首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
转锥式生物质热解机械系统的研制   总被引:1,自引:0,他引:1  
该文介绍了转锥式生物质热解系统的组成和工作过程,该系统以自行研制的三锥齿缘式锥式反应器作为主反应器,设计了连续弯叠火管式热载体加热炉和热载体气力输送装置。在反应器温度550℃条件下,取农作物秸秆和木材等生物质原料各5 kg进行试验,加工平均耗时为1分38秒,生物质油得率为75.30%。该系统的研制和试验,为大型生物质热解系统的开发提供了依据。  相似文献   

2.
垂直下降管内陶瓷球流动与传热的试验   总被引:1,自引:1,他引:0  
为研究下降管式生物质热裂解反应器内陶瓷球的流动与换热规律,在一内径60 mm,长1.6 m的垂直管上利用粒子图像测速仪进行了陶瓷球流场测试和1.0、1.2、1.4 kg/min质量流量下90℃陶瓷球与室温空气的对流换热试验,分析出了陶瓷球在下降管内的滞留时间和陶瓷球与空气对流换热系数的计算方法。流场试验表明:轴向速度随下降距离增大而增大;任意下降距离处,在靠近管壁半径的15%距离内,陶瓷球的轴向速度逐渐增大,直至达到最大值后不再变化;边壁附近的径向速度变化较大,中心速度基本为零。换热试验表明:不同陶瓷球流量下的对流换热系数基本相同,利用Ranz-Marshall公式计算出的换热系数比理论分析计算的小;根据理论计算的换热系数和试验数据,回归出的努谢尔数与雷诺数的关系式为: ;在60~550℃范围内,利用回归式计算的换热系数与空气温度成线性关系,并随温度升高而增大。  相似文献   

3.
稻壳热解模型建立与应用   总被引:2,自引:2,他引:0  
生物质连续热解工艺是适合工业化生产的高效、合理的处理方式,该文基于稻壳在升温速率为20~40?℃/min,反应终温为800℃的热分析试验数据,建立了稻壳热解过程的分段反应模型并获得了反应动力学参数,其中失水预热解阶段满足N阶反应,主热解阶段满足J-M-A方程。对所建模型在建模升温速率范围内、外进行了检验,发现模型计算结果与试验数据相近,模型计算误差不大于2.35%,说明模型具有较广泛的适用性,为热解反应器的设计提供了理论依据。根据稻壳常规热解下失水预热解和主热解反应过程的模型计算结果,设计了变螺距生物质连续热解反应器,并以稻壳粉末为原料进行了参数试验,结果表明,该反应装置能实现连续、稳定热解,但由于实际升温不是理论上的线性升温过程,导致连续热解试验结果与模型计算结果和热重试验结果间存在一定差异。  相似文献   

4.
为了研究中试鼓泡流化床升温过程特性,试验以木屑为原料,处理量50kg/h的自供热中试鼓泡流化床为反应装置,采取3种不同的升温方式进行空气气化试验研究。升温过程分别采用木屑、木屑与木炭混合、木炭为加热原料,针对气化前期系统升温过程中的气化温度、焦油含量、气体品质及最小流化速度进行了研究。结果表明:采用纯木炭的升温方式效果较为理想;气化主反应区温度控制在900℃以上,温度及升温速率的提高有利于减少焦油生成量,实测焦油含量为1.15g/m3;空气气化时热值可达6.9MJ/m3;最小流化速度受床料粒径和升温速率影响。该试验可为自供热中试流化床试验平台的升温方式提供一种设备简单,操作方便、快捷,经济性好的新方法。  相似文献   

5.
为了研究农作物秸秆在微波辐照下的热解特性,采用定制的微波加热装置,进行了整包秸秆的微波热解试验,并对秸秆微波热解的产物和能耗进行了考察。结果表明,微波加热过程中料包内部温度分布均匀,升温迅速。微波输入功率是影响加热过程的关键因素, 同时料包内部的传热传质对温度分布也有重要影响。微波加热会引发秸秆的热解反应,气体产物主要由氢气、一氧化碳、甲烷和二氧化碳等组成,通过氮吸附方法和扫描电镜分析,得到了固体产物的比表面积、孔容和孔径。微波热解电耗较大,应该合理选择微波功率和物料处理量,以提高经济性。该文结果可为农作物秸秆的资源化利用提供基础性资料。  相似文献   

