首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

2.
Many natural resource agencies and organizations recognize the importance of fuel treatments as tools for reducing fire hazards and restoring ecosystems. However, there continues to be confusion and misconception about fuel treatments and their implementation and effects in fire-prone landscapes across the United States. This paper (1) summarizes objectives, methods, and expected outcomes of fuel treatments in forests of the Interior West, (2) highlights common misunderstandings and areas of disagreement, and (3) synthesizes relevant literature to establish a common ground for future discussion and planning. It is important to understand the strengths and limitations of fuel treatments to evaluate their potential to achieve an objective, develop sensible fire management policies, and plan for their effective use. We suggest that, while the potential of fuel treatment to reduce wildfire occurrence or enhance suppression capability is uncertain, it has an important role in mitigating negative wildfire effects, increasing ecosystem resilience and making wildfire more acceptable.  相似文献   

3.
4.
We simulated fuel reduction treatments on a 16,000 ha study area in Oregon, US, to examine tradeoffs between placing fuel treatments near residential structures within an urban interface, versus treating stands in the adjacent wildlands to meet forest health and ecological restoration goals. The treatment strategies were evaluated by simulating 10,000 wildfires with random ignition locations and calculating burn probabilities by 0.5 m flame length categories for each 30 m × 30 m pixel in the study area. The burn conditions for the wildfires were chosen to replicate severe fire events based on 97th percentile historic weather conditions. The burn probabilities were used to calculate wildfire risk profiles for each of the 170 residential structures within the urban interface, and to estimate the expected (probabilistic) wildfire mortality of large trees (>53.3 cm) that are a key indicator of stand restoration objectives. Expected wildfire mortality for large trees was calculated by building flame length mortality functions using the Forest Vegetation Simulator, and subsequently applying these functions to the burn probability outputs. Results suggested that treatments on a relatively minor percentage of the landscape (10%) resulted in a roughly 70% reduction in the expected wildfire loss of large trees for the restoration scenario. Treating stands near residential structures resulted in a higher expected loss of large trees, but relatively lower burn probability and flame length within structure buffers. Substantial reduction in burn probability and flame length around structures was also observed in the restoration scenario where fuel treatments were located 5–10 km distant. These findings quantify off-site fuel treatment effects that are not analyzed in previous landscape fuel management studies. The study highlights tradeoffs between ecological management objectives on wildlands and the protection of residential structures in the urban interface. We also advance the application of quantitative risk analysis to the problem of wildfire threat assessment.  相似文献   

5.
Mechanical fuel treatments are increasingly being used for wildfire hazard reduction in the western U.S. However, the efficacy of these treatments for reducing wildfire hazard at a landscape scale is difficult to quantify, especially when including growth following treatment. A set of uneven- and even-aged treatments designed to reduce fire hazard were simulated on 0.8 million hectares of timberland in Colorado. Wildfire hazard ratings using torching and crowning indices were developed; stands were selected for treatment; treatment was simulated and hazard ratings were reassessed. The results show that the even-aged treatments initially place more area within our hazard thresholds than do the uneven-aged treatments and that the uneven-aged treatment that removes more small stems reduces risk more than the treatment removing more large stems. The treatment costs follow the same pattern, with the even-aged treatments costing least. However, potential revenues are, as expected, higher for the uneven-aged large treatment. The results also show that both higher costs and higher revenues accrue to the treatments applied to the higher risk stands. Treatments also have differing risk reductions depending on the initial risk category. Even without considering growth or revenues, the outcomes of a state-level treatment program are difficult to estimate. This implies that at a minimum, forest-level, if not state-level analyses including overall measures of risk reduction, costs, revenues and long-term effects need to be conducted in concert with setting priorities for treating timberlands.  相似文献   

6.
ABSTRACT

Forest management can have substantial impacts on ecosystem carbon storage, but those effects can vary significantly with management type and species composition. We used systematic review methodology to identify and synthesize effects of thinning and/or burning, timber harvesting, clear-cut, and wildfire on four components of ecosystem carbon: aboveground vegetation, soil, litter, and deadwood. We performed a meta-analysis on studies from the United States and Canada because those represented 85% of the studies conducted worldwide. We found that the most important variables in predicting effect sizes (ratio of carbon stored in treated stands versus controls) were, in decreasing order of importance, ecosystem carbon component, time since treatment, and age of control. Management treatment was the least important of all the variables we examined, but the trends we found suggest that thinning and/or burning treatments resulted in less carbon loss than wildfire or clear-cut. This finding is consistent with recent modeling studies indicating that forest management is unimportant to long-term carbon dynamics relative to the effects of large-scale natural disturbances (e.g., drought, fire, pest outbreak). However, many data gaps still exist on total ecosystem carbon, particularly in regions other than North America, and in timber production forests and plantations.  相似文献   

