首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reducing sea turtle by-catch in pelagic longline fisheries   总被引:6,自引:0,他引:6  
Reducing by‐catch of sea turtles in pelagic longline fisheries, in concert with activities to reduce other anthropogenic sources of mortality, may contribute to the recovery of marine turtle populations. Here, we review research on strategies to reduce sea turtle by‐catch. Due to the state of management regimes in most longline fisheries, strategies to reduce turtle interactions must not only be effective but also must be commercially viable. Because most research has been initiated only recently, many results are not yet peer‐reviewed, published or readily accessible. Moreover, most experiments have small sample sizes and have been conducted over only a few seasons in a small number of fisheries; many study designs preclude drawing conclusions about the independent effect of single factors on turtle by‐catch and target catch rates; and few studies consider effects on other by‐catch species. In the US North Atlantic longline swordfish fishery, 4.9‐cm wide circle hooks with fish bait significantly reduced sea turtle by‐catch rates and the proportion of hard‐shell turtles that swallowed hooks vs. being hooked in the mouth compared to 4.0‐cm wide J hooks with squid bait without compromising commercial viability for some target species. But these large circle hooks might not be effective or economically viable in other longline fisheries. The effectiveness and commercial viability of a turtle avoidance strategy may be fishery‐specific, depending on the size and species of turtles and target fish and other differences between fleets. Testing of turtle avoidance methods in individual fleets may therefore be necessary. It is a priority to conduct trials in longline fleets that set gear shallow, those overlapping the most threatened turtle populations and fleets overlapping high densities of turtles such as those fishing near breeding colonies. In addition to trials using large 4.9‐cm wide circle hooks in place of smaller J and Japan tuna hooks, other fishing strategies are under assessment. These include: (i) using small circle hooks (≤ 4.6‐cm narrowest width) in place of smaller J and Japan tuna hooks; (ii) setting gear below turtle‐abundant depths; (iii) single hooking fish bait vs. multiple hook threading; (iv) reducing gear soak time and retrieval during daytime; and (v) avoiding by‐catch hotspots through fleet communication programmes and area and seasonal closures.  相似文献   

2.
Skipjack tuna (Katsuwonus pelamis) ranks third among marine resources that sustain global fisheries. This study delimits the spatiotemporal habitat of the species in the south‐western Atlantic Ocean, based on operational oceanography. We used generalized additive models (GAMs) and catch data from six pole‐and‐line fishing vessels operating during 2014 and 2015 fishing seasons to assess the effect of environmental variables on catch. We also analysed Modis sensor images of sea surface temperature (SST) and surface chlorophyll‐α concentration (SCC) to describe fishing ground characteristics in time and space. Catch was positively related to thermocline depth (24–45 m), SST (22–24.5°C), SCC (0.08–0.14 mg/m³) and salinity (34.9–35.8). Through SST images, we identified that thermal fronts were the main surface feature associated with a higher probability to find skipjack. Also, we state that skipjack fishery is tightly related to shelf break because bottom topography drives the position of fronts in this area. Ocean colour fronts and plankton enrichment were important proxies, accessible through SCC, used to delineate skipjack fishing grounds. Catch per unit effort (CPUE) was higher towards summer (median 14 t/fishing day) due to the oceanographic characteristics of the southern region. High productivity in this sector of the Brazilian coast defines the main skipjack feeding areas and, as a consequence, the greatest abundance and availability for fishing.  相似文献   

3.
Fishery management measures to reduce interactions between fisheries and endangered or threatened species have typically relied on static time‐area closures. While these efforts have reduced interactions, they can be costly and inefficient for managing highly migratory species such as sea turtles. The NOAA TurtleWatch product was created in 2006 as a tool to reduce the rates of interactions of loggerhead sea turtles with shallow‐set longline gear deployed by the Hawaii‐based pelagic longline fishery targeting swordfish. TurtleWatch provides information on loggerhead habitat and can be used by managers and industry to make dynamic management decisions to potentially reduce incidentally capturing turtles during fishing operations. TurtleWatch is expanded here to include information on endangered leatherback turtles to help reduce incidental capture rates in the central North Pacific. Fishery‐dependent data were combined with fishing effort, bycatch and satellite tracking data of leatherbacks to characterize sea surface temperature (SST) relationships that identify habitat or interaction ‘hotspots’. Analysis of SST identified two zones, centered at 17.2° and 22.9°C, occupied by leatherbacks on fishing grounds of the Hawaii‐based swordfish fishery. This new information was used to expand the TurtleWatch product to provide managers and industry near real‐time habitat information for both loggerheads and leatherbacks. The updated TurtleWatch product provides a tool for dynamic management of the Hawaii‐based shallow‐set fishery to aid in the bycatch reduction of both species. Updating the management strategy to dynamically adapt to shifts in multi‐species habitat use through time is a step towards an ecosystem‐based approach to fisheries management in pelagic ecosystems.  相似文献   