6.
生物质热解燃油在柴油机上的应用效果   总被引:2,自引:1,他引:1  
生物质通过快速热解得到的生物质热解燃油主要成分为含氧有机混合物和水,不宜直接作为燃料使用,但与柴油乳化后可实现其在发动机上的应用。在确定生物质热解燃油/柴油乳化油乳化剂的最佳亲水亲油平衡(HLB)值后,利用超声波乳化装置制备了生物质热解燃油质量分数为10%的乳化油(用BPO10表示),然后在一台未作改动的直喷式柴油机上对燃用BPO10时的燃烧和排放进行了研究。结果表明,生物质热解燃油/柴油乳化油乳化剂的最佳HLB值约为5.8。与0号柴油相比,发动机燃用BPO10时燃烧始点推迟,预混燃烧放热峰值明显升高,扩散燃烧放热峰值略低,最高燃烧压力较低,燃烧持续期缩短;燃用BPO10时有效燃油消耗率较高,而有效热效率与0号柴油的相当;燃用BPO10时可同时大幅降低NOx和碳烟排放,但HC和CO排放升高。  相似文献   

7.
农林废弃物热解的试验研究   总被引:5,自引:1,他引:5       下载免费PDF全文
介绍了用于生物质热解的试验装置及试验方法,研究了温度、加热速率等因素对木屑、稻壳等农林废弃物生物质热解产物的产率及其质量的影响。试验结果表明,两种不同生物质热解产物得率的变化规律基本一致。热解温度控制在400~500℃时,热解油产率最大。热解温度越高,则炭产量越少;温度大于500℃时,热解气为中等热值可燃气,其热值大于10MJ/m。测试结果还表明,常规热解条件下的生物质热解表现为三阶段反应特点  相似文献   

8.
为有效解决现阶段生物质炭化设备存在的炭产率低、炭品质差、余气不能循环利用而污染环境、副产物不能有效分离等问题,设计并研制了一套废气自循环生物质炭化装备,对其炭化炉主体、加热系统、焦油回收装置、余气循环装置、温度压力监控系统分别进行了详细设计和参数确定,并以炭化炉主体和焦油回收装置为加热和冷却对象,采用有限元方法对其进行传热性能研究,最后对其进行了炭化试验研究。结果表明:生物质炭化装备能够满足制炭、副产物回收、废气循环利用、工艺参数精确控制等要求;炉体门框上部温度分布不均,其余炉体内部温度分布均匀,温度梯度平缓,可对生物质进行均匀加热;焦油回收装置在三级冷却水进口流速分别为0.045、0.03、0.015 m/s时,冷却温降分别为:271、111、61℃,烟气温度从500℃降温到50℃,冷却效果显著,并可对挥发分中的焦油和木醋液进行分离;影响炭产率、热值、能源得率的因素顺序为:炭化终温保温时间升温速率。炭产率与能源得率呈正相关,而两者又与热值成负相关。炭化条件在升温速率3℃/min、炭化终温450℃、保温时间3 h工况下较好,在此条件下的炭得率为54.2%,热值为25 767 k J/kg,能源得率为84.8%。  相似文献   

9.
花生壳热解试验及其剩余物特性红外光谱分析   总被引:2,自引:3,他引:2  
为有效控制生物质热解反应终温,本文在热分仪上,分别以40℃/min和60℃/min二种不同升温速率进行了花生壳热解试验,并以花生壳及其热解反应过程中缓慢热解反应阶段(≥400℃)剩余物为原料,对其进行傅里叶变换红外(FTIR)光谱分析。结果表明:不同升温速率对不同温度时的热解试验剩余物成分影响不大,光谱曲线趋于一致,在450℃以下,剩余物的成分随着温度而变化,从450℃到600℃,FTIR光谱图上的透光率已经没有明显变化。因此,生物质热解反应终温应控制在450℃左右。  相似文献   