7.
Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

8.
After a century of fire suppression, conifer forests in the western United States have dramatically departed from conditions that existed prior to Euro-American settlement, with heavy fuel loads and an increased incidence of wildfire. To reduce this threat and improve overall forest health, land managers are designing landscape-scale treatments that strategically locate thinning and burning treatments to disrupt fuel continuity, allowing managed wildfires to burn the remaining area. A necessary step in designing and evaluating these treatments is understanding their ecological effects on wildlife. We used meta-analysis to compare effects of small-diameter removal (thinnings and shelterwoods) and burning treatments, selective harvesting, overstory removal (including clearcutting), and wildfire on wildlife species in southwestern conifer forests. We hypothesized that small-diameter removal and burning treatments would have minimal effects on wildlife compared to other treatments. We found 33 studies that met our criteria by (1) comparing density or reproductive output for wildlife species, (2) using forest management or wildfire treatments, (3) implementing control-impact or before-after control-impact design using unmanaged stands as controls, and (4) occurring in Arizona or New Mexico ponderosa pine (Pinus ponderosa) or mixed conifer (Abies/Picea/Pinus) forest. The 22 studies suitable for meta-analysis occurred ≤20 years post-treatment on sites <400 ha. Small-diameter harvest and burning treatments had positive effects but thin/burn and selective harvest treatments had no detectable effect on most small mammals and passerine bird species reported in studies; overstory removal and wildfire resulted in an overall negative response. We examined foraging guild responses to treatments; ground-foraging birds and rodents had no strong response. Aerial-, tree-, and bole-foraging birds had positive or neutral responses to the small-diameter removal and burning treatments, but negative responses to overstory removal and wildfire. Small-diameter removal and burning treatments as currently being implemented in the Southwest do not negatively impact most of the wildlife species in the studies we examined in the short-term (≤10 years). We believe a combination of treatments in a patchy arrangement across the landscape will result in the highest diversity and density. We recommend that managers implement thinning and burning treatments, but that future research efforts focus on long-term responses of species at larger spatial scales, use reproductive output as a more informative response variable, and target species for which there is a paucity of data.  相似文献   

9.
Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and emitted during treatment, we compared the 7-year post-treatment carbon stocks for mechanical thinning and prescribed fire fuels reduction treatments in Sierra Nevada mixed-conifer forest and modeled annual carbon accumulation rates. Within our 7-year re-sample period, the burn only and understory thin treatments sequestered more carbon than had been removed or emitted during treatment. The understory thin and burn, overstory thin, and overstory thin and burn continued to have net negative carbon stocks when emissions associated with treatment were subtracted from 7-year carbon stock gains. However, the size of the carbon deficit in the understory thin and burn 7 years post-treatment and the live tree growth rates suggest that the remaining trees may sequester treatment emissions within several more years of growth. Overstory tree thinning treatments resulted in a large carbon deficit and removed many of the largest trees that accumulate the most carbon annually, thereby increasing carbon stock recovery time. Our results indicate that while there is an initial carbon stock reduction associated with fuels treatments, treated forests can quickly recover carbon stocks if treatments do not remove large, fire-resistant overstory trees.  相似文献   

10.
This paper provides an example of the practical application of multi-attribute trade-off analysis (MATA) to wildfire management. The MATA approach supports more informed decision-making because it exposes important trade-offs among competing management objectives (requiring value-based choices), helps guide and structure necessary technical judgements, explicitly represents uncertainty (i.e., not just expected outcomes but risk profiles around outcomes) and addresses temporal trade-offs. MATA promotes critical thinking about what analysis is required for decision-making. A MATA approach can be applied for all types of forest and fire management decisions. In this paper, we provide a sample application of MATA to an evaluation of landscape-level fuel treatments for managing wildfire risk. The study area is located in southeastern British Columbia, Canada where historical fire suppression policies and expanding development in wildland urban interface areas have resulted in an increase in both the probability and the consequences of stand replacement fires. We specify management objectives and develop measurable attributes for fire management costs, timber supply, property damage, landscape-level biodiversity, local air quality and climate change. We then simulate the effects on these attributes of four alternative fuel management strategies that include combinations of mechanical treatments and prescribed burning over a 100-year period. The evaluation illustrates the key features of MATA while highlighting the benefits and challenges of implementing the approach.  相似文献   

