首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

2.
Land management in tropical woodlands is being used to sequester carbon (C), alleviate poverty and protect biodiversity, among other benefits. Our objective was to determine how slash-and-burn agriculture affected vegetation and soil C stocks and biodiversity on an area of miombo woodland in Mozambique, and how C stocks and biodiversity responded once agriculture was abandoned. We sampled twenty-eight 0.125 ha plots that had previously been cleared for subsistence agriculture and had been left to re-grow for 2 to ∼25 years, and fourteen 0.25 ha plots of protected woodlands, recording stem diameter distributions and species, collecting wood for density determination, and soil from 0 to 0.3 m for determination of %C and bulk density. Clearance for agriculture reduced stem wood C stocks by 19.0 t C ha−1. There were significant relationships between period of re-growth and basal area, stem numbers and stem biomass. During re-growth, wood C stocks accumulated at 0.7 t C ha−1 year−1. There was no significant difference in stem C stocks on woodlands and on abandoned farmland 20–30 years old. Soil C stocks in the top 0.3 m on abandoned land had a narrower range (21–74 t C ha−1) than stocks in woodland soils (18–140 t C ha−1). There was no discernible increase in soil C stocks with period of re-growth, suggesting that the rate of accumulation of organic matter in these soils was very slow. The re-growing plots did not contain the defining miombo species, and total stem numbers were significantly greater than in woodland plots, but species richness and diversity were similar in older abandonments and miombo woodlands. Wood C stocks on abandoned farmland were capable of recovery within 2–3 decades, but soil C stocks did not change on this time-scale. Woodland soils were capable of storing >100 t C ha−1, whereas no soil on a re-growing area exceeded 74 t C ha−1, so there is a potential for C sequestration in soils on abandoned farmland. Management should focus on identifying C-rich soils, conserving remaining woodlands to protect soil C and preserve defining miombo species, and on investigating whether fire control on recovering woodland can stimulate accumulation of soil C and greater tree biomass, and restore defining miombo species.  相似文献   

3.
This study was conducted to determine carbon (C) dynamics following forest tending works (FTW) which are one of the most important forest management activities conducted by Korean forest police and managers. We measured organic C storage (above- and below-ground biomass C, forest floor C, and soil C at 50 cm depth), soil environmental factors (soil CO2 efflux, soil temperature, soil water content, soil pH, and soil organic C concentration), and organic C input and output (litterfall and litter decomposition rates) for one year in FTW and non-FTW (control) stands of approximately 40-year-old red pine (Pinus densiflora S. et Z.) forests in the Hwangmaesan Soopkakkugi model forest in Sancheonggun, Gyeongsangnam-do, Korea. This forest was thinned in 2005 as a representative FTW practice. The total C stored in tree biomass was significantly lower (P < 0.05) in the FTW stand (40.17 Mg C ha−1) than in the control stand (64.52 Mg C ha−1). However, C storage of forest floor and soil layers measured at four different depths was not changed by FTW, except for that at the surface soil depth (0–10 cm). The organic C input due to litterfall and output due to needle litter decomposition were both significantly lower in the FTW stand than in the control stand (2.02 Mg C ha−1 year−1 vs. 2.80 Mg C ha−1 year−1 and 308 g C kg−1 year−1 vs. 364 g C kg−1 year−1, respectively, both P < 0.05). Soil environmental factors were significantly affected (P < 0.05) by FTW, except for soil CO2 efflux rates and organic C concentration at soil depth of 0–20 cm. The mean annual soil CO2 efflux rates were the same in the FTW (0.24 g CO2 m−2 h−1) and control (0.24 g CO2 m−2 h−1) stands despite monthly variations of soil CO2 efflux over the one-year study period. The mean soil organic C concentration at a soil depth of 0–20 cm was lower in the FTW stand (81.3 g kg−1) than in the control stand (86.4 g kg−1) but the difference was not significant (P > 0.05). In contrast, the mean soil temperature was significantly higher, the mean soil water content was significantly lower, and the soil pH was significantly higher in the FTW stand than in the control stand (10.34 °C vs. 8.98 °C, 48.2% vs. 56.4%, and pH 4.83 vs. pH 4.60, respectively, all P < 0.05). These results indicated that FTW can influence tree biomass C dynamics, organic C input and output, and soil environmental factors such as soil temperature, soil water content and soil pH, while soil C dynamics such as soil CO2 efflux rates and soil organic C concentration were little affected by FTW in a red pine stand.  相似文献   