10.
为开发生物质快速热解反应器,设计并建立了一内径为0.15 m、高度为1.04 m的导向喷动流化床冷模试验装置,在冷态试验条件和喷动气速、流化气速相同的情况下,考察了导向管内径、安装高度、长度对混合物料流动特性的影响.研究表明,固体循环速率、床层压降、中心喷泉高度随导向管内径的增加而增加;导向管长度为0.45 m时,固体循环速率和中心喷泉高度最大,床层压降最小;随导向管安装高度的增加,固体循环速率先增加后减小,需综合考虑喷动气的旁路与卷吸作用的平衡.  相似文献   

11.
玉米秸秆在等离子体加热流化床上的快速热解液化研究   总被引:20,自引:5,他引:15  
为了进一步研究生物质热解液化技术,寻找较为理想的生物油产率所对应的试验条件,设计制作了以等离子体为主热源的流化床热解液化装置,反应器的内径为52 mm,高1150 mm。以玉米秸秆粉为原料在不同温度、不同喂料速率下进行一系列的热解液化试验。试验结果表明:喂料速率在0.6~0.7 kg/h时,生物油产率较高;反应温度升高,生物油产率增高,但是当反应温度超过750 K时,产率反而随温度的上升而下降。使用色质联用仪(GC-MS)对生物油进行了成分分析,4种试验条件下制取生物油的主要成分均为乙酸、羟基丙酮、水、乙醛、呋喃等,试验条件不同各主要成分的相对含量有所不同。高含水量和含氧量降低了生物油的热值和稳定性,容易发生聚合反应,必须经过改性后才能应用。所采用的试验装置及试验方法亦可用于以其它原料获取生物油的研究。  相似文献   

12.
集中式烤房供热工艺的比较   总被引:2,自引:1,他引:1  
该文将以8座烤房为供热对象,对传统燃煤分散供热、燃煤蒸汽锅炉集中供热、煤气化集中供气、导热油锅炉集中供热、生物质沸腾炉集中供热、生物质气化集中供气等工艺技术的经济性进行研究比较,得到优化的烤房集中供热技术路线。比较发现,传统燃煤分散供热与其他几种系统相比,能源利用率低,对环境的污染大,在经济效益和环境效益方面均不如集中供热系统;综合考虑经济效益和社会效益,燃烟茎烟杆的生物质沸腾炉集中供热技术为最优烤房供热系统。  相似文献   

13.
生物质连续热解炭气油联产中试系统开发   总被引:7,自引:6,他引:1  
针对目前多数生物质炭化设备生产连续性差、能耗高、生产过程中存在焦油水洗二次污染等问题,结合生物质炭化技术最新进展和农林剩余物原料特征,提出了生物质连续热解炭气油联产工艺方案,引入连续分段热解、多级组合除尘脱焦和燃油/燃气回用加热工艺方法.在此基础上,重点突破了多线螺旋抄板物料均匀有序输送、多腔旋流梯级高效换热、保温沉降密封出炭、系统压力与气体组分耦合预警等技术,开发了生物质连续热解中试生产系统.运行检测结果表明:系统运行稳定可靠,温度控制精度为±16℃,反应室压力控制精度为±-25 Pa,以花生壳为原料,原料处理量为28.2 kg/h,生物炭得率为31.3%,热解气产率29.6%,液体产物产率19.8%,热解气低位热值为16.3 MJ/m3,各项技术指标均达到了系统设计目标与要求.该中试系统的开发为设备放大及示范应用奠定了重要基础.  相似文献   

14.
本文主要以稻壳和木粉为原料在内循环流化床气化炉中进行气化实验的研究,测试了温度对当量比的反影响,及对气体成分、气体热值等的影响,并比较内循环流化床气化炉中气化效率与碳转化率的影响。结果表明:在一定温度范围内,温度与当量比呈一定的线性关系,且床温中密相区温度对当量比的影响最大,是其它两温度的斜率的2倍;一旦内循环流化床结构固定,同一高度温度将在一定范围内变化,而不随着当量比的变化而变化;床层密相区温度影响着一氧化碳、氢气、甲烷等气体的组成,同时影响着气体的热值。稻壳与木粉在内循环流化床气化炉中的气化效率最大值相近,接近60%,但木粉的相对稳定。  相似文献   