4.
We developed habitat suitability index (HSI) models for two size classes of Pacific saury Cololabis saira in the Northwestern Pacific Ocean. Environmental data, including sea surface temperature, sea surface height, salinity, and net primary production, and catch and effort data from Taiwanese distant‐water stick‐held dip net fisheries during the main fishing season (August–October) during 2002–2015 were used. Habitat preferences and suitable habitat area differed between size classes. The suitable habitat was located between 40–47.5°N and 145–165°E for large‐sized Pacific saury but encompassed a greater area (35–47°N and 140–165°E) for medium‐sized Pacific saury. Both size classes were affected by substantial interannual variation in the environmental variables, which in turn can be important in determining the potential fishing grounds. We found a significant negative relationship between the suitable habitat area and the Niño3.4 indices with a time‐lag of 6 months for the large‐sized (= ?0.68) and medium‐sized (= ?0.42) Pacific saury, respectively, as well as the total landings of Pacific saury by all fishing fleets (= ?0.46). As remotely‐sensed environmental data become increasingly available, HSI models may prove useful for evaluation of possible changes in habitat suitability resulting from climate change or other environmental phenomena and in formulating scientific advice for management.  相似文献   

5.
The efficiency of Finnish inland fisheries administration has improved during the past 15 years because of changes in fisheries legislation. The establishment of regional management units particularly has improved the practice of co-management, which has allowed the participation of many relevant interest groups in the decision-making process. The long-term private market equilibrium supply for recreational fishing with active types of gear accounted for 50% of the Finnish lake surface area. Presently the public sector has become involved in the supply of recreational fishing licences. The improvement in the system owes much to political initiatives. As regards commercial fishing, state-ownership of fishing grounds is a channel for recruitment into the occupation. Private ownership has led to a suboptimal allocation of fisheries resources, particularly in the commercial branch of the industry. However, by giving priority to social instead of economic goals the statutory fishery associations will help to maintain social and community values, which are locally important.  相似文献   

6.
  1. Sperm whales have occupied the waters off the Galápagos Islands, Ecuador, for at least the past 200 years. During the 19th century, they were the target of intensive whaling that severely depleted the population. In recent times, after commercial whaling ended, sperm whales in the region remain vulnerable to multiple threats, especially potential entanglement in fishing gear, which may hinder their ability to recover from the whaling era.
  2. As a highly mobile, long-lived species, long-term analysis of the habitat use of sperm whales is necessary to establish effective conservation and management strategies. Here, contemporary (1985–2014) and historical (1830–1850) sperm whale habitat use off the Galápagos Islands was analysed and contrasted to the extent of the Galápagos Marine Reserve (GMR). Contemporary habitat use and its variability over time were modelled as a function of geographic, oceanographic, and topographic variables using generalized additive models.
  3. The fine-scale habitat (<50 km) used by sperm whales was associated with topographic (i.e. depth and slope) and oceanographic characteristics (i.e. relative sea surface temperature and standard deviation of sea surface temperature), but these preferences varied over time.
  4. While historical and contemporary data indicate that sperm whale habitat primarily occurred within the boundaries of the GMR, in recent years, whales were found up to 30.1% of the time outside the GMR, potentially overlapping with commercial fisheries operating in the area.
  5. The dynamic nature of the relationship of this nomadic species with its habitat highlights the need of large-scale conservation efforts across the Eastern Tropical Pacific region, including the wide-scale enforcement of regulations requiring the use of Automatic Identification System in fishing vessels, the promotion of on-board fisheries observer programmes, the development of adaptive management strategies, and international collaboration to identify and mitigate threats.
  相似文献   