11.
Summary

We utilized the Boise National Forest's Hazard/Risk model, along with fire history records and fire behavior models, to estimate the current and anticipated levels of large wildfires and associated greenhouse gas and particulate emissions based on the forest condition and wildfire regime on the BNF. The model indicated that the forests at greatest risk of large, intense wildfires are the dense pondero-sa pine-Douglas-fir forests that make up over 1.1 million acres on the forest. We conclude that without an aggressive treatment program to reduce large areas of contiguous heavy fuel loadings the forest will be burned at an annual average rate of about 7.5% of the remaining at-risk forest. Using recent fire data to develop average patterns of intensity in wildfires within this forest type, we estimate that emissions will average around 1 million tons of carbon (C) per year over the next 20 years as the bulk of the ponderosa pine forests are burned. An aggressive treatment program featuring the removal of fuels where necessary, and prescribed fire as a means of re-introducing fire to these ecosystems, would result in a 30-50 percent reduction in the average annual wildfire experienced in the dense ponderosa pine forests, a 14-35% decrease in the average annual C emissions, and a 10-31% decrease in particulate emissions. We argue that the most effective way to curb emissions is with an aggressive treatment program linked to a landscape-based ecosystem management plan. This would have the effect of breaking up large contiguous landscape patterns so that fires become more patchy and diverse in their environmental impact, resulting in significantly reduced emissions as well as improved landscape diversity.  相似文献   

12.
The Mediterranean basin is a fire-prone area and is expected to continue being so according to projected climate and socioeconomic changes. Sustainable exploitation of forest biomass could have a positive effect on wildfire hazard mitigation. A modelling approach was used to compare how four different Scenarios for biomass collection for energy use affect fire behaviour and potential burnt area at landscape level under extreme meteorological conditions in a typical Mediterranean Massif. A case study of Pinus halepensis stands in Valencia (Eastern Spain) was conducted. The FARSITE simulator was used to evaluate the burnt area and fire behaviour parameters. Simulations predicted a significant increase in the burnt area and the values of most fire behaviour parameters in a Scenario of rural abandonment, relative to the current situation. Biomass management through thinning reduced canopy bulk density; however, no differences in the values of the main fire behaviour parameters were detected. Thinning and understory clearing, including biomass collection in large shrub fuel model areas, significantly reduces fire hazard. Forest biomass sustainable harvesting for energy is expected to reduce fire hazard if management includes intense modification of fuel models, comprising management of shrub biomass at the landscape level. Strong modification of forest fuel models requires intensive silvicultural treatments. Therefore, forest biomass collection for energy in the Mediterranean basin reduces fire hazard only if both tree and shrub strata are managed at landscape level.  相似文献   

13.
Forests contain the world's largest terrestrial carbon stocks, but in seasonally dry environments stock stability can be compromised if burned by wildfire, emitting carbon back to the atmosphere. Treatments to reduce wildfire severity can reduce emissions, but with an immediate cost of reducing carbon stocks. In this study we examine the tradeoffs in carbon stock reduction and wildfire emissions in 19 fuels-treated and -untreated forests burned in twelve wildfires. The fuels treatment, a commonly used thinning ‘from below’ and removal of activity fuels, removed an average of 50.3 Mg C ha−1 or 34% of live tree carbon stocks. Wildfire emissions averaged 29.7 and 67.8 Mg C ha−1 in fuels treated and untreated forests, respectively. The total carbon (fuels treatment plus wildfire emission) removed from treated sites was 119% of the carbon emitted from the untreated/burned sites. However, with only 3% tree survival following wildfire, untreated forests averaged only 7.8 Mg C ha−1 in live trees with an average quadratic mean tree diameter of 21 cm. In contrast, treated forest averaged 100.5 Mg C ha−1 with a live tree quadratic mean diameter of 44 cm. In untreated forests 70% of the remaining total ecosystem carbon shifted to decomposing stocks after the wildfire, compared to 19% in the fuels-treated forest. In wildfire burned forest, fuels treatments have a higher immediate carbon ‘cost’, but in the long-term may benefit from lower decomposition emissions and higher carbon storage.  相似文献   