4.
The effects of three common tree species - Scots pine, Norway spruce and silver birch - on leaching of dissolved organic carbon and dissolved nitrogen were studied in an experimental forest with podzolised soils in southern Sweden. We analyzed soil water collected with lysimeters and modeled water fluxes to estimate dissolved C and N fluxes. Specific UV absorbance (SUVA) was analyzed to get information about the quality of dissolved organic matter leached from the different stands. Under the O horizon, DOC concentrations and fluxes in the birch stands were lower than in the spruce and pine stands; annual fluxes were 21 g m−2 y−1 for birch and 38 g m−2 y−1 and 37 g C m−2 y−1 for spruce and pine, respectively. Under the B horizon, annual fluxes for all tree species ranged between 3 and 5 g C m−2 y−1, implying greater loss of DOC in the mineral soil in the coniferous stands than in the birch stands. We did not find any effect of tree species on the quality of the dissolved organic matter, as measured by SUVA, indicating that the chemical composition of the organic matter was similar in leachates from all three tree species. Substantial amounts of nitrogen was leached out of the soil profile at the bottom of the B horizon from the pine and birch stands, whereas the spruce stands seemed to retain most of the nitrogen in the soil. These differences in N leaching have implications for soil N budgets.  相似文献   

5.
Bark beetle infestation is a well-known cause of historical low-level disturbance in southwestern ponderosa pine forests, but recent fire exclusion and increased tree densities have enabled large-scale bark beetle outbreaks with unknown consequences for ecosystem function. Uninfested and beetle-infested plots (n = 10 pairs of plots on two aspects) of ponderosa pine were compared over one growing season in the Sierra Ancha Experimental Forest, AZ to determine whether infestation was correlated with differences in carbon (C) and nitrogen (N) pools and fluxes in aboveground biomass and soils. Infested plots had at least 80% of the overstory ponderosa pine trees attacked by bark beetles within 2 years of our measurements. Both uninfested and infested plots stored ∼9 kg C m−2 in aboveground tree biomass, but infested plots held 60% of this aboveground tree biomass in dead trees, compared to 5% in uninfested plots. We hypothesized that decreased belowground C allocation following beetle-induced tree mortality would alter soil respiration rates, but this hypothesis was not supported; throughout the growing season, soil respiration in infested plots was similar to uninfested plots. In contrast, several results supported the hypothesis that premature needlefall from infested trees provided a pulse of low C:N needlefall that altered soil N cycling. The C:N mass ratio of pine needlefall in infested plots (∼45) was lower than uninfested plots (∼95) throughout the growing season. Mineral soils from infested plots had greater laboratory net nitrification rates and field resin bag ammonium accumulation than uninfested plots. As bark beetle outbreaks become increasingly prevalent in western landscapes, longer-term biogeochemical studies on interactions with other disturbances (e.g. fire, harvesting, etc.) will be required to predict changes in ecosystem structure and function.  相似文献   