7.
Seagrass meadows support fisheries through provision of nursery areas and trophic subsidies to adjacent habitats. As shallow coastal habitats, they also provide key fishing grounds; however, the nature and extent of such exploitation are poorly understood. These productive meadows are being degraded globally at rapid rates. For degradation to cease, there needs to be better appreciation for the value of these habitats in supporting global fisheries. Here, we provide the first global scale study demonstrating the extent, importance and nature of fisheries exploitation of seagrass meadows. Due to a paucity of available data, the study used a global expert survey to demonstrate the widespread significance of seagrass‐based fishing activity. Our study finds that seagrass‐based fisheries are globally important and present virtually wherever seagrass exists, supporting subsistence, commercial and recreational activity. A wide range of fishing methods and gear is used reflecting the spatial distribution patterns of seagrass meadows, and their depth ranges from intertidal (accessible by foot) to relatively deep water (where commercial trawls can operate). Seagrass meadows are multispecies fishing grounds targeted by fishers for any fish or invertebrate species that can be eaten, sold or used as bait. In the coastal communities of developing countries, the importance of the nearshore seagrass fishery for livelihoods and well‐being is irrefutable. In developed countries, the seagrass fishery is often recreational and/or more target species specific. Regardless of location, this study is the first to highlight collectively the indiscriminate nature and global scale of seagrass fisheries and the diversity of exploitative methods employed to extract seagrass‐associated resources. Evidence presented emphasizes the need for targeted management to support continued viability of seagrass meadows as a global ecosystem service provider.  相似文献   

8.
The common dentex, Dentex dentex (L.), is an iconic marine coastal fish in the Mediterranean Sea. This study was performed in the Bonifacio Strait Natural Reserve (BSNR), (NW Mediterranean Sea). The aims were to: (1) evaluate temporal variation of the artisanal fishing of common dentex (2000–2012); (2) compare and quantify catch rates, fishing techniques and catch composition for artisanal and recreational fisheries, and determine the influence of management measures by both activities; and (3) estimate the production of both artisanal and recreational fisheries. Fishery data were collected from different artisanal fishing surveys (onboard fishing vessels and landings) and recreational fishing surveys (roving). The gears with the highest rates of exploitation were longline (3554 g per 100 hooks) and Trolling (351 g boat?1 h?1 ±SE), respectively, for artisanal and recreational fishing. This study showed that catches by both activities were quantitatively higher in partially protected areas than outside them. Production estimations suggest that the recreational fishery contributes significantly to fishing mortality and that it can magnify the negative effects of artisanal fisheries. Specific measures are needed for the sustainable fishery management of common dentex.  相似文献   

9.
The present study demonstrates the declining state of the major commercial fisheries of Lake Victoria, Kenya, a situation threatening sustainability of the lake's fishery. Data in the present study were derived from resource monitoring programmes that included hydro‐acoustics (2009–2018), trawl net fishing (2011–2018), frame surveys (2000–2016) and catch assessment surveys (2000–2015). The activities provided information on fish stocks and supported advice for fisheries management. The average fish stock densities for Tanzania, Uganda and Kenya of 8.92, 8.25 and 8.19 t/km2, respectively, were relatively similar. Diplomatic and sustainable efforts for harmony in fish harvesting among the fishers of the riparian countries are encouraged given the interdependence of the lake. The Kenyan and River Kagera regions had a higher proportion (≈ 4% each) of big‐sized Nile perch (≥50 cm total length) in 2018, signifying the critical breeding areas for Nile perch. To sustain the fishery, there is need to enforce a 36%–44% effort reduction for all the major fisheries, and enforcement of gear limits to avoid harvesting of immature fish and destruction of the lake ecosystem.  相似文献   

