 4 wks). Dough and bread were assessed for physical properties including moisture content, percent “freezable” and “unfreezable” water, dough extensibility, and bread texture. The bread was subjected to an untrained sensory panel. The soy bread was denser, chewier, and had a higher moisture content than wheat bread. When baked from fresh or frozen dough, soy bread was rated “moderately acceptable” or higher by 70% of panelists. Soy minimized changes in dough extensibility and resistive force to extension, leading to minimal changes in bread hardness. Although consumers could distinguish between bread baked from soy dough that was fresh or frozen for 4 wks, sensorial and textural data suggested that the rate at which the quality of the soy dough deteriorated was slower than that of wheat dough. In conclusion, the dough of consumer-acceptable soy bread retained quality characteristics during frozen storage slightly better than wheat dough.  相似文献   

8.
The effect of the recombinantly produced xylanase B (XynB) from Thermotoga maritima MSB8 on the quality of frozen partially baked bread (FPBB) was investigated. Addition of XynB to wheat flour dough resulted in a significant increase in dough extensibility (L), swelling (G), and a decrease in dough resistance to deformation (P), configuration. Bread crumb characteristics were studied by differential scanning calorimeter (DSC) and dynamic-mechanical analysis (DMA). The results show that addition of XynB leads to improvements in the bread quality of FPBB and retards bread staling compared to the control. The greatest improvements were obtained in specific volume (+35.2%) and crumb firmness (−40.0%). The control FPBB was significantly firmer in texture and higher in amylopectin recrystallization than the bread with XynB. During frozen storage of FPBB with and without XynB for 8 weeks, the crumb firmness increased gradually and the specific volume slightly decreased with the frozen storage time. The ΔH values of freezable water (FW) endothermic transitions increased with frozen storage time for all samples. However, addition of XynB lowered the ΔH values indicating a decrease in FW. Therefore, XynB is useful in improving the quality of FPBB. DMA was also used to monitor the shrinking behavior of the samples. Addition of XynB increased the contraction during chilling but significantly diminished the total shrinking and frozen-state shrinking of the bread crumb during the freezing process.  相似文献   

9.
Freezing deteriorates the baking quality of frozen bread dough. This study revealed the protective effects of zein-based ice nucleation films (INFs) on the baking quality of frozen dough. INFs were prepared by immobilizing biogenic ice nucleators on the surface of zein films, which consequently revealed ice nucleation activity and increased the ice nucleation temperature of water from −15 °C to −6.7 °C. By using these films to wrap frozen dough during five freeze/thaw cycles, the specific volume of bread was increased by up to 25% compared to the bread from control frozen dough. The reason was attributed to 40% more viable yeast cells preserved by INFs. In addition, zein-based INFs also reduced the water loss by frozen dough resulting in higher water content in bread crumb. Combining the protective effects on both specific volume and water content from zein-based INFs, the obtained bread showed 68% lower firmness and fracturability and 2.4 times higher resilience compared to the control. The INFs were also superior in that for zein-based INFs, biogenic ice nucleators showed desirable affinity with the surface to sustain at least fifteen repetitive uses on freezing water.  相似文献   

10.
The impact of 48 h sprouted quinoa (SQ) was assessed in bread-making. Wheat flour (WF) was replaced with SQ at different levels (i.e., 10:90, 20:80 and 30:70, SQ:WF ratio). Once the optimal replacement level of SQ was identified, the bread-making performance of this ingredient was compared with those of pearled quinoa (PQ), commonly used in bread-making.Starch pasting properties and gluten aggregation behavior were not strongly affected at 20:80 level. Regardless the replacement level, SQ caused an increase in dough water absorption and in softening degree, and a decrease in stability, suggesting weakening of the gluten network. During leavening, SQ improved dough development and gas production, due to increased sugar content (i.e. maltose, sucrose and D-glucose). The best bread-making performance (highest bread specific volume and lowest crumb firmness) was obtained at 20:80 replacement level. Compared to PQ, SQ exhibited the best leavening capacity (high dough development, gas production and gas retention) and bread properties (high specific volume and low crumb firmness), likely due to its higher sugar content. Moreover, 20SQ bread was characterized by a decreased bitterness assessed by electronic-tongue. In conclusion, sprouting might be considered a valid alternative to pearling to improve the characteristics of quinoa enriched bread  相似文献   

11.
The quality of bread made from frozen dough is diminished, and staling rate is increased by changes that occur during freezing and storage. New cultivars of waxy wheat flour (WWF), containing higher levels of amylopectin, may help improve the quality of baked products. Bread quality and staling were investigated for bread containing 0–45% WWF and 55–65% water after freezing and 90-day frozen storage. The specific volume was highest with 15% WWF substitution and 60% water in bread made from both unfrozen and frozen dough. With higher levels of WWF and lower water content, bread staling rates decreased. Bread with higher levels of WWF were darker and had greater color variation. 1H NMR studies showed that bread with greater WWF and water had higher transverse relaxation (T2) times (9–11 ms), but less change in T2 during storage. This research demonstrated that specific combinations of WWF and water produced a better quality of bread after dough freezing.  相似文献   

