首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1–5 yr after selective logging, and experimentally tested the effect of forest fire on populations of invasive grasses. In unlogged forests and in microhabitats created by selective logging we found a total of four alien and 16 native grass species. Grasses covered 2% of unlogged and 4% of logged forest, with grass cover in logged forest concentrated in areas directly disturbed by logging; log landings and roads had relatively greater grass cover (37% and 17%, respectively) than did skid trails (10%) and felling gaps (8%). Total grass cover and grass species richness increased with canopy openness and were greatest in sites most severely disturbed by logging. The grass flora of these disturbed areas was composed mostly of native ruderal species (e.g., Digitaria insularis, Leptochloa virgata), a native bamboo (Guadua paniculata), and Urochloa (Panicum) maxima, a caespitose C4 pasture grass introduced from Africa. Urochloa maxima formed monodominant stands (up to 91% cover and 2–3 m tall) and grew on 69% of log landings and 38% of roads. To better understand the potentially synergistic effects of logging and fire on the early stages of grass invasion, we tested the effect of a 12-ha experimental fire on U. maxima populations in a selectively logged forest. Three years after the fire, the area covered by alien grass in burned forest increased fourfold from 400 m2 (pre-fire) to 1660 m2; over the same period in a logged but unburned (control) area, U. maxima cover decreased from 398 m2 to 276 m2. Increased canopy openness due to fire-induced tree mortality corresponded with the greater magnitude of grass invasion following fire. Selective logging of this dry forest on the southern edge of the Amazon Basin promotes alien grass invasion; when coupled with fire, the rate of invasion substantially increased. Recognition of the grass-promoting potential of selective logging is important for understanding the possible fates of tropical forests in fire-prone regions.  相似文献   

3.
The strategy of using advanced layering for regenerating logged black spruce stands has become a common practice. Compared with natural post-fire black spruce stands, this strategy may alter stand structure with a possible change in stand productivity. Using harvested tree data from sample plots established in burned and logged stands, 50 years after disturbance, and on similar soils, we compared the structure, height growth, and biomass allocation of both types of stands. Stem analysis revealed that black spruce trees in logged stands reached their maximum height growth later and at a concomitant lower level than black spruce trees in burned stands. Biomass production was comparable between stand types but was reduced when ericaceous shrubs were abundant. Compared to natural post-fire stands, logged stands present a shift of biomass allocation to branches and to leaves. These mechanisms are interdependent and represent the tree adjustment to the altered structure in logged stands characterised by the fragmented canopy with the increase of ericaceous shrubs cover and of organic layer thickness.  相似文献   

4.
Fire is an important ecological process in many western U.S. coniferous forests, yet high fuel loads, rural home construction and other factors have encouraged the suppression of most wildfires. Using mechanical thinning and prescribed burning, land managers often try to reduce fuels in strategic areas with the highest fuel loads. Riparian forests, however, are often designated as areas where only limited management action can take place within a fixed-width zone. These highly productive forests have developed heavy fuel loads capable of supporting stand-replacing crown fires that can alter wildlife habitat and ecosystem function, and contribute to stream channel erosion. Objectives of this study were to determine whether adjacent coniferous riparian and upland forests burned historically with different frequencies and seasonalities, and whether these relationships varied by forest, site, and stream characteristics. We measured dendrochronological fire records in adjacent riparian and upland areas across a variety of forest, site and stream conditions at 36 sites in three sampling areas in the northern Sierra Nevada.  相似文献   

5.
Decline of cavity-using wildlife species is a major forest management issue. One of the causes of this problem is the loss in cavity tree abundance, resulting from short rotation silviculture, stand-replacing disturbance events and timber harvesting in disturbed stands. Cavity tree availability cannot be guaranteed due to the stochastic nature of disturbance events. We developed a Markov model to predict future cavity tree availability under alternative tree felling and fire protection strategies using information on cavity tree dynamics and fire history. Stochastic dynamic programming was used to find a strategy that maximizes timber revenues less forest management costs, including the cost of an artificial nest-box program that must be implemented whenever cavity trees become critically scarce. The requirement to implement a nest-box program in such circumstances strongly influenced the optimal tree felling strategy and resulted in a higher probability of having cavity trees in the future. This reflected an increase in the retention of old growth forest and stands with fire-killed cavity trees as well as stands of younger trees to provide a future source of cavities. These results demonstrate the need to consider the costs of artificial habitat enhancement and the risk of future cavity tree scarcity in multiple-use forest management planning.  相似文献   