14.
Due to increases in tree density and hazardous fuel loading in Sierra Nevadan forests, land management is focusing on fuel reduction treatments to moderate the risk of catastrophic fires. Fuel treatments involving mechanical and prescribed fire methods can reduce surface as well as canopy fuel loads. Mastication is a mechanical method which shreds smaller trees and brush onto the surface fuel layer. Little data exist quantifying masticated fuel beds. Despite the paucity of data on masticated fuels, land managers desire fuel loading, potential fire behavior and fire effects such as tree mortality information for masticated areas. In this study we measured fuel characteristics before and after mastication and mastication plus prescribed burn treatments in a 25-year old ponderosa pine (Pinus ponderosa C. Lawson) plantation. In addition to surface fuel characteristics and tree data collection, bulk density samples were gathered for masticated material. Regressions were created predicting masticated fuel loading from masticated fuel bed depth. Total masticated fuel load prior to fire treatment ranged from 25.9 to 42.9 Mg ha−1, and the bulk density of masticated fuel was 125 kg m−3. Mastication treatment alone showed increases in most surface fuel loadings and decreases in canopy fuel loads. Masticated treatment in conjunction with prescribed burning reduced both surface and canopy fuel loads. Detailed information on fuel structure in masticated areas will allow for better predictions of fire behavior and fire effects for fire in masticated fuel types. Understanding potential fire behavior and fire effects associated with masticated fuels will allow managers to make decisions on the possibility of mastication to create fuel breaks or enhance forest health.  相似文献   

15.
16.
To study how fire or herbicide use influences longleaf pine (Pinus palustris Mill.) overstory and understory vegetation, five treatments were initiated in a 5–6-year-old longleaf pine stand: check, biennial arborescent plant control by directed herbicide application, and biennial burning in March, May, or July. The herbicide or prescribed fire treatments were applied in 1999, 2001, 2003, and 2005. All prescribed fires were intense and averaged 700 kJ/s/m of fire front across all 12 burns. Using pretreatment variables as covariates, longleaf pine survival and volume per hectare were significantly less on the three prescribed fire treatments than on checks. Least-square means in 2006 for survival were 70, 65, 64, 58, and 56% and volume per hectare was 129, 125, 65, 84, and 80 m3/ha on the check, herbicide, March-, May-, and July-burn treatments, respectively. A wildfire in March 2007 disproportionately killed pine trees on the study plots. In October 2007, pine volume per hectare was 85, 111, 68, 98, and 93 m3/ha and survival was 32, 41, 53, 57, and 55% on the check, herbicide, March-, May-, and July-burn treatments, respectively, after dropping trees that died through January 2009 from the database. Understory plant cover was also affected by treatment and the ensuing wildfire. In September 2006, herbaceous plant cover averaged 4% on the two unburned treatments and 42% on the three prescribed fire treatments. Seven months after the wildfire, herbaceous plant cover averaged 42% on the two previously unburned treatments and 50% on the three prescribed fire treatments. Before the wildfire, understory tree cover was significantly greater on checks (15%) than on the other four treatments (1.3%), but understory tree cover was similar across all five treatments 7 months after the wildfire averaging 1.1%. The greater apparent intensity of the wildfire on the previously unburned treatments most likely resulted from a greater accumulation of fuels on the check and herbicide plots that also collectively had a higher caloric content than fuels on the biennially prescribed burned plots. These results showed the destructive force of wildfire to overstory trees in unburned longleaf pine stands while also demonstrating the rejuvenating effects of wildfire within herbaceous plant communities. They caution for careful reintroduction of prescribed fire even if fire was excluded for less than a decade.  相似文献   