6.
In the Eden area in NSW, Australia, low fertility granitic surface soils were sampled from 156 sites and analysed for pH, organic C, total N, total P, available P, exchangeable bases and exchangeable Al. Fifty eight of these sites were also sampled to a depth of 40 cm. Time since fire ranged from 1 to 39 years and was used in the analysis as a surrogate for fire frequency. No information was available on fire intensity. No significant relationships were found between time since fire and P or base cations. However, the quantities of organic matter and total N (kg ha−1), and the C/N ratio were significantly related to both time since fire alone and to the combination of time since fire and soil total P. Based on these relationships, it was estimated that there were average net increases of between 11 and 21 kg N ha−1 year−1 in surface soil, the actual quantity depending on the level of soil total P. There was little change in N in the initial 10 years after fire and there was a peak in N accumulation about 24 years after fire. The C/N ratio and surface soil pH decreased with time since fire. Accumulation of N and reductions in pH and C/N ratio were studied further in a small scale paired plot analysis. The repeatedly burnt plots had lower levels of both litter and understorey and the overstorey trees generally had healthier crowns than in the unburnt plots. The differences between the repeatedly burnt and the unburnt plots matched the models developed from the general survey. There were no significant changes in the C/N ratio, but the unburnt sites had higher levels of extractable mineral N and the relationships between the mineral N and the C/N ratio for burnt and unburnt sites were statistically significant. The quantities of extractable mineral N in the unburnt soils (2.3 kg N ha−1) were about twice the levels in the burnt soils (1.2 kg N ha−1). The pH of the surface soil (4.4 in 1:1 water) in the regularly burnt area was higher than in the unburnt area (pH 4.1) and the exchangeable aluminium also differed (0.62 c mol−1 in the burnt area and 1.3 c mol−1 in the unburnt). The combined data indicate that changes occur in forest soils when there is a long period of exclusion of fire. It is suggested that these changes generally lead to secondary changes, such as in pH and availability of other elements such as aluminium. The study highlights a number of issues including the rates of inputs of N to the system and the question of N saturation and its long term interaction with plant species. It is hypothesised that reduced burning leads to increased N availability and other soil changes which negatively impact on tree health.  相似文献   

7.
Determining the magnitude of carbon (C) storage in forests and peatlands is an important step towards predicting how regional carbon balance will respond to climate change. However, spatial heterogeneity of dominant forest and peatland cover types can inhibit accurate C storage estimates. We evaluated ecosystem C pools and productivity in the Marcell Experimental Forest (MEF), in northern Minnesota, USA, using a network of plots that were evenly spaced across a heterogeneous 1-km2 mosaic composed of a mix of upland forests and peatlands. Using a nested plot design, we estimated the standing C stock of vegetation, coarse detrital wood and soil pools. We also estimated aboveground net primary production (ANPP) as well as coarse root production. Additionally we evaluated how vegetation cover types within the study area differed in C storage. The total ecosystem C pool did not vary significantly among upland areas dominated by aspen (160 ± 13 Mg C ha−1), mixed hardwoods (153 ± 19 Mg C ha−1), and conifers (197 ± 23 Mg C ha−1). Live vegetation accounted for approximately 50% of the total ecosystem C pool in these upland areas, and soil (including forest floor) accounted for another 35–40%, with remaining C stored as detrital wood. Compared to upland areas, total C stored in peatlands was much greater, 1286 ± 125 Mg C ha−1, with 90–99% of that C found in peat soils that ranged from 1 to 5 m in depth. Forested areas ranged from 2.6 to 2.9 Mg C ha−1 in ANPP, which was highest in conifer-dominated upland areas. In alder-dominated and black spruce-dominated peatland areas, ANPP averaged 2.8 Mg C ha−1, and in open peatlands, ANPP averaged 1.5 Mg C ha−1. In treed areas of forest and peatlands, our estimates of coarse root production ranged from 0.1 to 0.2 Mg C ha−1. Despite the lower production in open peatlands, all peatlands have acted as long-term C sinks over hundreds to thousands of years and store significantly more C per unit area than is stored in uplands. Despite occupying only 13% of our study area, peatlands store almost 50% of the C contained within it. Because C storage in peatlands depends largely on climatic drivers, the impact of climate changes on peatlands may have important ramifications for C budgets of the western Great Lakes region.  相似文献   