6.
Studies examining the interacting effects of ungulate herbivore pressure and site productivity on vegetation are mostly on grassland-grazing systems and have shown conflicting patterns. Here we examine the effects of deer density (>30 years differences in density between two landowners), site productivity (site index, SI) and stand age on subcanopy vegetation characteristics in 60 closed canopy, clear-cut origin Populus tremuloides dominated stands, Michigan, USA. Stand age effects were included because age varied among stands and can affect subcanopy vegetation patterns. Compared with fewer deer, stands with more deer had greater total forest floor vegetation mass, and its major components bracken fern (Pteridium aquilinum), sedge (mostly Carex pensylvanica) and trees/shrubs <0.25 m tall, but lower forb mass and lower forest floor vegetation species richness and diversity. Deer density and SI had strong interacting effects on total forest floor mass, forb mass, and species richness. Forb mass increased with SI, but only in stands with fewer deer, whilst total vegetation mass was greater in stands with more deer at lower SI and declined with SI more sharply than for stands with fewer deer. Species richness increased with SI but more so at lower than higher deer density. Deer density and age had interacting effects on mass of trees/shrubs <0.25 m tall and sedge. Compared with fewer deer, stands with more deer had greater sedge and tree/shrub mass, and sedge mass decreased and tree/shrub mass increased more sharply with age. In lower deer stands there was a dense subcanopy tree and shrub strata within and beyond the reach of deer 0.9-10 m tall whereas in higher deer stands this vegetation layer was nearly absent. We conclude that higher deer browse pressure in early successional Populus stands (1) strongly limits the recruitment of woody stems to larger (>0.9 m tall) size classes, which could affect long-term successional trajectories, and (2) diminishes forb density and species richness, especially at higher site productivity, but increases total forest floor vegetation mass (mostly bracken fern and sedge), especially at lower site productivity. Given associations of bracken fern and sedge with poorer and/or more open sites and assuming high palatability of forbs, this pattern may result from the combination of selective herbivory and higher light availability caused by limited recruitment of trees and shrubs to taller strata.  相似文献   

7.
Pinus halepensis forests are among the forest ecosystems in the Mediterranean Basin most affected by fire. Their distribution across lowland areas, in particular along the wildland–urban interface, increases the need to understand their ecology and responses to fire regime for their effective management. Apart from the extremely flammable tree layer, in several stands of these forests there is an increased fuel load attributed to the well-developed understorey of evergreen sclerophyllous shrubs. Taking into consideration that, in contrast with the long period required for full development of post-fire-regenerating pines, these shrubs resprout vigorously within the first post-fire weeks, it is important to explore the temporal trend of fuel accumulation to determine the risk of a second fire across a burned landscape. Two post-fire chronosequences of, in total, 12 P. halepensis stands were considered for sampling in Central Greece. The first chronosequence corresponds to pine stands characterized by the dominance of evergreen sclerophyllous shrubs in the understorey (Type 1) whereas the second chronosequence corresponds to pine stands where the cover of such shrubs was lower (Type 2). This study helps in understanding the fuel dynamics according to the type of P. halepensis forest stand and to anticipate future biomass growth. The proposed equations are simple tools, enabling land managers to estimate understorey total fuel load easily by visually recording the cover and height of the evergreen sclerophyllous shrub component, to justify understorey fuel reduction measures.  相似文献   

8.
在滇中安宁“3·29”重大森林火灾火烧迹地选择无人为干扰的灌木林设置样地,并与未过火的灌木林进行比较,通过外业调查和实验室测定,研究了可燃物的种类、高度、绝对含水量、载量等特征。结果表明,火烧迹地死可燃物的高度为5.7m,与未过火的活灌木高度5.4m差不多,活灌木平均高度达1.5m;火烧迹地活灌木、死可燃物、CWD的热值及点着温度与未过火样地的差异均不明显;火烧迹地CWD的灰分含量仅为未过火的25.87%;火烧迹地总的可燃物载量为9.07kg/m^2,明显超过了未过火样地7.82kg/m^2。  相似文献   

