首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
影响土壤镉吸持和解吸的因子   总被引:10,自引:0,他引:10  
研究了土壤的pH、离子浓度(0.01mol/L、0.05mol/L、0.1mol/L)、阴(阳)离子种类(NO3-、Cl-、OAc-、SO42-、HPO4-及Zn和Pb)及石灰和葡萄糖对土壤镉吸持及其解吸的影响。  相似文献   

2.
丁英志  王肖磊  曾宇  方国东 《土壤》2022,54(5):1041-1050
本文发展了一种高效、低成本的有机污染土壤修复技术,以生物炭和工业铁粉作为原料,采用工业球磨技术制备出了铁碳复合纳米材料,其能够高效活化过硫酸盐降解对羟基联苯。通过高分辨透射电子显微镜和元素扫描发现,球磨法制备的铁碳复合材料粒径为5-30 nm,平均粒径为15 nm,铁颗粒均匀分布于碳材料中;铁碳复合纳米材料的投加量为0.1 g/L、过硫酸钠的投加浓度为0.50 mmol/L,120 min内对水中对羟基联苯的去除率可达100%,而对土壤中的对羟基联苯的降解率也可达85%;利用电子顺磁共振技术发现铁碳材料活化过硫酸盐的主要机制是铁碳材料催化分解过硫酸盐产生具有强氧化能力的羟基自由基(.OH)和硫酸根自由基(SO4?-),从而快速降解有机污染物;该反应体系作用pH范围广、不受氯离子和硝酸盐干扰,将为有机污染土壤的修复提供了新的技术。  相似文献   

3.
在野外GPS定点定位调查、土壤样品分析的基础上,借助Excel和ArcGIS9.3等软件,对新疆自治区喀什市岳普湖县塔吉克阿巴提镇0-30cm土层的盐离子特征、灌区土壤盐渍化现状及空间分布特征进行了分析。结果表明,0-30cm土层土壤中的离子以Cl-,SO42-,Na+,Ca2+为主Na+与Cl-呈极显著正相关关系,相关系数为0.98,HCO3-与其它6种离子(Na+,Ca2+,Mg2+,K+,Cl-,SO42-)呈负相关关系受灌排系统影响较大的农田0-30cm土壤中Cl-/SO42-比值远小于不受灌排系统影响的荒地农田和荒地0-30cm土壤中的Cl-/SO42-比值与总盐呈正相关关系,相关系数依次为0.68和0.32。现阶段对塔吉克阿巴提镇灌区农业危害最严重的是氯化物-硫酸盐盐渍化土,硫酸盐盐渍化土表现为盐渍化土地向非盐渍化土地转变的过渡类型非盐渍化农田及轻度盐渍化农田主要分布在开垦较早,灌排系统畅通的区域,灌排系统不畅通的区域仍然处于脱盐缓慢或持续积盐的状态。  相似文献   

4.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360 μL/L)和倍增CO2浓度(720 μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响。结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%。在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低。这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用。综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长。  相似文献   

5.
不同铵硝配比对弱光下白菜氮素吸收及相关酶的影响   总被引:2,自引:0,他引:2  
以黑色遮阳网覆盖模仿弱光环境, 使光照强度为自然光的20%左右, 以自然光照为对照, 采用精确控制水培溶液氮素营养, 研究NH4+-N/NO3--N 比例分别为0/100、25/75、50/50、75/25、100/0 对弱光下白菜氮代谢及硝酸还原酶和谷氨酰胺合成酶活性的影响。结果表明, 弱光下, 白菜的鲜重及叶片总氮量以NH4+-N/NO3--N 比为25/75 时最大, NH4+-N/NO3--N 比为100/0 时最低。随弱光处理的进行, 白菜叶片中硝酸还原酶活性及谷氨酰胺合成酶活性均呈下降趋势, 但NH4+-N/NO3--N 比为25/75 时, 可维持叶片内较高的硝酸还原酶活性及谷氨酰胺合成酶活性。试验表明, NH4+-N/NO3--N 比25/75 是白菜在弱光下生长的较适宜氮素形态配比。  相似文献   

6.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:5,自引:0,他引:5  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性。研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO-3-N浓度最大值越大,相同深度处土壤NO-3-N浓度也越大。肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型。供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小。  相似文献   