8.
Shifting land use from agriculture to forestry induces major changes in the carbon (C) and nitrogen (N) cycles, including fluxes of dissolved organic carbon (DOC) and nitrogen (DON). This study investigated the long-term effects of afforestation on ecosystem DOC and DON dynamics using a chronosequence approach comprising four arable fields and nine differently aged (10–92 years) Norway spruce stands growing on similar former arable soils in the same area. Along the chronosequence, concentrations and fluxes of DOC and DON were determined in bulk precipitation, throughfall, O horizon leachate and mineral soil solution during a 2–3-year period. Soil water fluxes were calculated using a soil hydrological model (SWAP). Results showed that DOC concentrations and fluxes with throughfall were strongly positively correlated with tree height (r2 = 0.95; P < 0.05 for both conc. and flux) and stand age, while DON showed no such trends, suggesting different origins of DOC and DON in throughfall. The highest concentrations and fluxes of DOC and DON occurred in soil leachate from the O horizon. Here, DOC flux was 250–310 kg C ha−1 yr−1 and DON flux 8–9 kg N ha−1 yr−1 in stands afforested between 65 and 92 years ago. Concentrations and fluxes of DOC and DON in the mineral subsoil were consistently low. Flux calculations suggest that there was a net loss of >90% (230–280 kg ha−1 yr−1) of DOC leached from the O horizon within 0–60 cm of the mineral soil. There was no significant effect of land use or forest age on DOC concentrations in solution from the lower part of the A horizon. The effect of time since afforestation was masked by soil properties that influence DOM retention in the mineral soil. Our data indicate that DOC concentrations in the A horizon of the sites studied were primarily related to the oxalate-extractable Al and Fe amounts in the same horizon. Afforestation of arable land induced a gradual qualitative change in soil organic matter (SOM) and dissolved organic matter (DOM), with significantly increasing C:N ratios in soil and soil solution over time. The development of an O horizon and the subsequent leaching of DOC and DON to the underlying mineral soil are important drivers of a changing soil C and N turnover following afforestation.  相似文献   

9.
Forest succession contributes to the global terrestrial carbon (C) sink, but changes in C sequestration in response to varied harvest intensities have been debated. The forests of the Central Appalachian region have been aggrading over the past 100 years following widespread clear-cutting that occurred in the early 1900s and these forests are now valuable timberlands. This study compared the history of ecosystem C storage in four watersheds that have been harvested at different frequencies and intensities since 1958. We compared NPP, NEP, and component ecosystem C fluxes (g C m−2 year−1) in response to the four different harvest histories (no harvest, clear-cutting, single tree selection cutting, and 43 cm diameter-limit cutting). Clear-cutting had short-term negative effects on NEP but harvest did not significantly impact long-term average annual C sequestration rates. Average plant C (g C m−2) since 1950 was about 33% lower in response to a clear-cut event than plant C in an un-harvested forest, suggesting that the C sequestration associated with clear-cutting practices would decline over time and result in lower C storage than diameter-limit cut, selective cut, or un-harvested forests. Total C stored over a 55-year period was stimulated ∼37% with diameter-limit cutting and selective cutting relative to un-harvested forests.  相似文献   

10.
Above- and below-ground C pools were measured in pure even-aged stands of Nothofagusantarctica (Forster f.) Oersted at different ages (5–220 years), crown and site classes in the Patagonian region. Mean tissue C concentration varied from 46.3% in medium sized roots of dominant trees to 56.1% in rotten wood for trees grown in low quality sites. Total C concentration was in the order of: heartwood > rotten wood > sapwood > bark > small branches > coarse roots > leaves > medium roots > fine roots. Sigmoid functions were fitted for total C accumulation and C root/shoot ratio of individual trees against age. Total C accumulated by mature dominant trees was six times greater than suppressed trees in the same stands, and total C accumulated by mature dominant trees grown on the best site quality was doubled that of those on the lowest site quality. Crown classes and site quality also affected the moment of maximum C accumulation, e.g. dominant trees growing on the worse site quality sequestered 0.73 kg C tree−1 year−1 at 139 years compared to the best site where 1.44 kg C tree−1 year−1 at 116 years was sequestered. C root/shoot ratio decreased over time from a maximum value of 1.3–2.2 at 5 years to a steady-state asymptote of 0.3–0.7 beyond 60 years of age depending on site quality. Thus, root C accumulation was greater during the regeneration phase and for trees growing on the poorest sites. The equations developed for individual trees have been used to estimate stand C accumulation from forest inventory data. Total stand C content ranged from 128.0 to 350.9 Mg C ha−1, where the soil C pool represented 52–73% of total ecosystem C depending on age and site quality. Proposed equations can be used for practical purposes such as estimating the impact of silvicultural practices (e.g. thinning or silvopastoral systems) on forest C storage or evaluating the development of both above- and below-ground C over the forest life cycle for different site qualities for accurate quantification of C pools at regional scale.  相似文献   