9.
Factors related to the composition of riparian forest stands on three streams in the northern Sierra Nevada mixed conifer forest type were related to proximity to the water course and years since fire. Using a linear regression analysis 46 variables were correlated to the natural log of distance from the thalweg “ln(distance)” including a highly significant positive correlation to dominance and percent canopy cover of conifers, and a significant negative correlation to the same variables when applied to hardwoods. Twenty six variables were correlated to years since fire “years” including similar correlations to the dominance and cover of hardwood and conifer species. However, the significance of the correlation and the degree of sample variability described by fire age was relatively low in comparison to that found for distance from the thalweg. In addition the relative frequency of fire scars increased in a linear fashion with distance from the watercourse. The results of this study indicate that the importance of fire as a determining influence on forest composition declines in proximity to the riparian zone.  相似文献   

10.
Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m−2 year−1 in small diameter mountain hemlock stands to ∼300 g m−2 year−1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m−2 year−1 for small diameter stands of Jeffrey pine to 126.9 g m−2 year−1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.  相似文献   

11.
Stand structure and fuel mass were measured before and after a post-fire logging operation conducted 2 years after the 1996 Summit Wildfire (Malheur National Forest), in a ponderosa pine-dominated forest in northeastern Oregon. Variables were measured both pre- and post-logging in four replicate units for each of three treatments [un-logged control, commercial harvest (most dead merchantable trees removed), fuel reduction harvest (most dead merchantable trees removed plus most dead trees >10 cm diameter)]. Post-fire logging resulted in a significant decrease in mean basal area, down to 46% pre-treatment level in commercial units, and down to 25% in fuel reduction units. Logging significantly reduced tree density, especially for the smallest (<22 cm diameter) and intermediate (23–41 cm) diameter classes. Fuel reduction units also had significantly fewer snags (dead trees >30 cm diameter—4 ha−1), compared to both commercial (23 ha−1) units and to un-logged controls (64 ha−1) in the year following timber harvest. Logging did not change ladder height or tree species composition (% ponderosa pine, Douglas-fir and grand fir). Total woody fuel mass increased significantly in fuel reduction units when compared to controls, with the greatest difference among treatments occurring in the slash fuel (<7.6 cm diameter) component (mean of 6.2 Mg/ha for fuel reduction stands versus 1.3 Mg/ha for un-logged stands). Logging activity caused no change in the mass of the forest floor (litter or duff). Model projections of the fuel bed using the fire and fuels extension of the forest vegetation simulator (FVS–FFE) indicate that the disparity in slash fuel mass between fuel reduction and un-logged units would be sustained until about 15 years post-logging, but a re-burn of moderate intensity occurring during this time would likely kill all young trees, even in un-logged units, because of the influence of other components of the fuel bed, such as grasses and shrubs. Model projections of 1000-h fuels (woody fuels >7.6 cm diameter) indicate that standing structure in all stands would collapse quickly, with the result that un-logged stands would contain two- or three-fold greater masses at 25 and 50 years post-logging, leading to much higher consumption rates of fuel in the event of a re-burn in the same place. Variation in dead tree fall and decay rates did not change the relationship among treatments in 1000-h fuel loads, but changed the time at which treatment differences were projected to disappear. Despite treatment differences in heavy fuel accumulations over time however, FVS–FFE predicts no differences among treatments in mortality of young trees due to either moderate or high intensity fire occurring in the same place at 25, 50, or 100 years post-fire logging. The lack of a re-burn effect is in part due to the reliance on flame length as the primary mechanism leading to tree death in the fire effect models used by FVS–FFE. If tree death turns out to be caused more by root burning or cambial heating, the observed variations in 1000-h fuel loadings among treatments could be significant in the event of a future re-burn.  相似文献   