12.
The amount of ice in both unfrozen steamed bread dough (UFD) and prefermented frozen steamed bread dough (PFD) with and without glycerol was investigated by differential scanning calorimetry (DSC). The quality of unfrozen steamed bread (UFB)/prefermented frozen dough steamed bread (PFB) was also evaluated. Frozen stability and steaming performance of prefermented frozen dough were negatively correlated with ice crystal growth. Glycerol effectively prevented the formation of ice crystals during freezing and frozen storage, maintaining the quality of steamed bread from prefermented frozen dough even over a period of 30 days. The best steamed bread performance was observed with the dough containing 2% of glycerol (flour weight basis) addition. Prefermenting conditions significantly affected the quality of UFB/PFB. The highest quality scores of steamed bread from prefermented frozen dough were obtained from 32 °C and 85% rh for 40 min.  相似文献   

13.
The difficulty in finding gluten-free bread and its high price make it necessary to prolong its shelf life to facilitate its availability. Freezing is an interesting alternative. The storage of bread at over zero temperatures, 20 °C and 4 °C, showed faster staling at refrigerator temperatures. A good relationship between crumb firmness and the extent of starch recrystallization was obtained, although the effect of water loss was also detected. The study of freezing and frozen storage at −14 °C and −28 °C for 7 days showed a substantial effect of the storage temperature on gluten-free bread quality and shelf life. Breads stored at −28 °C retained a quality similar to that of fresh breads while a marked deterioration of the breads stored at −14 °C was observed. This effect, the strongest on bread texture, was a result of starch recrystallization. The glass transition, Tg’ and onset of ice melting, Tm’ of the maximally freeze-concentrated bread crumb were −37.1 ± 0.6 °C and −19.3 ± 0.2 °C respectively. The higher amount of unfrozen water at −14 °C could explain the acceleration of reactions responsible for bread staling during frozen storage. The use of storage temperatures below Tm’ is recommended to retain high quality of the gluten-free bread during frozen storage.  相似文献   

14.
The effects of thermostable ice structuring proteins (TSISPs) extracted from Chinese privet (Ligustrum vulgare) leaves on water molecular state, dehydration of gluten proteins, secondary structure of proteins, glutenin subunit of glutenin macropolymer (GMP) and rheological properties of gluten doughs during frozen storage were investigated by nuclear magnetic resonance (NMR), attenuated total reflectance-Fourier transform infrared reflectance (ATR-FTIR), reversed phase-high performance liquid chromatography (RP-HPLC) and dynamic rheometry. After frozen storage for 5 weeks, the control sample showed dehydration of gluten proteins and mobility of water molecules in gluten dough increased, significantly indicating ice formation and water redistribution. Secondary structure of gluten proteins changed significantly, α-helix decreased and β-sheet increased. Glutenin subunits depolymerized, indicated by the decrease in high molecular weight glutenins/low molecular weight-glutenins (HMW/LMW) ratio. The decrease in elastic moduli (G′) and viscous moduli (G′') showed the deterioration of rheological properties of gluten dough. The addition of TSISPs inhibited the dehydration of gluten proteins, decrease in α-helix, increase in β-sheet and HMW/LMW ratio, resulting in improved rheological properties of gluten dough.  相似文献   

15.
The aim of this study was to evaluate the effect of different polymerization degree of inulin on plain wheat dough rheology and quality of steamed bread. It was found the water absorption of dough decreased with the increasing of short-chain (FS) and natural inulin (FI) and increased with the increasing of long-chain inulin (FXL) higher than 7.5%. Three kinds of inulin all increased the development time, stability and farinograph quality number and decreased softening degree of the dough. When proof time was less than 90min, the extensibility increased with the substitution of 5% of FS, 5% of FI and 2.5% of FXL. The resistance to extension, ratio number of resistance to extensibility and energy all increased with the increasing of FS and FI as well as the time. While the energy increased with FXL substation at 45min and dropped thereafter, regardless of the concentration. The addition of inulin all enhanced the brightness, specific volume and hardness of steamed bread and decreased the water content, vaporization enthalpy, springiness, recovery, and cohesiveness. During the storage, inulin reduced the change rates of relative hardness, recovery, and cohesiveness and increased the change rate of relative enthalpy, which restrained the staling rate of steamed bread.  相似文献   

16.
This study compared the concentration of angiotensin-converting enzyme (ACE) inhibitory peptides at different stages of the bread-making process, including kneading, proofing, and final products. Steamed bread, baked bread, and soda crackers were produced with 3–20% addition of rye malt sourdoughs to assess products differing in their thermal treatment. Eight tripeptides with known or predicted ACE-inhibitory activity were quantified by LC/MS in multiple reaction monitoring (MRM) mode. In wheat sourdough and rye-malt gluten sourdough, IPP was the predominant tripeptide at 58 and 473 μmol kg−1, respectively, followed by LQP, IQP, and LPP. During the bread-making process, peptide concentrations were modified by enzymatic conversions at the dough stage and by thermal reactions during baking. The concentrations of IPP, LPP and VPP remained stable during dough preparation but decreased during thermal treatment; the concentrations of other peptides were changed at the dough stage but remained relatively stable during baking. The cumulative concentration of 8 ACE-inhibitory peptides in steamed bread and bread crumb exceeded 60 μmol kg−1, while soda crackers contained less than 3 μmol kg−1. The peptide levels in bread thus likely meet in vivo active concentrations.  相似文献   