7.
An analysis of Cr (Ⅵ)-sorbed surface of the soils by using a scanning electron microscope and an electron probe microscope has proved that aluminium is the chief element affecting Cr (Ⅵ) adsoption. As the ionic strength of the solution increased, the amounts of Cr (Ⅵ) adsorbed by goethite and soils decreased. Cr (Ⅵ) adsorption was greatly depressed in the presence of SO42-, WO42-, MoO42-, HPO42- and H2PO4- which competed for anion adsorption sites. The depressing extent of these anions was found to follow the sequence: HPO42-, H2PO4->MoO42->WO42->SO42->>Cl-, NO3-. The amounts of Cr (Ⅵ) desorption varied with different extractants.  相似文献   

8.
对宁夏回族自治区银北地区盐碱地野外土壤表层光谱反射率和土壤全盐及盐分进行定量分析,筛选出各土壤盐分指标的敏感波段,然后采用全回归和逐步回归的方法建立各盐分的预测模型。结果表明:表层土壤高光谱反射率r,及其平滑去嗓处理后的值R,lg(R)与全盐含量呈极显著正相关关系,1/R,lg(1/R)与全盐呈极显著负相关关系,(R)'和〔lg(1/R)〕'在特定单波段处表现较佳;土壤表层光谱反射率与CO32-的相关性最强,其次是SO42-;土壤光谱反射率与Na+的相关性在各种变换方法下均较强,其次为Mg2+,与Ca2+的相关性最弱。基于R的逐步回归方程为全盐含量预测的最佳模型;基于土壤光谱反射率拟合土壤CO32-的准确度略高于对土壤HCO3-;敏感波段估测土壤SO42-含量的决定系数明显高于其他阴离子;采用〔lg(1/R)〕'逐步回归得到的方程拟合土壤Na+,K+和Mg2+含量相对于其他变换方式效果更理想。预测模型中对土壤全盐和Na+的模型精度较高,预测能力强;光谱对土壤SO42-和Mg2+的预测能力也较强;对土壤Cl-和Ca2+的预测稳定性、预测能力和精度都较差。  相似文献   

9.
本文介绍了采用电导频散装置测量分别含有10-4mol/LHCl、5×10-5mol/L H2SO4和10-4mol/L H3PO4的黄棕壤、棕壤、黑土和砖红壤悬液(20-30g/kg)的电导频散曲线,频散曲线上均呈现频率范围相当宽的坪区,频散曲线的特性分析结果表明,黄棕壤和棕壤在3种酸溶液中的始散频率(0.6-1kHz)低于黑土悬液(16-28kHz),而砖红壤的始散频率最高(25-47kHz;Cl-、SO42-和H2PO4-离子与4种土壤的相对亲合力(REC1.5/RECtp-1)顺序为Cl- < SO42- < H2PO4-,在不同土壤之间的顺序则随酸溶液而异.  相似文献   

10.
利用长期定位试验 ,比较了长期施用含SO42-和Cl- 化肥 22年后稻田土壤的 pH值、养分状况及其吸附解吸特性。结果表明 ,长期施用含SO42-化肥 ,土壤有机质、速效氮和速效钾的含量较高 ,但全量氮磷钾的含量较低 ;长期施用含Cl- 化肥 ,土壤全量氮磷钾和速效磷的含量较高 ,但pH值相对较低。长期施用含上述二种阴离子的化肥后 ,土壤对H2PO4-的最大吸附量均较大 ,且在Cl- 处理下土壤对H2PO4-吸附的结合能较大 ,而SO42-处理下土壤在同等吸附量时对H2PO4-的解吸量相应较多。长期施用含SO42-的化肥亦使土壤对钾素的供应强度较大 (ΔK0的绝对值较大 )、缓冲能力增强 (AR0值较高 ) ,而长期施用含Cl- 的化肥时则与SO42-相反  相似文献   

11.
The relations between pH, different fractions of Fe and A1 and Na4P2O7-soluble C and the amount of adsorbed SO2-4 were assessed by analysing 63 soil samples from 14 podsolized soils in Sweden. The amount of adsorbed SO2-4 was significantly better correlated with the calculated amount of the inorganic fraction of Fe and A1 oxides obtained by subtracting Na4P2O7-soluble Fe and A1 from oxalate-soluble Fe and Al than with the oxalate extraction alone. There was a close correlation between C and organically-bound S in the Na4P2O7 extract which shows that the C:S ratio of the extracted fulvic acids is about constant in the soils studied. It was found that, as the proportion of organically-complexed Fe and Al increases, the ability of the soil to adsorb SO2-4 decreases. The amount of adsorbed SO2-4 expressed on the basis of the amounts of oxalate-soluble Fe and Al was generally smaller in areas with low S deposition (< 60 mmol m-2 a-1). The ratio between pyrophosphate-soluble C and oxalate-extractable Fe and Al was negatively correlated with pH in water. It was concluded that Fe and Al associated with organic matter cannot adsorb SO2-4 and that the degree of this association is pH dependent. These observations have important implications regarding the effects of anthropogenic acidification.  相似文献   