12.
Restoring Sierra Nevada mixed-conifer forests after a century of fire suppression has become an important management priority as fuel reduction thinning has been mandated by the Healthy Forests Restoration Act. However, in mechanically thinned stands there is little information on the effects of different patterns and densities of live-tree retention on forest canopy microclimate. This study compared gradients of air temperature and vapor pressure deficit (VPD) through the vertical forest profile among an overstory-thin, an understory-thin, an un-thinned control, and a riparian environment in a Sierra Nevada mixed-conifer forest. Temperature and humidity were recorded for a year by 60 data loggers arrayed in 12 trees at 5, 15, 25, 35, and 45 m above the forest floor. Both thinning treatments had significantly more extreme summer daily ranges of temperature and VPD than the control across heights. The overstory-thin resulted in the greatest maximum temperatures, VPDs, and VPD range among all sensors at 5 m, and significantly higher summer maximum temperatures and VPDs than the control in lower strata (≤15 m). The understory-thin also had significantly higher summer maximum temperatures than the control (≤15 m), but these too were significantly less than in the overstory-thin nearest the surface at 5 m. Understory thinning did not alter the mean or range of microclimate as much as overstory thinning. Riparian microclimate had significantly lower minimums and means, and greater daily ranges of temperatures and VPDs than the control. Results suggest that thinning canopy cover significantly increases the extremes and variability of understory microclimate compared to thinning from below and no-thin treatments.  相似文献   

13.
The fisher (Martes pennanti) is a forest mustelid endemic to North America that has experienced range reductions in Pacific states that have led to their listing under the Endangered Species Act as warranted but precluded by higher priorities. The viability of the southern Sierra Nevada fisher population is of particular concern due to its reduced historical range, isolated nature, and low genetic variability. We located resting structures of radio-collared fishers in the southern Sierra Nevada and compared resting and available habitat to examine selection for specific features of resting sites. Resting structures provide protection from predators and unfavorable weather and are believed to be the most limiting habitat element across fisher home ranges. Resting structures were found primarily in live trees (76%) and snags (15%). Trees used by fishers for resting were among the largest available and frequently had mistletoe infestations. Ponderosa pines (Pinus ponderosa) were used more often than expected and incense cedars (Calocedrus decurrens) less than expected. Snags were also large and in fairly advanced stages of decay. Habitat at fisher resting sites had higher canopy cover, greater basal area of snags and hardwoods, and smaller and more variable tree sizes compared to random sites. Resting sites were also found on steeper slopes and closer to streams. Canopy cover was consistently the most important variable distinguishing rest and random sites. In western North America, fishers are generally associated with late-successional forests, but changes in these forests due to logging and fire suppression have resulted in a transition to forest stands characterized by fewer large trees and more small stems. These conditions are consistent with our finding that the large rest structures were surrounded by smaller than average trees. Management practices that support the growth and retention of greater numbers of large trees and snags, while maintaining a minimum of 61% (based on moosehorn) or 56% (generated via Forest Vegetation Simulator) canopy cover and a complex horizontal and vertical forest structure, can improve and provide for future fisher habitat.  相似文献   

14.
对北京十三陵林场人工油松林和侧柏林进行踏查,并根据地型、林分因子的差异性设置21块样地,调查样地的林分、地型因子及可燃物负荷量,进行可燃物负荷量及其影响因子的相关性分析。研究结果表明:对针叶林整体而言,灌木可燃物负荷量与枝下高呈正相关,与林分密度呈负相关,草本可燃物负荷量与平均胸径、平均树高呈正相关,1h,10h时滞枯枝负荷量与郁闭度呈正相关;对油松林而言,灌木可燃物负荷量与平均胸径呈负相关,1h,10h时滞枯枝负荷量与海拔、平均树高呈正相关;对侧柏林而言,灌木可燃物负荷量与平均树高呈正相关,草本可燃物负荷量与平均胸径、平均树高呈正相关,10h时滞枯枝负荷量与郁闭度呈正相关。  相似文献   