11.
Information on soil carbon sequestration and its interaction with nitrogen availability is rather limited, since soil processes account for the most significant unknowns in the C and N cycles. In this paper we compare three completely different approaches to calculate carbon sequestration in forest soils. The first approach is the limit-value concept, in which the soil carbon accumulation is estimated by multiplying the annual litter fall with the recalcitrant fraction of the decomposing plant litter, which depends on the nitrogen and calcium content in the litter. The second approach is the N-balance method, where carbon sequestration is calculated from the nitrogen retention in the soil multiplied with the present soil C/N ratio in organic layer and mineral topsoil. The third approach is the dynamic SMART2 model in combination with an empirical approach to assess litter fall inputs. The comparison is done by first validating the methods at three chronosequences with measured C pools, two in Denmark and one in Sweden, and then application on 192 intensive monitoring plots located in the Northern and Western part of Europe. Considering all three chronosequences, the N-balance method was generally most in accordance with the C pool measurements, although the SMART2 model was also quite consistent with the measurements at two chronosequences. The limit-value approach generally overestimated the soil carbon sequestration. At the intensive monitoring plots, the limit-value concept calculated the highest carbon sequestration, ranging from 160 to 978 kg ha−1 year−1, followed by the N-balance method which ranged from 0 to 535 kg ha−1 year−1. With SMART2 we calculated the lowest carbon sequestration from −30 to 254 kg ha−1 year−1. All the three approaches found lower carbon sequestration at a latitude from 60 to 70° compared to latitudes from 40 to 50 and from 50 to 60. Considering the validation of the three approaches, the range in results from both the N-balance method and SMART2 model seems most appropriate.  相似文献   

12.
We measured the change in above- and below-ground carbon and nutrient pools 11 years after the harvesting and site preparation of a histic-mineral soil wetland forest in the Upper Peninsula of Michigan. The original stand of black spruce (Picea mariana), jack pine (Pinus banksiana) and tamarack (Larix laricina) was whole-tree harvested, and three post-harvest treatments (disk trenching, bedding, and none) were randomly assigned to three Latin square blocks (n = 9). Nine control plots were also established in an adjoining uncut stand. Carbon and nutrients were measured in three strata of above-ground vegetation, woody debris, roots, forest floor, and mineral soil to a depth of 1.5 m. Eleven years following harvesting, soil C, N, Ca, Mg, and K pools were similar among the three site preparation treatments and the uncut stand. However, there were differences in ecosystem-level nutrient pools because of differences in live biomass. Coarse roots comprised approximately 30% of the tree biomass C in the regenerated stands and 18% in the uncut stand. Nutrient sequestration, in the vegetation since harvesting yielded an average net ecosystem gain of 332 kg N ha−1, 110 kg Ca ha−1, 18 kg Mg ha−1, and 65 kg K ha−1. The likely source for the cations and N is uptake from shallow groundwater, but N additions could also come from non-symbiotic N-fixation and N deposition. These are the only reported findings on long-term effects of harvesting and site preparation on a histic-mineral soil wetland and the results illustrate the importance of understanding the ecohydrology and nutrient dynamics of the wetland forest. This wetland type appears less sensitive to disturbance than upland sites, and is capable of sustained productivity under these silvicultural treatments.  相似文献   