12.
Rachel Levy  C.W Francis 《Geoderma》1976,15(5):361-370
Tracer levels of 109Cd were used to study the adsorption and desorption of Cd by synthetic and natural organo—clay complexes. Synthetic organo—clay complexes were made by adsorbing humic acid extracted from soil to various forms of < 2 μm diameter montmorillonite (Na, Ca, Al, and Fe saturated and Ca-montmorillonite coated with Al or Fe hydroxide). Natural organo—clay complexes were fractionated from the clay fraction of a Captina silt loam by density-gradient centrifugation in a large-scale zonal rotor.To evaluate the influence of humic acid on adsorption of Cd, Cd was adsorbed to the various forms of montmorillonite before and after humic acid adsorption. No appreciable difference in Cd adsorption was noted except in the case where montmorillonite was coated with Al or Fe hydroxides. Cadmium was found to be strongly bonded to clays coated with Al or Fe hydroxides; however, Cd adsorption to these clays after humic acid adsorption was considerably less. Data indicated Cd and humic acid adsorption sites on Al or Fe coated clays were either identical or prior adsorption of humic acid simply covered available Cd sites.Cadmium adsorption to clay density fractions showed that greatest adsorption was to fractions containing high quantities of organic matter or sesquioxides. Desorption of Cd with 0.01 M Ca (NO3)2 showed that Cd was adsorbed more tenaciously to the sesquioxides than organo—clay fractions.  相似文献   

13.
Jiang  J.-Q.  Zeng  Z.  Pearce  P. 《Water, air, and soil pollution》2004,158(1):53-65
The modification and use of clays as coagulants for wastewater treatment were investigated in this study. The raw clays were montmorillonites K10 and KSF, and were modified by polymeric aluminium (Al) or ferric (Fe) and/or Al/Fe mixed polymeric species. The comparative performance of modified clays and aluminium sulphate and ferric sulphate were evaluated in terms of the removal of turbidity, suspended solids, UV254-abs., colour, and total and soluble CODs. The results demonstrated that after being modified with mixed polymeric Al/Fe species, two montmorillonite clays possess greater properties to remove the particles (as suspended solids) and organic pollutants (as COD and UV254-abs.) from the wastewater and to enhance the particle settling rate significantly.  相似文献   

14.
Potassium (K) and nitrogen (N) are essential nutrients for plants. Adsorption and desorption in soils affect K+ and NH + 4 availabilities to plants and can be affected by the interaction between the electrical double layers on oppositely charged particles because the interaction can decrease the surface charge density of the particles by neutralization of positive and negative charges. We studied the effect of iron (Fe)/aluminum (Al) hydroxides on desorption of K+ and NH + 4 from soils and kaolinite and proposed desorption mechanisms based on the overlapping of diffuse layers between negatively charged soils and mineral particles and the positively charged Fe/Al hydroxide particles. Our results indicated that the overlapping of diffuse layers of electrical double layers between positively charged Fe/Al hydroxides, as amorphous Al(OH) 3 or Fe(OH) 3 , and negatively charged surfaces from an Ultisol, an Alfisol, and a kaolinite standard caused the effective negative surface charge density on the soils and kaolinite to become less negative. Thus the adsorption affinity of these negatively charged surfaces for K+ and NH + 4 declined as a result of the incorporation of the Fe/Al hydroxides. Consequently, the release of exchangeable K+ and NH +4 from the surfaces of the soils and kaolinite increased with the amount of the Fe/Al hydroxides added. The greater the positive charge on the surfaces of Fe/Al hydroxides, the stronger was the interactive effect between the hydroxides and soils or kaolinite, and thus the more release of K+ and NH + 4 . A decrease in pH led to increased positive surface charge on the Fe/Al hydroxides and enhanced interactive effects between the hydroxides and soils/kaolinite. As a result, more K+ and NH + 4 were desorbed from the soils and kaolinite. This study suggests that the interaction between oppositely charged particles of variable charge soils can enhance the mobility of K+ and NH + 4 in the soils and thus increase their leaching loss.  相似文献   