15.
Little information is available comparing historic and modern sand savannas, and how remnants respond to restored fire. We compared short- and long-term effects of restored fire on the Tefft Savanna, a 197 ha eastern sand savanna in northwest Indiana that had undergone three decades of fire protection. U.S. Public Land Survey data from Tefft in 1833 indicate black and white oak barrens, and pin oak savanna, with trees averaging 50 stems/ha and 4 m2/ha basal area. We used ordination and a digital elevation model to assess topographic distribution of tree species in 1986. In 1986, we also compared initial effects of high- and low-intensity dormant season fire on woody vegetation among nine blocks containing black oak, white oak, and pin oak stands. Twenty years later, we compared the same blocks, all of which had been burned three times per decade with low-intensity fires. In 1986, black oak, white oak and pin oak occurred across a gradient of decreasing elevation and slope. At that time, unburned black oak and white oak stands averaged >400 stems/ha and about 10 m2/ha basal area, and their smaller size classes contained non-oak woody vegetation that apparently had invaded with fire exclusion. After initial burns, black oak and white oak stands receiving high-intensity fire averaged <200 stems/ha and had significantly lower oak canopy cover and basal area than unburned stands. Stands receiving low-intensity fire had intermediate oak canopy cover, with basal area similar to unburned stands. Pin oak stands were more fire-resistant, apparently because spring flooding often reduced fire effects. Density, cover and basal area of non-oak tree species were much lower than oaks, and were not reduced by initial burning. Repeated low-intensity burning over 20 years tended to maintain structure caused by initial fires. However, it reduced lower size class stem densities, promoted post-fire sprouting into the shrub layer, and allowed oak basal area to increase in larger size classes. Time since fire regulated shrub layer structure on a 4-year cycle. Density and cover of trees and shrubs returned to pre-burn conditions by the second and fourth growing seasons after fire, respectively, with non-oak tree species exceeding pre-burn cover and density by the fourth season. These results suggest that high-intensity fire is more important than repeated low-intensity burning in structuring and restoring eastern sand savanna, and that non-oak tree species, once established, may be resistant to low-intensity fire.  相似文献   

16.
Euro-American logging practices, intensive grazing, and fire suppression have increased the amount of carbon that is stored in ponderosa pine (Pinus ponderosa Dougl. Ex Laws) forests in the southwestern United States. Current stand conditions leave these forests prone to high-intensity wildfire, which releases a pulse of carbon emissions and shifts carbon storage from live trees to standing dead trees and woody debris. Thinning and prescribed burning are commonly used to reduce the risk of intense wildfire, but also reduce on-site carbon stocks and release carbon to the atmosphere. This study quantified the impact of thinning on the carbon budgets of five ponderosa pine stands in northern Arizona, including the fossil fuels consumed during logging operations. We used the pre- and post-treatment data on carbon stocks and the Fire and Fuels Extension to the Forest Vegetation Simulator (FEE-FVS) to simulate the long-term effects of intense wildfire, thinning, and repeated prescribed burning on stand carbon storage.The mean total pre-treatment carbon stock, including above-ground live and dead trees, below-ground live and dead trees, and surface fuels across five sites was 74.58 Mg C ha−1 and the post-treatment mean was 50.65 Mg C ha−1 in the first post-treatment year. The mean total carbon release from slash burning, fossil fuels, and logs removed was 21.92 Mg C ha−1. FEE-FVS simulations showed that thinning increased the mean canopy base height, decreased the mean crown bulk density, and increased the mean crowning index, and thus reduced the risk of high-intensity wildfire at all sites. Untreated stands that incurred wildfire once within the next 100 years or once within the next 50 years had greater mean net carbon storage after 100 years compared to treated stands that experienced prescribed fire every 10 years or every 20 years. Treated stands released greater amounts of carbon overall due to repeated prescribed fires, slash burning, and 100% of harvested logs being counted as carbon emissions because they were used for short-lived products. However, after 100 years treated stands stored more carbon in live trees and less carbon in dead trees and surface fuels than untreated stands burned by intense wildfire. The long-term net carbon storage of treated stands was similar or greater than untreated wildfire-burned stands only when a distinction was made between carbon stored in live and dead trees, carbon in logs was stored in long-lived products, and energy in logging slash substituted for fossil fuels.  相似文献   