10.
11.
Striped marlin (Kajikia audax) is an epipelagic species distributed in tropical and temperate waters of the Pacific Ocean. In the central and eastern Pacific Ocean, it is captured principally in commercial longline fisheries, and in small artisanal fisheries, however, it is also taken throughout its range in this region as an incidental catch of the tuna purse‐seine fishery. Previous studies suggest that overexploitation and climate change may reduce abundance and cause changes in spatial distributions of marine species. The main objective of this study was to describe the habitat preferences of striped marlin and the changes in its distribution in response to environmental factors. Habitat modeling was conducted using a maximum entropy model. Operational level data for 2003–2014, collected by scientific observers aboard large purse seine vessels, were compiled by the Inter‐American Tropical Tuna Commission and were matched with detailed (4 km) oceanographic data from satellites and general circulation models. Results showed that the spatial distribution of habitat was dynamic, with seasonal shifts between coastal (winter) and oceanic (summer) waters. We found that the preferred habitat is mainly in coastal waters with warm sea surface temperatures and a high chlorophyll‐a concentration.  相似文献   

12.
We explored the seasonal potential fishing grounds of neon flying squid (Ommastrephes bartramii) in the western and central North Pacific using maximum entropy (MaxEnt) models fitted with squid fishery data as response and environmental factors from remotely sensed [sea surface temperature (SST), sea surface height (SSH), eddy kinetic energy (EKE), wind stress curl (WSC) and numerical model‐derived sea surface salinity (SSS)] covariates. The potential squid fishing grounds from January–February (winter) and June–July (summer) 2001–2004 were simulated separately and covered the near‐coast (winter) and offshore (summer) forage areas off the Kuroshio–Oyashio transition and subarctic frontal zones. The oceanographic conditions differed between regions and were regulated by the inherent seasonal variability and prevailing basin dynamics. The seasonal and spatial extents of potential squid fishing grounds were largely explained by SST (7–17°C in the winter and 11–18°C in the summer) and SSS (33.8–34.8 in the winter and 33.7–34.3 in the summer). These ocean properties are water mass tracers and define the boundaries of the North Pacific hydrographic provinces. Mesoscale variability in the upper ocean inferred from SSH and EKE were also influential to squid potential fishing grounds and are presumably linked to the augmented primary productivity from nutrient enhancement and entrainment of passive plankton. WSC, however, has the least model contribution to squid potential fishing habitat relative to the other environmental factors examined. Findings of this work underpin the importance of SST and SSS as robust predictors of the seasonal squid potential fishing grounds in the western and central North Pacific and highlight MaxEnt's potential for operational fishery application.  相似文献   

13.
Satellite‐based oceanographic data of sea surface temperature (SST), sea surface chlorophyll‐a concentration (SSC), and sea surface height anomaly (SSHA) together with catch data were used to investigate the relationship between albacore fishing ground and oceanographic conditions and also to predict potential habitats for albacore in the western North Pacific Ocean. Empirical cumulative distribution function and high catch data analyses were used to calculate preferred ranges of the three oceanographic conditions. Results indicate that highest catch per unit efforts (CPUEs) corresponded with areas of SST 18.5–21.5°C, SSC 0.2–0.4 mg m?3, and SSHA ?5.0 to 32.2 cm during the winter in the period 1998–2000. We used these ranges to generate a simple prediction map for detecting potential fishing grounds. Statistically, to predict spatial patterns of potential albacore habitats, we applied a combined generalized additive model (GAM) / generalized linear model (GLM). To build our model, we first constructed a GAM as an exploratory tool to identify the functional relationships between the environmental variables and CPUE; we then made parameters out of these relationships using the GLM to generate a robust prediction tool. The areas of highest CPUEs predicted by the models were consistent with the potential habitats on the simple prediction map and observation data, suggesting that the dynamics of ocean eddies (November 1998 and 2000) and fronts (November 1999) may account for the spatial patterns of highest albacore catch rates predicted in the study area. The results also suggest that multispectrum satellite data can provide useful information to characterize and predict potential tuna habitats.  相似文献   