15.
几种农林废弃物热裂解制取生物油的研究   总被引:17,自引:5,他引:17  
农林废弃物是我国农村能源的重要组成部分,对其高品位利用有助于解决农村能源短缺和环境污染问题。该文在流化床反应器上开展了农林废弃物热裂解制取生物油的试验研究,着重对升温速率的影响进行了详细研究,快速升温能有效缩短颗粒在低温阶段的停留时间而抑制炭的生成,有助于提高生物油的产率。比较不同农林废弃物热裂解制取生物油的效果表明:低灰分含量的木屑比稻秆更适合于热裂解制取生物油,而稻秆则适合于气化。同时,农林废弃物热裂解制取生物油技术在生物油的品质经过改性得到提升后,结合炭等副产品的利用,能实现农林废弃物的综合能源化利用。  相似文献   

16.
农业废弃物综合利用技术的试验研究   总被引:3,自引:0,他引:3  
阐述了有关农业废弃物综合利用试验研究成果。在农业废弃物的固化技术方面,指出了工艺参数对挤压成型机工作性能的影响,提出了热压成型工艺参数的大致范围;在生物质块的炭化技术方面,给出了热解工艺及其操作规范;在热解产物回收技术方面,指出了热解产物回收的工艺流程及其应用。  相似文献   

17.
玉米秸秆粉末闪速加热挥发特性的研究   总被引:7,自引:2,他引:7  
为了获得生物质在闪速加热条件下的热解挥发特性,引入一套层流炉系统进行实验研究。可变工况参数包括反应加热温度从800 K至950 K变化,热解停留时间从0.108~0.224 s变化。实验材料是粉碎的玉米秸秆,粒径0.117~0.173 mm,不作为变量考虑。利用等离子体加热技术,可以保证层流炉内部温度稳定保持在恒定设置数值。工作气体为氩气,流量1.5~2.5 m3/h。热解残炭由一个水冷收集器(冷激器)收集,并且利用旋风分离器与气流分离。利用灰分示踪法确定玉米秸秆粉末热解的挥发程度。引入Arrhenius形式的一级挥发反应模型分析实验数据,得到了相应的热化学动力学参数。结果表明,闪速加热热解与慢速热解存在明显不同,与加热速率无关。闪速加热挥发特性对于研究生物质液化机理有重要意义。  相似文献   

18.
对高含灰浮萍进行酸洗脱矿处理,然后使用固定床反应装置在400~900℃下进行热解试验,研究酸洗脱矿处理对固、液、气三相产物产率及组成的影响。结果表明,酸洗处理可以有效的脱除生物质中绝大部分碱和碱土金属以及大部分的磷,并大幅提高浮萍C含量和热值,显著提升了样品的燃料特性。热解试验结果表明酸洗后浮萍固体和气体产率分别降低了1.43%~8.02%和2.81%~19.89%,液体产率提高了1.63%~16.72%,且液体产率和固体产率变化趋势在700~900℃更为显著。酸洗减少了主要气体CO、CO2、CH4、H2的产率,但对CO2减幅更为显著,因此气体中可燃组分比例增加且气体热值相比原样增加5%~155%;酸洗显著提升了热解炭中固定碳和C含量且灰分和O含量显著降低,焦炭品质得到了极大地改善;此外,酸洗使得热解油中酚类、呋喃类和羰基化合物含量有所降低,但在400~600℃时使醇醚含量显著增加。  相似文献   

19.
利用生物质气化发电、生物质气化供气、生物质气化供热等技术,可以将各种生物质能转化成为高品位气体燃料、电力或蒸汽,是生物质高效转化利用的主要途径。流化床气化是生物质热化学转化的主要研究技术之一。本文主要论述了利用锥形流态化气化炉,对不同生物质原料,进行气化的工程化应用试验研究。应用锥形流化床气化技术,在江苏省和安徽省等地,建立了生物质气化供气、供热和小规模发电(400 kW)等三个不同用能形式的工程。并且从拟建立的6MW生物质热解气化发电的计算结果来看:生物质原料价格达250元/t以上,生物质单纯发电,经济上不可行;如果应用热电联供,并且利用热解气化的固体炭产品,则能够产生较好的经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号