17.
Fires can mediate switches between alternative vegetation types which may be more flammable and thus reinforce fire spread. We tested if there is a positive feedback between the expansion of the tussock grass Ampelodesmos mauritanica (hereafter Ampelodesmos) and fire hazard in Mediterranean Basin communities and its relation to tree cover decline. The effect of fire on Ampelodesmos population structure was analysed by surveying stands burned at different fire frequencies. The effect of vegetation dominated by Ampelodesmos on fire behaviour compared to other species coexisting in the community was predicted by the Rothermel fire propagation model BEHAVE. There was a negative correlation between pine cover and percentage of Ampelodesmos plants. Ampelodesmos mortality after fire is very low. Recently burned stands had a higher proportion of reproductive plants and higher seedling density than unburned stands. The high temperatures reached during fire may kill seeds, the higher seedling recruitment results from fast resprouting and higher seed production of burned plants compared to unburned plants 1 year after fire. Simulations with the BEHAVE fire model predict that Ampelodesmos increases fire intensity and spread because of its high accumulation of fuel load and standing dead material. The results suggest that there is a positive relationship between Ampelodesmos abundance and fire regime which increases the invasive potential of this grass and the fire risk of the community where it dominates.  相似文献   

18.
Fire behavior modeling systems are important in predicting wildfire risk, fire growth, and fire effects. However, simulation software requires a new fuel modeling to include fuel treatments, prescribed fire and the transition to crown fire. The thirteen Rothermel models are insufficient in completely representing Mediterranean ecosystems. In this sense, the new American modeling includes five fuel types, requiring the acquisition of hybrid models made up of the mixture of grass and shrub and the grass or shrub mixed with litter from forest canopy. Respecting meteorological conditions and shrub characteristics, field studies have shown significant differences between American and Mediterranean models. As a consequence, the definition of new Mediterranean models requires the adjustment of specific parameters such as fuel load by category (live and dead) and particle size class (1-, 10- and 100-h time-lag), fuelbed depth and surface area-to-volume ratio. These new parameters were obtained in situ of sample itineraries, prescribed fires, and forest fires. The availability of this new modeling, validated on a field of regional scale, will facilitate preventive planning and management as well as an efficient application of suppression techniques, both ground and aerial operations, required in defending a territory against forest fires.  相似文献   

19.
20.
More than a century of fire exclusion and past timber management practices in many Sierra Nevada mixed-conifer forests have led to increased stand densities and fuel accumulation, with a corresponding risk of large, high severity wildfires. To reduce hazardous fuel accumulations and restore the health and natural processes of forest ecosystems, fuel management programs often employ thinning and prescribed fire treatments, both alone and in combination. We evaluated forest floor and mineral soil chemical and physical characteristics following these treatments in a managed Sierra Nevada mixed-conifer forest using a fully replicated study design with four separate treatments: THIN, BURN, THIN + BURN, and an untreated CONTROL. Compared to the CONTROL, the BURN and THIN + BURN treatments consumed a large amount of the forest floor, reducing the mass and depth by more than 80%. These treatments reduced the forest floor C and N pools by more than 85%, resulting in reductions of 25 Mg C ha−1 and more than 700 kg N ha−1 from the forest floor. Despite these large losses from the organic horizons, no significant differences in mineral soil total C and N pools were detected among treatments. Compared with the CONTROL and THIN treatments, the BURN and THIN + BURN significantly increased the mineral soil NO3-N concentration, pool of inorganic N, pH, and exposed bare soil. The THIN + BURN treatment significantly increased the concentrations of NH4-N and exchangeable Ca relative to the CONTROL. No significant differences in the net rates of nitrification, N mineralization, or bulk density were detected among the four treatments. The BURN treatment reduced mineral soil C concentration and CEC, while the THIN + BURN treatment had the greatest increase in inorganic N. Fire effects on soil pH and inorganic N were moderated in skid trails due to reduced fuel continuity and consumption. In light of the current management emphasis on hazardous fuels reduction, we recommend that researchers investigating fire effects in harvested stands include skid trail influences in their study design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号