14.
The sustainable mitigation of human–wildlife conflicts has become a major societal and environmental challenge globally. Among these conflicts, large marine predators feeding on fisheries catches, a behaviour termed “depredation,” has emerged concomitantly with the expansion of the world’s fisheries. Depredation poses threats to both the socio‐economic viability of fisheries and species conservation, stressing the need for mitigation. This review synthesizes the extent and socio‐ecological impacts of depredation by sharks and marine mammals across the world, and the various approaches used to minimize it. Depredation was reported in 214 fisheries between 1979 and 2019 (70% post‐2000) and affected fleets from 44 countries, in all sectors (commercial, artisanal and recreational), and in all major fishing techniques (nets, traps and hook‐and‐lines). A total of 68 predator species were involved in depredation (20 odontocetes, 21 pinnipeds and 27 sharks), and most (73%) were subject to either by‐catch and/or retaliatory killing from fishers when interacting with gear. Impacts on fishers were primarily associated with catch losses and gear damage but often lacked assessments. Deterrence was a major mitigation approach but also the least effective. Gear modifications or behavioural adaptation by fishers were more promising. This review highlights the need for improved monitoring, and interdisciplinary and integrated research to quantify the determinants and impacts of depredation in the socio‐ecological dimension. More importantly, as the conflict is likely to escalate, efforts directed towards changing perceptions and integrating knowledge through adaptive co‐management are raised as key directions towards coexistence between fisheries and large marine predators.  相似文献   

15.
We assessed the taxonomic diversity, geographic distributions, life history, ecology and fisheries of tarpons, ladyfishes and bonefishes (members of the subdivision Elopomorpha), which share many life history and habitat use characteristics that make them vulnerable to environmental and anthropogenic stresses in coastal environments. This assessment of Red List status for the International Union for the Conservation of Nature reveals three species considered near threatened or vulnerable, three species of least concern, and 11 data‐deficient species. Although the taxonomy of tarpons appears stable, it is less so for ladyfishes and bonefishes. In aggregate, these species are distributed circumtropically and foray into temperate zones. Although they spawn in marine habitats, larvae of many species disperse into estuarine habitats, which are declining in area or degrading in quality. Several species support high‐value recreational fisheries, or culturally important small‐scale commercial and artisanal fisheries. Nonetheless, no formal stock assessment exists for any species, so improved data collection, information sharing and assessment techniques should facilitate socio‐economic development of individual fisheries. Catch‐and‐release recreational fisheries that promote conservation of tarpon and bonefishes in some regions are promising models to improve the conservation status of these fishes elsewhere, as well as the economic development of these fishing communities. Most tarpons, ladyfishes and bonefishes likely face significant challenges from anthropogenically mediated habitat loss and alteration, and several are vulnerable to both habitat degradation and overfishing. Broader protection and enhancements to fisheries habitat in all regions will benefit these as well as many other coastal fishery species.  相似文献   

16.
Abstract The Gulf of Carpentaria in northern Australia supports several commercial fisheries and a largely tourist‐based recreational fishery. The results of a survey of 427 recreational fishing parties visiting the main town, Karumba, between March and September 2006 were examined using the bootstrap method to estimate confidence intervals for mean tourist catch and harvest of grunter, Pomadasys kaakan (Cuvier), and other recreational target species. Tourist anglers harvested between 99.8 and 117 t of P. kaakan and 32.6–38.2 t of blue salmon, Eleutheronema tetradactylum (Shaw), during the survey period. Resident recreational anglers harvested an additional 15–35 t of P. kaakan, but very little E. tetradactylum. In comparison, commercial harvest was 19 t of P. kaakan and 64 t of E. tetradactylum in the whole of the Queensland section of the Gulf of Carpentaria. The results underscore the need for appropriately collected recreational fishing data to support integrated fisheries management at the bioregional scale, and in the case of angling‐based tourist destinations, underpin a diversification of the tourist product.  相似文献   