17.
The Angora Fire burned 1243 ha of Jeffrey pine and mixed conifer forest in the Lake Tahoe Basin between June 24 and July 2, 2007. The Angora Fire burned at unusually high severity due to heavy fuels; strong winds; warm, dry weather; and unseasonably low fuel moistures. The fire destroyed 254 homes, and final loss and suppression cost estimates of $160,000,000 make the Angora Fire one of the ten costliest wildfires in US history. The Angora Fire burned into 194 ha of fuel treatments intended to modify fire behavior and protect private and public assets in the Angora Creek watershed. The fire thus provides a unique opportunity to quantitatively assess the effects of fuel treatments on wildfire severity in an area of wildland–urban interface. We measured fire effects on vegetation in treated and adjacent untreated areas within the Angora Fire perimeter, immediately after and one year after the fire. Our measures of fire severity included tree mortality; height of bole char, crown scorch, and crown torch; and percent crown scorch and torch. Unlike most studies of fuel treatment effectiveness, our study design included replication and implicitly controlled for variation in topography and weather. Our results show that fuel treatments generally performed as designed and substantially changed fire behavior and subsequent fire effects to forest vegetation. Exceptions include two treatment units where slope steepness led to lower levels of fuels removal due to local standards for erosion prevention. Hand-piled fuels in one of these two units had also not yet been burned. Excepting these units, bole char height and fire effects to the forest canopy (measured by crown scorching and torching) were significantly lower, and tree survival significantly higher, within sampled treatments than outside them. In most cases, crown fire behavior changed to surface fire within 50 m of encountering a fuel treatment. The Angora Fire underlines the important role that properly implemented fuel treatments can play in protecting assets, reducing fire severity and increasing forest resilience.  相似文献   

18.
We evaluate the economic efficiency of even- and uneven-aged management systems under risk of wildfire. The management problems are formulated for a mixed-conifer stand and approximations of the optimal solutions are obtained using simulation optimization. The Northern Idaho variant of the Forest Vegetation Simulator and its Fire and Fuels Extension is used to predict stand growth and fire effects. Interest rate and fire risk are found to be critical determinants of the superior stand management system and timber supply. Uneven-aged management is superior with higher interest rates with or without fire risk. Alterations in the interest rate affect optimal stocking levels of uneven-aged stands, but have only minor effects on the long-run timber supply. Higher interest rates reduce rotation length and regeneration investments of even-aged stands, which lead to markedly reduced timber supply. Increasing fire risk increases the relative efficiency of even-aged management because a single age cohort is less susceptible to fire damage over the course of the rotation than multiple cohorts in uneven-aged stands. Higher fire risk reduces optimal diameter limit under uneven-aged management and decreases optimal rotation length and planting density under even-aged management.  相似文献   

19.
Typically, after large stand-replacing fires in mid-elevation Sierra Nevada forests, dense shrub fields occupy sites formerly occupied by mature conifers, until eventually conifers overtop and shade out shrubs. Attempting to reduce fuel loads and expedite forest regeneration in these areas, the USDA Forest Service often disrupts this cycle by the logging of fire-killed trees, replanting of conifers and killing of shrubs. We measured the effects of these treatments on live and dead fuel loads and alien species and modeled potential fire behavior and fire effects on regenerating forests. Sampling occurred in untreated, logged and herbicide-treated stands throughout the Sierra Nevada in four large fire areas 4–21 years after stand-replacing fires. Logging fire-killed trees significantly increased total available dead fuel loads in the short term but did not affect shrub cover, grass and forb cover, alien species cover or alien species richness. Despite the greater available dead fuel loads, fire behavior was not modeled to be different between logged and untreated stands, due to abundant shrub fuels in both logged and untreated stands. In contrast, the herbicide treatment directed at shrubs resulted in extremely low shrub cover, significantly greater alien species richness and significantly greater alien grass and forb cover. Grass and forb cover was strongly correlated with solar radiation on the ground, which may be the primary reason that grass and forb cover was higher in herbicide treated stands with low shrub and tree cover. Repeat burning exacerbated the alien grass problem in some stands. Although modeled surface fire flame lengths and rates of spread were found to be greater in stands dominated by shrubs, compared to low shrub cover conifer plantations, surface fire would still be intense enough to kill most trees, given their small size and low crown heights in the first two decades after planting.  相似文献   

20.
A fire-risk model was developed using a stand-structure approach for the forests of the eastern slopes of the Washington Cascade Range, USA. The model was used to evaluate effects of seven landscape-scale silvicultural regimes on fire risk at two spatial scales: (1) the risk to the entire landscape; and (2) the risk to three reserve stands with stand structures associated with high conservation priorities (layered canopy, large trees, multiple species). A 1000 ha landscape was projected five decades for each management regime using an individual tree, distance-independent growth model. Results suggest that a variety of silvicultural approaches will reduce landscape fire risk; however, reserve stand fire risk is minimally decreased by thinning treatments to neighboring stands. Intensive fuel reduction through prescribed burning and selection of reserve stands in favorable topographic positions provide substantial fire risk reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号