13.
Tropical forests play an important role in the global carbon cycle. Despite an increasing number of studies have addressed carbon storage in tropical forests, the regional variation in such storage remains poorly understood. Uncertainty about how much carbon is stored in tropical forests is an important limitation for regional-scale estimates of carbon fluxes and improving these estimates requires extensive field studies of both above- and belowground stocks. In order to assess the carbon pools of a tropical seasonal forest in Asia, total ecosystem carbon storage was investigated in Xishuangbanna, SW China. Averaged across three 1 ha plots, the total carbon stock of the forest ecosystem was 303 t C ha−1. Living tree carbon stocks (both above- and belowground) ranged from 163 to 258 t C ha−1. The aboveground biomass C pool is comparable to the Dipterocarp forests in Sumatra but lower than those in Malaysia. The variation of C storage in the tree layer among different plots was mainly due to different densities of large trees (DBH > 70 cm). The contributions of the shrub layer, herb layer, woody lianas, and fine litter each accounted for 1–2 t C ha−1 to the total carbon stock. The mineral soil C pools (top 100 cm) ranged from 84 to 102 t C ha−1 and the C in woody debris from 5.6 to 12.5 t C ha−1, representing the second and third largest C component in this ecosystem. Our results reveal that a high percentage (70%) of C is stored in biomass and less in soil in this tropical seasonal forest. This study provides an accurate estimate of the carbon pool and the partitioning of C among major components in tropical seasonal rain forest of northern tropical Asia. Results from this study will enhance our ability to evaluate the role of these forests in regional C cycles and have great implications for conservation planning.  相似文献   

14.
Acacia plantation establishment might cause soil acidification in strongly weathered soils in the wet tropics because the base cations in the soil are translocated rapidly to plant biomass during Acacia growth. We examined whether soils under an Acacia plantation were acidified, as well as the factors causing soil acidification. We compared soils from 10 stands of 8-year-old Acacia mangium plantations with soils from 10 secondary forests and eight Imperata cylindrica grasslands, which were transformed into Acacia plantations. Soil samples were collected every 5–30 cm in depth, and pH and related soil properties were analyzed. Soil pH was significantly lower in Acacia plantations and secondary forests than in Imperata grasslands at every soil depth. The difference was about 1.0 pH unit at 0–5 cm and 0.5 pH unit at 25–30 cm. A significant positive correlation between pH and base saturation at 0–20 cm depth indicated that the low pH under forest vegetation was associated with exchangeable cation status. Using analysis of covariance (ANCOVA), with clay content as the covariate, exchangeable Ca (Ex-Ca) and Mg (Ex-Mg) stocks were significantly lower in forested areas than in Imperata grasslands at any clay content which was strongly related to exchangeable cation stock. The adjusted average Ex-Ca stock calculated by ANCOVA was 249 kg ha−1 in Acacia plantations, 200 kg ha−1 in secondary forests, and 756 kg ha−1 in Imperata grasslands at 0–30 cm. Based on a comparison of estimated nutrient stocks in biomass and soil among the vegetation types, the translocation of base cations from soil to plant biomass might cause a decrease in exchangeable cations and soil acidification in Acacia plantations.  相似文献   

15.
Through the long-term measurement and development of a method for partitioning the products of decomposing litter, the impact of chemical components of forest debris on soil organic carbon (SOC) accumulation was studied in a forest succession series in South China. We quantified how litter quality is strongly correlated with the partitioning of respiration, dissolved organic carbon (DOC) and fragments of decomposing litter. In the succession sequence of 60-year-old pine forest (PF), to 80-year-old mixed pine and evergreen broadleaved forest (MF) to more than 400-year-old monsoon evergreen broadleaved forest (MEBF), the litter C/N ratios and lignin contents were gradually decreasing, which in turn were correlated with increasing litter decomposition constants (k-values), gradually shortening residence times of standing litter pool. And, 53.5%, 65.6% and 76.2% of the gravimetric litter mass losses were going belowground through both DOC and fragmentation. Correspondingly, the SOC accumulation rates in the top 20 cm of mineral soils for the three forests from 1978 to 2008 were 26 ± 4, 33 ± 5 and 67 ± 5 g C m−2 yr−1, respectively. Results of the study support the idea that in order to increase carbon sequestration in soils and long-term functional ability of forest ecosystems to act as carbon sinks, “Kyoto Forests” should be designed and reconstructed with a high diversity of broadleaved species, especially containing nitrogen-fixing trees.  相似文献   