15.
Degradation Kinetics of Perchlorate in Sediments and Soils   总被引:1,自引:0,他引:1  
This study investigated the intrinsic perchlorate (ClO4 -)degradation kinetics of sediments and soils from multiple sites in microcosm studies, including the influence of varying nitrate concentration (NO3 --N from 1 to 22.8 ppm) and up to 300 ppm sulfate. The first-order degradation rates and lag times of both ClO4 - and NO3 - degradation were site-specific and dependent on environmental conditions such as organic substrate availability, nitrate, initial ClO4 - concentration, and prior ClO4 - exposure. At an initial ClO4 - concentration of 5 ppm, ClO4 - degradation rates ranged from 0.13 to 0.46 day-1, and lag times of ClO4 - degradation ranged from 0 to 60.0 days; while NO3 - degradation occurred at rates ranging from 0.03 to 1.42 day-1, with lag times ranging from 0 to 29.7 days. Under the same treatment conditions, NO3 - degradation rates were relatively higher than that of ClO4 -. Perchlorate degradation rates remained constant at both lower (0.5 ppm) and higher (5 ppm) ClO4 - concentrations. Generally, ClO4 - rates were affected by the availability of organic substrate, which was represented here by Total Volatile Solids (TVS) of sediments and soils, and not by NO3 -. Nitrate did increase the lag time of ClO4 - degradation, which may account for the persistence of ClO4 - in the environment, especially when ClO4 - is typically ppb levels in the environment compared to ppm levels of NO3 -. This study showed rapid intrinsic ClO4 - degradation in sediments and soils of contaminated sites, and highlighted the potential for natural attenuation of ClO4 - in the environment.  相似文献   

16.
Exchange reactions between 0.0in AlCl3 solutions of different pH and Ca-saturated montmorillonite, vermiculite, illite, and soils from the Park Grass Experiment at Rothamsted and the Deerpark Experiment, Wexford, Ireland, showed that Al3+ and Al(OH)2+ were adsorbed from solutions of pH > 4.0 and Al3+ and H+ from solutions of pH < 3.0. When Al was adsorbed, the cation exchange capacity of Ca-saturated soils and clays increased. Conventional Ca: Al exchange isotherms showed that Al3+ was strongly preferred to Ca2+ on all soils and clays. The equilibrium constant for Ca: Al exchange, K, was identical for soils before and after oxidizing their organic matter and did not vary, for any exchanger, with Al-saturation or the initial pH of the AlCl3 solution. This proved the validity of the procedure used for calculating exchangeable Al3+. K values for Ca:Al exchange favoured Al3+ in the order: vermiculite > Park Grass soil > Deerpark soil > illite > montmorillonite. The influence of surface-charge densities of the clay minerals on this order is discussed and a method proposed and tested for calculating the K value of a soil from its mineralogical composition.  相似文献   

17.
Phosphorus availability in terrestrial ecosystems is strongly dependent on soil P speciation. Here we present information on the P speciation of 10 forest soils in Germany developed from different parent materials as assessed by combined wet‐chemical P fractionation and synchrotron‐based X‐ray absorption near‐edge structure (XANES) spectroscopy. Soil P speciation showed clear differences among different parent materials and changed systematically with soil depth. In soils formed from silicate bedrock or loess, Fe‐bound P species (FePO4, organic and inorganic phosphate adsorbed to Fe oxyhydroxides) and Al‐bound P species (AlPO4, organic and inorganic phosphate adsorbed to Al oxyhydroxides, Al‐saturated clay minerals and Al‐saturated soil organic matter) were most dominant. In contrast, the P speciation of soils formed from calcareous bedrock was dominated (40–70% of total P) by Ca‐bound organic P, which most likely primarily is inositol hexakisphosphate (IHP) precipitated as Ca3‐IHP. The second largest portion of total P in all calcareous soils was organic P not bound to Ca, Al, or Fe. The relevance of this P form decreased with soil depth. Additionally, apatite (relevance increasing with depth) and Al‐bound P were present. The most relevant soil properties governing the P speciation of the investigated soils were soil stocks of Fe oxyhydroxides, organic matter, and carbonate. Different types of P speciation in soils on silicate and calcareous parent material suggest different ecosystem P nutrition strategies and biogeochemical P cycling patterns in the respective ecosystems. Our study demonstrates that combined wet‐chemical soil P fractionation and synchrotron‐based XANES spectroscopy provides substantial novel information on the P speciation of forest soils.  相似文献   