17.
The selection of spatial scales is of particular importance in modeling relationships between fishery abundance and its influencing factors, because these relationships are significantly affected by spatial scale. Here, we explore the spatial scale effects of catch per unit effort (CPUE)–factor relationships for Ommastrephes bartramii in the northwest Pacific. The original commercial fishery data and oceanographic factors were tessellated to 12 spatial scales from 5′ to 60′ with an interval of 5′. Under the original scale and 12 tessellated scales, we constructed the generalized additive models (GAMs) to model the relationships between the O. bartramii CPUE and the influencing factors, including Year, Month, Latitude (Lat), Longitude (Lon), sea surface salinity (SSS), sea surface temperature (SST), sea surface chlorophyll‐a (Chl‐a) concentration, and sea surface height (SSH). Our multi‐scale analysis showed that the relationships are sensitive to spatial scales. Among the factors, Year, Month, and SSS share quadratic polynomial scaling relations; Lat, SST, and Chl‐a illustrate power law scaling relations; Lon has a linear scaling relation; and SSH presents an exponential scaling relation. Considering the scale sensitivity of the factor sort‐order and the accumulation of explained residual deviance in GAM, we suggest 30′45′ as the optimal range of spatial scales for analyzing the CPUE–factor relationships for O. bartramii. Our research improves understanding of the impacts of changing scales in fisheries and provides a potential method for the selection of a suitable spatial scale for fisheries analysis and resource surveying.  相似文献   

18.
Long‐term trends in Portuguese fisheries landing profiles of biodiversity, assemblage composition, trophic groups and marine trophic index (1950–2009) were studied to understand the evolution of the fisheries from an ecological viewpoint and evaluate the effects of fisheries on stocks. The number of species landed has increased considerably since the 1980s. This indicates an expansion of the fisheries and also a better use of the marine biodiversity for redistributing effort. Changes in the ecological composition of fisheries catches have occurred since the 1950s, with a significant shift in the middle 1980s (anchor point). Deep‐sea resources and higher trophic levels (cephalopods, large benthopelagics, flatfishes, demersal invertebrates, small‐medium and large rays, medium bathydemersal, shrimps, small benthopelagics large sharks) have increased while traditional commercial species captured by nearshore fisheries (medium and small pelagics) have decreased. Despite the decreasing trend in catches since 1988, the marine trophic index (MTI = 3.04) increased by approximately 0.2 units per decade (MTI in 2009 = 3.46). The number of collapsed, overexploited and fully exploited stocks has increased considerably over the last 20 years (>50%). Overall, the data indicate that redistributing fishing effort and targeting of deep‐sea resources may have been driven by depletion of inshore fishery stocks, which signals concern for the fishery. Marine biodiversity indexes and ecological structure of landings profiles should be considered by fishery managers when redefining new marine fisheries policy.  相似文献   

19.
Understanding the impacts of recreational fishing on commercially fished stocks is becoming increasingly relevant for fisheries managers. However, data from recreational fisheries are not commonly included in stock assessments of commercially fished stocks. Simulation models of two assessment methods employed in Australia's Commonwealth fisheries were used to explore how recreational fishery data can be included, and the likely consequences for management. In a data‐poor management strategy for blue eye trevalla, Hyperoglyphe antarctica (Carmichael), temporal trends in recreational catch most affected management outcomes. In a data‐rich age‐structured stock assessment for striped marlin, Kajikia audax (Philippi), estimates of stock status were biased when recreational catches were large or when the recreational fishery targeted different size classes than the commercial fishery and these data were not integrated into the assessment. Including data from recreational fishing can change perceptions of stock status and impact recommendations for harvest strategies and management action. An understanding of recreational fishery dynamics should be prioritised for some species.  相似文献   

20.
Two closely related baleen whale species, sei and Bryde's whales, in the western North Pacific were studied to identify differences in habitat use. Data were obtained from May to August 2004 and 2005. This study examined the relationship between oceanographic features derived from satellite data and the distribution of sei and Bryde's whales using basic statistics. We investigated oceanographic features including sea surface temperature (SST), sea surface chlorophyll a (Chl‐a), sea surface height anomalies (SSHAs), and depth of the habitat. These two whale species used habitats with different SST, Chl‐a, and SSHA ranges. The 0.25 mg m?3 Chl‐a contour (similar to the definition of the Transition Zone Chlorophyll Front) was a good indicator that separated the habitats of sei and Bryde's whales. Then generalized linear models were used to model the probabilities that the whale species would be present in a habitat and to estimate their habitat distribution throughout the study area as a function of environmental variables. The potential habitats of the two species were clearly divided, and the boundary moved north with seasonal progression. The habitat partitioning results indicated that SST contributed to the patterns of habitat‐use and might reflect differences in prey species between the two whales. This study showed that the habitats of the sei and Bryde's whales were clearly divided and their potential habitat‐use changed seasonally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号