16.
Dissolved inorganic nitrogen (DIN) (as ammonium nitrate) was applied monthly onto the forest floor of one old-growth forest (>400 years old, at levels of 50, 100 and 150 kg N ha−1 yr−1) and two young forests (both about 70 years old, at levels of 50 and 100 kg N ha−1 yr−1) over 3 years (2004–2006), to investigate how nitrogen (N) input influenced N leaching output, and if there were differences in N retention between the old-growth and the young forests in the subtropical monsoon region of southern China. The ambient throughfall inputs were 23–27 kg N ha−1 yr−1 in the young forests and 29–35 kg N ha−1 yr−1 in the old-growth forest. In the control plots without experimental N addition, a net N retention was observed in the young forests (on average 6–11 kg N ha−1 yr−1), but a net N loss occurred in the old-growth forest (−13 kg N ha−1 yr−1). Experimental N addition immediately increased DIN leaching in all three forests, with 25–66% of added N leached over the 3-year experiment. At the lowest level of N addition (50 kg N ha−1 yr−1), the percentage N loss was higher in the old-growth forest (66% of added N) than in the two young forests (38% and 26%). However, at higher levels of N addition (100 and 150 kg N ha−1 yr−1), the old-growth forest exhibited similar N losses (25–43%) to those in the young forests (28–43%). These results indicate that N retention is largely determined by the forest successional stages and the levels of N addition. Compared to most temperate forests studied in Europe and North America, N leaching loss in these seasonal monsoon subtropical forests occurred mainly in the rainy growing season, with measured N loss in leaching substantially higher under both ambient deposition and experimental N additions.  相似文献   

17.
We tested the hypothesis that overstorey of eucalypt forest dominated by tall, large diameter trees uses less water than regrowth stands in the high rainfall zone (>1100 mm year−1) of the northern jarrah (Eucalyptus marginata) forest in southwestern Australia. We measured leaf area, cover, sapwood area and sapwood density at three paired old and regrowth stands. We also measured sapflow velocity at one paired stand (Dwellingup) from June 2007 to October 2008. Old stands had more basal area but less foliage cover, less leaf area and slightly thinner sapwood. The ratio of sapwood area to basal area decreased markedly as tree size increased. Sapwood area of the regrowth forest stands (6.6 ± 0.30 m2 ha−1) was nearly double that of the old stands (3.4 ± 0.17 m2 ha−1), despite larger basal area at the old stands. Leaf area index of the regrowth stands (2.1 ± 0.26) was only one-third larger than that at the old stands (1.5 ± 0.15); hence, the ratio of leaf area to sapwood area was larger in old stands than in regrowth stands (0.45 ± 0.022 m2 cm−2 versus 0.32 ± 0.045 m2 cm−2). Our results are consistent with theories that trees have evolved to optimize carbon gain rather than maintain stomatal conductance. Neither sapwood density (540–650 kg m−3) nor sap velocity differed greatly between regrowth and old stands. At the old forest site, daily transpiration rose from 0.5 mm day−1 in winter to 0.9 mm day−1 in spring–summer, compared to 0.9 mm day−1 and 1.8 mm day−1 at the regrowth site. Annual water use by the overstorey trees was estimated to be ∼230 mm year−1 for the old stand and ∼500 mm year−1 at the regrowth stand, or 20% and 44% of annual rainfall. The overwhelming role of stand sapwood area in determining stand water use, combined with the marked changes in the ratio of sapwood area to basal area with tree age and size, suggest that stand overstorey structure can be managed to alter overstorey water use and catchment water yield. Silviculture to promote old-forest-like attributes may be a viable means of delivering multiple water and conservation benefits.  相似文献   