18.
Abstract

The importance of various soil components on copper (Cu) retention by Spodosois was investigated. Copper sorption and extraction were conducted on samples from the B horizon from six Danish Spodosois. The investigation was conducted on untreated samples, on hydrogen peroxide‐treated samples (to remove organic matter), on oxalate‐treated samples [to remove amorphous to poorly crystalline aluminum (Al) and iron (Fe) oxides], on hydroxylamine‐treated samples [to remove manganese (Mn) oxides]. Subfractions treated with hydrogen peroxide (H2O2) were further treated with oxalate and citrate‐bicarbonate‐dithionite (CBD). Sorption of Cu from an initial 10‐6 M solution after 48 hours was determined in the pH range 3 to 7 using 0.1M sodium nitrate (NaNO3) as the background electrolyte. The pH‐dependent sorption curve (sorption edge) was shifted to a higher pH with decreasing Al oxide content in the soils, and for the treated sample after removal of organic matter and Al and Fe oxides. A negligible effect was seen after removal of the Mn oxides because of their low abundance. Extraction of sorbed Cu at pH 4 to 6 with 0.1M nitric acid (HNO3) for 24 hours confirmed the sorption results, in inasmuch as removal of the Al (and Fe) oxides increased Cu extractability. Therefore, it was concluded that in the soils investigated, Cu retention is mainly determined by the oxalate‐extractable Al fraction with a minor contribution due to crystalline Fe oxides.  相似文献   

19.
The fine earth (<2 mm) and rock fragments (>2 mm) fractions of two soils derived from Oligocene sandstone have been examined to assess the origin of the discrepancies between cation exchange capacity (CEC) and effective CEC (ECEC). The soils differ in terms of acidity: soil A is more acid than soil B. When the A samples are treated with BaCl2, the solution became sufficiently acid (pH < 4·5) to dissolve and to maintain Al in solution. From these samples more Al is released than base cations. Aluminium was continuously replenished even after 192 h, so that the ECEC was always larger than the CEC. Samples from soil B contain less H and Al ions, and the BaCl2 solution could not lower the pH below 5·0. In these samples little Al is released, and the base cations dominate the exchangeable pool of ions. This Al can be considered to be exchangeable, and a good agreement exists between the ECEC and the CEC. The source of non-exchangeable Al in the A samples is the OH-Al polymers of the hydroxy-interlayered vermiculite (HIV) and hydroxy-interlayered smectite (HIS) that tend to dissolve during the BaCl2 treatments. In the less acid B samples the Al polymers are not affected by BaCl2 treatment. Different results were obtained when the clays, extracted from an Na-dispersed suspension, were treated with BaCl2 solution. Because the clays are no longer acid, no H+ is released, and the OH-Al polymers are not dissolved. Therefore, the saturating ions play an important role in the dissolution of the OH-Al polymers and cause differences between the CEC and ECEC. We discount organic matter and specifically Al-organo complexes as a source of non-exchangeable Al. Both A and B soils contain very similar pyrophosphate-extractable Al, but show substantial differences in the amount of exchangeable Al.  相似文献   

20.
C.A. Igwe  M. Zarei  K. Stahr 《CATENA》2009,77(3):232-237
The stability of microaggregates in soils as opposed to its dispersion is a very important soil phenomenon that checks degradation arising from unguided tillage and soil erosion. Ten soils from southeastern Nigeria were sampled from their typical A and B horizons for the study. The aim was to identify the extent of colloidal stability of the soils and the forms of Fe and Al oxides in the soils contributing to their stability. The soils are mostly Ultisols and Inceptisols formed on sandstones and shale parent materials. The soils are low in soil basic cations including the soil organic carbon (SOC). The major clay mineral is kaolinite while the soil is acid in reaction. The various forms of soil Fe and Al oxides are high with the total forms of Fe and Al being most dominant and > dithionite extracted Fe and Al > oxalate extracted Fe and Al > pyrophosphate extracted Fe and Al. The water-dispersible clay and silt (WDC) and (WDSi) which are index of dispersion in most soils are low to medium thus reflecting in the low to medium dispersion ratio (DR). The clay flocculation index (CFI) and aggregated silt + clay (ASC) were moderate to high implying the high potential stability of the soils. Soil organic carbon did not seem to be contributing much to the stability of the microaggregates while oxalate and pyrophosphate extractable Fe (Feox, Fep) and to some extent total Al (Alt) were among the different forms of oxides that act as aggregating agents. We propose here that rather than SOC acting as a disaggregating agent in the soils, it might have acted in association with these oxides in a linkage or bridge such as C–P–OM–C to ensure stability of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号