17.
The effects of ultrasound-assisted freezing on the freezing time and water migration of dough, and the structural characteristics of gluten components were investigated. The effects of ultrasound-assisted freezing in the whole immersion freezing process (UWF) on the freezing time were better than those of ultrasound-assisted freezing in the maximum ice crystal generation zone. The shortest freezing time was obtained at 80 W/L, and was 577 s shorter than that with traditional immersion freezing. The UWF treatment at 80 W/L significantly (p < 0.05) affected the absorption enthalpy, freezable water content and water migration of frozen dough. In UWF compared with traditional immersion freezing, the SH content of gluten, glutenin and gliadin was significantly (p < 0.05) higher, by 12.06%, 27.55% and 21.65%, respectively. The surface hydrophobicity of gluten, glutenin and gliadin in UWF treated samples significantly (p < 0.05) decreased, by 19.67%, 13.21% and 9.17%, respectively. The secondary structure of gluten components was also significantly changed by UWF. The network of gluten, the chain structure of glutenin and the gliadin particles were all changed by UWF treatment. These findings indicated that UWF is an effective method to improve the moisture distribution in dough and reduce the damage to protein molecular structure caused by freezing.  相似文献   

18.
The quality of bread made from frozen dough is diminished, and staling rate is increased by changes that occur during freezing and storage. New cultivars of waxy wheat flour (WWF), containing higher levels of amylopectin, may help improve the quality of baked products. Bread quality and staling were investigated for bread containing 0–45% WWF and 55–65% water after freezing and 90-day frozen storage. The specific volume was highest with 15% WWF substitution and 60% water in bread made from both unfrozen and frozen dough. With higher levels of WWF and lower water content, bread staling rates decreased. Bread with higher levels of WWF were darker and had greater color variation. 1H NMR studies showed that bread with greater WWF and water had higher transverse relaxation (T2) times (9–11 ms), but less change in T2 during storage. This research demonstrated that specific combinations of WWF and water produced a better quality of bread after dough freezing.  相似文献   

19.
中麦175馒头和面条品质稳定性分析   总被引:1,自引:0,他引:1  
为给优质小麦育种和生产提供参考依据,以优质小麦新品种中麦175于2010-2011年度在河北和北京14个地点的样品为材料,分析了磨粉品质、面粉和面片颜色、面团流变学和淀粉糊化特性、馒头和面条加工品质。结果表明,中麦175为馒头和面条兼用型优质品种,特点是软质、中偏弱的面筋强度、面粉颜色白,多数品质性状较稳定,籽粒硬度、PPO活性、面片a*值、稳定时间、拉伸面积、延展性和最大抗延阻力的变异系数较大,馒头加工品质地点间变异大于面条。磨粉品质和面团流变学参数对馒头加工品质有显著影响,籽粒硬度和出粉率对馒头表面颜色有显著负向影响,相关系数分别为-0.82(P<0.01)和-0.58(P<0.05);面粉L*值高,馒头加工品质好,二者相关系数为0.72(P<0.01);吸水率与馒头总分呈显著负相关(r=-0.84,P<0.01),稳定时间、拉伸面积、延展性和最大抗延阻力与馒头总分呈显著正相关,相关系数分别为0.85(P<0.01)、0.77(P<0.01)、0.62(P<0.05)和0.70(P<0.01)。降低PPO活性和吸水率,提高蛋白质含量、出粉率和黄色素含量可以改善面粉和面片颜色的亮白度,增加部分黄度,形成消费者可接受的奶白色。淀粉糊化特性对馒头和面条加工品质无显著影响。上述信息对改良小麦品质的稳定性有重要意义。  相似文献   

20.
The Farinograph time-to-peak is an important wheat flour quality parameter. It is well-established that insoluble glutenins correlate with the strength of the gluten network and dough mixing time. To learn more about the physical changes at the mesoscopic level, dough samples were prepared in the Farinograph for study with diffusion wave spectroscopy. It was confirmed that a space-filling network was formed by wheat gluten proteins (mainly glutenin). At peak development (9.0 min) it was shown that the starch granules were confined in the gluten network. After the time-to-peak, dough resistance weakened, showing an increase of the starch granule movement. Kneading disrupts insoluble glutenin particles, the disrupted glutenin becomes part of the Sodium Dodecyl Sulfate (SDS)-extractable proteins. Both soluble and insoluble wheat protein extracts have been characterized by light scattering techniques. The results derived from light scattering of the wheat protein fractions: particle radii, apparent molar mass and geometrical shapes, suggests that the disrupted glutenin aggregate shape and glutenin size heterogeneity could be more important for gluten network bulk consistency, connectivity and resistance at dough peak, than the apparent molar mass of the solubilized glutenins, reaching a maximum after dough peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号