18.
To understand the influence of disturbance, age–class structure, and land use on landscape-level carbon (C) budgets during conversion of old-growth forests to managed forests, a spatially explicit, retrospective C budget from 1920 through 2005 was developed for the 2500 ha Oyster River area of Fluxnet-Canada's coastal BC Station. We used the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), an inventory-based model, to simulate forest C dynamics. A current (circa 1999) forest inventory for the area was compiled, then overlaid with digitized historic disturbance maps, a 1919 timber cruise map, and a series of historic orthophotographs to generate a GIS coverage of forest cover polygons with unique disturbance histories dating back to 1920. We used the combined data from the historic and current inventory and forest change data to first estimate initial ecosystem C stocks and then to simulate forest dynamics and C budgets for the 86-year period. In 1920, old-growth forest dominated the area and the long-term landscape-level net ecosystem C balance (net biome productivity, NBP) was a small sink (NBP 0.2 Mg C ha−1 year−1). From 1930 to 1945 fires, logging, and slash burning resulted in large losses of biomass C, emissions of C to the atmosphere, and transfers of C from biomass to detritus and wood products (NBP ranged from −3 to −56 Mg C ha−1 year−1). Live biomass C stocks slowly recovered following this period of high disturbance but the area remained a C source until the mid 1950s. From 1960 to 1987 disturbance was minimal and the area was a C sink (NBP ranged from 3 to 6 Mg C ha−1 year−1). As harvest of second-growth forest began in late 1980s, disturbances again dominated the area's C budget, partially offset by ongoing C uptake by biomass in recovering young forests such that the C balance varied from positive to negative depending upon the area disturbed that year (NBP from 6 to −15 Mg C ha−1 year−1). Despite their high productivity, the area's forests are not likely to attain C densities of the landscape prior to industrial logging because the stands will not reach pre-logging ages. Additional work is underway to examine the relative role historic climate variability has had on the landscape-level C budget.  相似文献   

19.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

20.
Interest in the use of bioenergy is increasing because of the need to mitigate climate change, the increasing costs and finite supply of fossil fuels, and the declining price of lumber and paper. Sound bioenergy policies must be informed by accurate estimates of potential feedstock production, rights to the production, social values and economics. Two of the main sources of bioenergy feedstock from forests are (i) harvesting residue and (ii) dead wood resulting from natural disturbances (i.e. standing dead timber). We modeled the production of bioenergy feedstock from these two sources from 2005 to 2020 for Canada's managed forest south of 60° N so that this information can be used in provincial and national strategic planning. Published estimates of harvesting residue vary widely, and our objective was to provide more precise estimates based on new forest inventory data and regional modeling. Natural disturbances result in very large quantities of dead wood on the landscape, but estimates of future stocks and annual production have not previously been made. Our estimates included a 50% discount factor to net-down theoretically available quantities to a more realistic estimate of potential ecologically sustainable bioenergy feedstock. The total future annual production averaged 51 ± 17 Tg year−1 from natural disturbances and 20 ± 0.6 Tg year−1 from clearcut harvesting residues. Harvesting residue for the area logged varied spatially from a low of 1.0 ± 0.77 kg m−2 year−1 to a high of 6.7 ± 0.1 kg m−2 year−1. Dead wood production due to insects was forecast to peak in the Montane Cordillera of British Columbia (BC) at 16.7 Tg year−1 due to the current mountain pine beetle outbreak. Total dead wood production due to fire was highest in the western portion of the boreal forest (3.6 Tg year−1 in the Boreal Shield of Saskatchewan), in part due to the high frequency of fires in these ecosystems and the large area of western boreal forest, but the highest density production was in BC: >9 kg m−2 year−1 in the burned area. Our results showed that the dead wood stocks of 331 Tg oven-dry matter potentially available for bioenergy in 2020 are much smaller than the 3100 ± 84 Tg of dead wood stocks estimated based on ecosystem dynamics. While bioenergy use will accelerate the release of greenhouse gases compared to on-site decay, the energy is renewable and can be used as a substitute for fossil fuels. The net benefit to the atmosphere of forest bioenergy use is affected by many factors, and future research should further assess which sustainable wood-based bioenergy strategies yield the greatest net greenhouse gas benefits over the different time scales needed for post-disturbance forest recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号